1
|
Ahsan R, Maurer-Alcalá XX, Katz LA. Genome content in the non-model ciliate Chilodonella uncinata: insights into nuclear architecture, gene-sized chromosomes among the total DNA in their somatic macronuclei during their development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.13.623465. [PMID: 39605396 PMCID: PMC11601529 DOI: 10.1101/2024.11.13.623465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Ciliates are a model lineage for studies of genome architecture given their unusual genome structures. All ciliates have both somatic macronuclei (MAC) and germline micronuclei (MIC), both of which develop from a zygotic nucleus following sex (i.e., conjugation). Nuclear developmental stages are not as well explored among non-model ciliate genera, including Chilodonella uncinata (Class- Phyllopharyngea), the focus of our work. Here, we characterize nuclear architecture and genome dynamics in C. uncinata by combining DAPI (4',6-diamidino-2-phenylindole) staining and fluorescence in situ hybridization (FISH) techniques with confocal microscopy. We developed a telomere probe for staining alongside DAPI, which allows for the identification of fragmented somatic chromosomes among the total DNA in the nuclei. We quantify both total DNA and telomere-bound signals to explore changes in DNA content and chromosome maturation across Chilodonella's nuclear life cycle. Specifically, we find that MAC developmental stages in the ciliate C. uncinata are different than the data reported from other ciliate species. These data provide insights into nuclear dynamics during nuclear development and enrich our understanding of genome evolution in non-model ciliates.
Collapse
Affiliation(s)
- Ragib Ahsan
- University of Massachusetts Amherst, Program in Organismic and Evolutionary Biology, Amherst, Massachusetts, USA
- Smith College, Department of Biological Sciences, Northampton, Massachusetts, USA
| | - Xyrus X. Maurer-Alcalá
- Division of Invertebrate Zoology and Institute for Comparative Genomics, American Museum of Natural History, New York, NY 10024, USA
| | - Laura A. Katz
- University of Massachusetts Amherst, Program in Organismic and Evolutionary Biology, Amherst, Massachusetts, USA
- Smith College, Department of Biological Sciences, Northampton, Massachusetts, USA
| |
Collapse
|
2
|
Ahsan R, Blanche W, Katz LA. Macronuclear development in ciliates, with a focus on nuclear architecture. J Eukaryot Microbiol 2022; 69:e12898. [PMID: 35178799 DOI: 10.1111/jeu.12898] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/20/2022] [Accepted: 02/14/2022] [Indexed: 11/30/2022]
Abstract
Ciliates are defined by the presence of dimorphic nuclei as they have both a somatic macronucleus and germline micronucleus within each individual cell. The size and structure of both germline micronuclei and somatic macronuclei varies tremendously among ciliates. Except just after conjugation (i.e. the nuclear exchange in sexual cycle), the germline micronucleus is transcriptionally-inactive and contains canonical chromosomes that will be inherited between generations. In contrast, the transcriptionally-active macronucleus contains chromosomes that vary in size in different classes of ciliates, with some lineages having extensively-fragmented gene-sized somatic chromosomes while others contain longer multigene chromosomes. Here, we describe the variation in somatic macronuclear architecture in lineages sampled across the ciliate tree of life, specifically focusing on lineages with extensively fragmented chromosomes (e.g. the classes Phyllopharyngea and Spirotrichea). Further, we synthesize information from the literature on the development of ciliate macronuclei, focusing on changes in nuclear architecture throughout life cycles. These data highlight the tremendous diversity among ciliate nuclear cycles, extend our understanding of patterns of genome evolution, and provide insight into different germline and somatic nuclear features (e.g. nuclear structure and development) among eukaryotes.
Collapse
Affiliation(s)
- Ragib Ahsan
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, 01063, USA.,University of Massachusetts Amherst, Program in Organismic and Evolutionary Biology, Amherst, Massachusetts, 01003, USA
| | - Wumei Blanche
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, 01063, USA
| | - Laura A Katz
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, 01063, USA.,University of Massachusetts Amherst, Program in Organismic and Evolutionary Biology, Amherst, Massachusetts, 01003, USA
| |
Collapse
|
3
|
Munyenyembe K, Timmons C, Weiner AKM, Katz LA, Yan Y. DAPI staining and DNA content estimation of nuclei in uncultivable microbial eukaryotes (Arcellinida and Ciliates). Eur J Protistol 2021; 81:125840. [PMID: 34717075 PMCID: PMC8699166 DOI: 10.1016/j.ejop.2021.125840] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 08/09/2021] [Accepted: 08/30/2021] [Indexed: 01/03/2023]
Abstract
Though representing a major component of eukaryotic biodiversity, many microbial eukaryotes remain poorly studied, including the focus of the present work, testate amoebae of the order Arcellinida (Amoebozoa) and non-model lineages of ciliates (Alveolata). In particular, knowledge of genome structures and changes in genome content over the often-complex life cycles of these lineages remains enigmatic. However, the limited available knowledge suggests that microbial eukaryotes have the potential to challenge our textbook views on eukaryotic genomes and genome evolution. In this study, we developed protocols for DAPI (4',6-diamidino-2-phenylindole) staining of Arcellinida nuclei and adapted protocols for ciliates. In addition, image analysis software was used to estimate the DNA content in the nuclei of Arcellinida and ciliates, and the measurements of target organisms were compared to those of well-known model organisms.The results demonstrate that the methods we have developed for nuclear staining in these lineages are effective and can be applied to other microbial eukaryotic groups by adjusting certain stages in the protocols.
Collapse
Affiliation(s)
- Ketty Munyenyembe
- Smith College, Department of Biological Sciences, Northampton, MA, USA
| | - Caitlin Timmons
- Smith College, Department of Biological Sciences, Northampton, MA, USA
| | - Agnes K M Weiner
- Smith College, Department of Biological Sciences, Northampton, MA, USA
| | - Laura A Katz
- Smith College, Department of Biological Sciences, Northampton, MA, USA; University of Massachusetts Amherst, Program in Organismic and Evolutionary Biology, Amherst, MA, USA.
| | - Ying Yan
- Smith College, Department of Biological Sciences, Northampton, MA, USA.
| |
Collapse
|
4
|
Dong S, Zhang L, Pang W, Zhang Y, Wang C, Li Z, Ma L, Tang W, Yang G, Song H. Comprehensive analysis of coding sequence architecture features and gene expression in Arachis duranensis. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:213-222. [PMID: 33707864 PMCID: PMC7907404 DOI: 10.1007/s12298-021-00938-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/04/2021] [Accepted: 01/20/2021] [Indexed: 06/09/2023]
Abstract
Coding sequence (CDS) architecture affects gene expression levels in organisms. Codon optimization can increase the gene expression level. Therefore, understanding codon usage patterns has important implications for research on genetic engineering and exogenous gene expression. To date, the codon usage patterns of many model plants have been analyzed. However, the relationship between CDS architecture and gene expression in Arachis duranensis remains poorly understood. According to the results of genome sequencing, A. duranensis has many resistant genes that can be used to improve the cultivated peanut. In this study, bioinformatic approaches were used to estimate A. duranensis CDS architectures, including frequency of the optimal codon (Fop), polypeptide length and GC contents at the first (GC1), second (GC2) and third (GC3) codon positions. In addition, Arachis RNA-seq datasets were downloaded from PeanutBase. The relationships between gene expression and CDS architecture were assessed both under normal growth as well as nematode and drought stress conditions. A total of 26 codons with high frequency were identified, which preferentially ended with A or T in A. duranensis CDSs under the above-mentioned three conditions. A similar CDS architecture was found in differentially expressed genes (DEGs) under nematode and drought stresses. The GC1 content differed between DEGs and non-differentially expressed genes (NDEGs) under both drought and nematode stresses. The expression levels of DEGs were affected by different CDS architectures compared with NDEGs under drought stress. In addition, no correlation was found between differential gene expression and CDS architecture neither under nematode nor under drought stress. These results aid the understanding of gene expression in A. duranensis.
Collapse
Affiliation(s)
- Shuwei Dong
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Long Zhang
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Wenhui Pang
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Yongli Zhang
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Chang Wang
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Zhenyi Li
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Lichao Ma
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Wei Tang
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Guofeng Yang
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Hui Song
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
5
|
Yan Y, Maurer-Alcalá XX, Knight R, Kosakovsky Pond SL, Katz LA. Single-Cell Transcriptomics Reveal a Correlation between Genome Architecture and Gene Family Evolution in Ciliates. mBio 2019; 10:e02524-19. [PMID: 31874915 PMCID: PMC6935857 DOI: 10.1128/mbio.02524-19] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 10/30/2019] [Indexed: 12/17/2022] Open
Abstract
Ciliates, a eukaryotic clade that is over 1 billion years old, are defined by division of genome function between transcriptionally inactive germline micronuclei and functional somatic macronuclei. To date, most analyses of gene family evolution have been limited to cultivable model lineages (e.g., Tetrahymena, Paramecium, Oxytricha, and Stylonychia). Here, we focus on the uncultivable Karyorelictea and its understudied sister class Heterotrichea, which represent two extremes in genome architecture. Somatic macronuclei within the Karyorelictea are described as nearly diploid, while the Heterotrichea have hyperpolyploid somatic genomes. Previous analyses indicate that genome architecture impacts ciliate gene family evolution as the most diverse and largest gene families are found in lineages with extensively processed somatic genomes (i.e., possessing thousands of gene-sized chromosomes). To further assess ciliate gene family evolution, we analyzed 43 single-cell transcriptomes from 33 ciliate species representing 10 classes. Focusing on conserved eukaryotic genes, we use estimates of transcript diversity as a proxy for the number of paralogs in gene families among four focal clades: Karyorelictea, Heterotrichea, extensive fragmenters (with gene-size somatic chromosomes), and non-extensive fragmenters (with more traditional somatic chromosomes), the latter two within the subphylum Intramacronucleata. Our results show that (i) the Karyorelictea have the lowest average transcript diversity, while Heterotrichea are highest among the four groups; (ii) proteins in Karyorelictea are under the highest functional constraints, and the patterns of selection in ciliates may reflect genome architecture; and (iii) stop codon reassignments vary among members of the Heterotrichea and Spirotrichea but are conserved in other classes.IMPORTANCE To further our understanding of genome evolution in eukaryotes, we assess the relationship between patterns of molecular evolution within gene families and variable genome structures found among ciliates. We combine single-cell transcriptomics with bioinformatic tools, focusing on understudied and uncultivable lineages selected from across the ciliate tree of life. Our analyses show that genome architecture correlates with patterns of protein evolution as lineages with more canonical somatic genomes, such as the class Karyorelictea, have more conserved patterns of molecular evolution compared to other classes. This study showcases the power of single-cell transcriptomics for investigating genome architecture and evolution in uncultivable microbial lineages and provides transcriptomic resources for further research on genome evolution.
Collapse
Affiliation(s)
- Ying Yan
- Smith College, Department of Biological Sciences, Northampton, Massachusetts, USA
| | - Xyrus X Maurer-Alcalá
- Smith College, Department of Biological Sciences, Northampton, Massachusetts, USA
- University of Massachusetts Amherst, Program in Organismic and Evolutionary Biology, Amherst, Massachusetts, USA
| | - Rob Knight
- University of California San Diego, Department of Pediatrics, San Diego, California, USA
- University of California San Diego, Department of Computer Science and Engineering, San Diego, California, USA
- University of California San Diego, Center for Microbiome Innovation, San Diego, California, USA
| | - Sergei L Kosakovsky Pond
- Temple University, Institute for Genomics and Evolutionary Medicine, Philadelphia, Pennsylvania, USA
| | - Laura A Katz
- Smith College, Department of Biological Sciences, Northampton, Massachusetts, USA
- University of Massachusetts Amherst, Program in Organismic and Evolutionary Biology, Amherst, Massachusetts, USA
| |
Collapse
|
6
|
Exploration of the Germline Genome of the Ciliate Chilodonella uncinata through Single-Cell Omics (Transcriptomics and Genomics). mBio 2018; 9:mBio.01836-17. [PMID: 29317511 PMCID: PMC5760741 DOI: 10.1128/mbio.01836-17] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Separate germline and somatic genomes are found in numerous lineages across the eukaryotic tree of life, often separated into distinct tissues (e.g., in plants, animals, and fungi) or distinct nuclei sharing a common cytoplasm (e.g., in ciliates and some foraminifera). In ciliates, germline-limited (i.e., micronuclear-specific) DNA is eliminated during the development of a new somatic (i.e., macronuclear) genome in a process that is tightly linked to large-scale genome rearrangements, such as deletions and reordering of protein-coding sequences. Most studies of germline genome architecture in ciliates have focused on the model ciliates Oxytricha trifallax, Paramecium tetraurelia, and Tetrahymena thermophila, for which the complete germline genome sequences are known. Outside of these model taxa, only a few dozen germline loci have been characterized from a limited number of cultivable species, which is likely due to difficulties in obtaining sufficient quantities of “purified” germline DNA in these taxa. Combining single-cell transcriptomics and genomics, we have overcome these limitations and provide the first insights into the structure of the germline genome of the ciliate Chilodonella uncinata, a member of the understudied class Phyllopharyngea. Our analyses reveal the following: (i) large gene families contain a disproportionate number of genes from scrambled germline loci; (ii) germline-soma boundaries in the germline genome are demarcated by substantial shifts in GC content; (iii) single-cell omics techniques provide large-scale quality germline genome data with limited effort, at least for ciliates with extensively fragmented somatic genomes. Our approach provides an efficient means to understand better the evolution of genome rearrangements between germline and soma in ciliates. Our understanding of the distinctions between germline and somatic genomes in ciliates has largely relied on studies of a few model genera (e.g., Oxytricha, Paramecium, Tetrahymena). We have used single-cell omics to explore germline-soma distinctions in the ciliate Chilodonella uncinata, which likely diverged from the better-studied ciliates ~700 million years ago. The analyses presented here indicate that developmentally regulated genome rearrangements between germline and soma are demarcated by rapid transitions in local GC composition and lead to diversification of protein families. The approaches used here provide the basis for future work aimed at discerning the evolutionary impacts of germline-soma distinctions among diverse ciliates.
Collapse
|
7
|
Wancura MM, Yan Y, Katz LA, Maurer-Alcalá XX. Nuclear Features of the Heterotrich Ciliate Blepharisma americanum: Genomic Amplification, Life Cycle, and Nuclear Inclusion. J Eukaryot Microbiol 2018; 65:4-11. [PMID: 28460157 PMCID: PMC5989012 DOI: 10.1111/jeu.12422] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 04/10/2017] [Accepted: 04/12/2017] [Indexed: 12/28/2022]
Abstract
Blepharisma americanum, a member of the understudied ciliate class Heterotrichea, has a moniliform somatic macronucleus that resembles beads on a string. Blepharisma americanum is distinguishable by its pink coloration derived from the autofluorescent pigment blepharismin and tends to have a single somatic macronucleus with 3-6 nodes and multiple germline micronuclei. We used fluorescence confocal microscopy to explore the DNA content and amplification between the somatic and germline nuclei of B. americanum through its life cycle. We estimate that the DNA content of the macronucleus and micronucleus are 43 ± 8 Gbp and 83 ± 16 Mbp respectively. This correlates with an approximate DNA content difference of 500-fold from micronucleus to macronucleus and a macronuclear ploidy of ~1,100 N as compared to the presumably diploid micronucleus. We also investigate a previously reported macronuclear inclusion, which is present sporadically across all life cycle stages; this inclusion looks as if it contains blepharismin based on its fluorescent properties, but its function remains unknown. We also provide additional detail to our understanding of life cycles changes in B. americanum by analyses of fluorescent images. Overall, the data analyzed here contribute to our understanding of the diversity of nuclear architecture in ciliates by providing details on the highly polyploid somatic macronucleus of B. americanum.
Collapse
Affiliation(s)
- Megan M Wancura
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, 01063, USA
| | - Ying Yan
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, 01063, USA
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Laura A Katz
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, 01063, USA
- Program in Organismic and Evolutionary Biology, University of Massachusetts Amherst, Amherst, Massachusetts, 01003, USA
| | - Xyrus X Maurer-Alcalá
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, 01063, USA
- Program in Organismic and Evolutionary Biology, University of Massachusetts Amherst, Amherst, Massachusetts, 01003, USA
| |
Collapse
|
8
|
Song H, Gao H, Liu J, Tian P, Nan Z. Comprehensive analysis of correlations among codon usage bias, gene expression, and substitution rate in Arachis duranensis and Arachis ipaënsis orthologs. Sci Rep 2017; 7:14853. [PMID: 29093502 PMCID: PMC5665869 DOI: 10.1038/s41598-017-13981-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 10/04/2017] [Indexed: 11/22/2022] Open
Abstract
The relationship between evolutionary rates and gene expression in model plant orthologs is well documented. However, little is known about the relationships between gene expression and evolutionary trends in Arachis orthologs. We identified 7,435 one-to-one orthologs, including 925 single-copy and 6,510 multiple-copy sequences in Arachis duranensis and Arachis ipaënsis. Codon usage was stronger for shorter polypeptides, which were encoded by codons with higher GC contents. Highly expressed coding sequences had higher codon usage bias, GC content, and expression breadth. Additionally, expression breadth was positively correlated with polypeptide length, but there was no correlation between gene expression and polypeptide length. Inferred selective pressure was also negatively correlated with both gene expression and expression breadth in all one-to-one orthologs, while positively but non-significantly correlated with gene expression in sequences with signatures of positive selection. Gene expression levels and expression breadth were significantly higher for single-copy genes than for multiple-copy genes. Similarly, the gene expression and expression breadth in sequences with signatures of purifying selection were higher than those of sequences with positive selective signatures. These results indicated that gene expression differed between single-copy and multiple-copy genes as well as sequences with signatures of positive and purifying selection.
Collapse
Affiliation(s)
- Hui Song
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China.
| | - Hongjuan Gao
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Jing Liu
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Pei Tian
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Zhibiao Nan
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|