1
|
Gibbs RJ, Chambers AC, Hill DJ. The emerging role of Fusobacteria in carcinogenesis. Eur J Clin Invest 2024; 54 Suppl 2:e14353. [PMID: 39674881 DOI: 10.1111/eci.14353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/04/2024] [Indexed: 12/17/2024]
Abstract
The Fusobacterium genus comprises Gram-negative, obligate anaerobic bacteria that typically reside in the periodontium of the oral cavity, gastrointestinal tract, and female genital tract. The association of Fusobacterial spp. with colorectal tumours is widely accepted, with further evidence that this pathogen may also be implicated in the development of other malignancies. Fusobacterial spp. influence malignant cell behaviours and the tumour microenvironment in various ways, which can be related to the multiple surface adhesins expressed. These adhesins include Fap2 (fibroblast-activated protein 2), CpbF (CEACAM binding protein of Fusobacteria), FadA (Fusobacterium adhesin A) and FomA (Fusobacterial outer membrane protein A). This review outlines the influence of Fusobacteria in promoting cancer initiation and progression, impacts of therapeutic outcomes and discusses potential therapeutic interventions where appropriate.
Collapse
|
2
|
Zepeda-Rivera M, Minot SS, Bouzek H, Wu H, Blanco-Míguez A, Manghi P, Jones DS, LaCourse KD, Wu Y, McMahon EF, Park SN, Lim YK, Kempchinsky AG, Willis AD, Cotton SL, Yost SC, Sicinska E, Kook JK, Dewhirst FE, Segata N, Bullman S, Johnston CD. A distinct Fusobacterium nucleatum clade dominates the colorectal cancer niche. Nature 2024; 628:424-432. [PMID: 38509359 PMCID: PMC11006615 DOI: 10.1038/s41586-024-07182-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 02/08/2024] [Indexed: 03/22/2024]
Abstract
Fusobacterium nucleatum (Fn), a bacterium present in the human oral cavity and rarely found in the lower gastrointestinal tract of healthy individuals1, is enriched in human colorectal cancer (CRC) tumours2-5. High intratumoural Fn loads are associated with recurrence, metastases and poorer patient prognosis5-8. Here, to delineate Fn genetic factors facilitating tumour colonization, we generated closed genomes for 135 Fn strains; 80 oral strains from individuals without cancer and 55 unique cancer strains cultured from tumours from 51 patients with CRC. Pangenomic analyses identified 483 CRC-enriched genetic factors. Tumour-isolated strains predominantly belong to Fn subspecies animalis (Fna). However, genomic analyses reveal that Fna, considered a single subspecies, is instead composed of two distinct clades (Fna C1 and Fna C2). Of these, only Fna C2 dominates the CRC tumour niche. Inter-Fna analyses identified 195 Fna C2-associated genetic factors consistent with increased metabolic potential and colonization of the gastrointestinal tract. In support of this, Fna C2-treated mice had an increased number of intestinal adenomas and altered metabolites. Microbiome analysis of human tumour tissue from 116 patients with CRC demonstrated Fna C2 enrichment. Comparison of 62 paired specimens showed that only Fna C2 is tumour enriched compared to normal adjacent tissue. This was further supported by metagenomic analysis of stool samples from 627 patients with CRC and 619 healthy individuals. Collectively, our results identify the Fna clade bifurcation, show that specifically Fna C2 drives the reported Fn enrichment in human CRC and reveal the genetic underpinnings of pathoadaptation of Fna C2 to the CRC niche.
Collapse
Affiliation(s)
- Martha Zepeda-Rivera
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Samuel S Minot
- Data Core, Shared Resources, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Heather Bouzek
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Hanrui Wu
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Aitor Blanco-Míguez
- Department of Computational, Cellular and Integrative Biology, University of Trento, Trento, Italy
| | - Paolo Manghi
- Department of Computational, Cellular and Integrative Biology, University of Trento, Trento, Italy
| | - Dakota S Jones
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | | | - Ying Wu
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Elsa F McMahon
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Soon-Nang Park
- Korean Collection for Oral Microbiology and Department of Oral Biochemistry, School of Dentistry, Chosun University, Gwangju, Republic of Korea
| | - Yun K Lim
- Korean Collection for Oral Microbiology and Department of Oral Biochemistry, School of Dentistry, Chosun University, Gwangju, Republic of Korea
| | | | - Amy D Willis
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | | | | | - Ewa Sicinska
- Department of Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Joong-Ki Kook
- Korean Collection for Oral Microbiology and Department of Oral Biochemistry, School of Dentistry, Chosun University, Gwangju, Republic of Korea
| | - Floyd E Dewhirst
- Forsyth Institute, Cambridge, MA, USA
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Nicola Segata
- Department of Computational, Cellular and Integrative Biology, University of Trento, Trento, Italy
| | - Susan Bullman
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
| | - Christopher D Johnston
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
| |
Collapse
|
3
|
Zhou P, G. C. B, Stolte F, Wu C. Use of CRISPR interference for efficient and rapid gene inactivation in Fusobacterium nucleatum. Appl Environ Microbiol 2024; 90:e0166523. [PMID: 38185820 PMCID: PMC10880640 DOI: 10.1128/aem.01665-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/27/2023] [Indexed: 01/09/2024] Open
Abstract
Gene inactivation by creating in-frame deletion mutations in Fusobacterium nucleatum is time consuming, and most fusobacterial strains are genetically intractable. Addressing these problems, we introduced a riboswitch-based inducible CRISPR interference (CRISPRi) system. This system employs the nuclease-inactive Streptococcus pyogenes Cas9 protein (dCas9), specifically guided to the gene of interest by a constantly expressed single-guide RNA (sgRNA). Mechanistically, this dCas9-sgRNA complex serves as an insurmountable roadblock for RNA polymerase, thus repressing the target gene transcription. Leveraging this system, we first examined two non-essential genes, ftsX and radD, which are pivotal for fusobacterial cytokinesis and coaggregation. Upon adding the inducer, theophylline, ftsX suppression caused filamentous cell formation akin to chromosomal ftsX deletion, while targeting radD significantly reduced RadD protein levels, abolishing RadD-mediated coaggregation. The system was then extended to probe essential genes bamA and ftsZ, which are vital for outer membrane biogenesis and cell division. Impressively, bamA suppression disrupted membrane integrity and bacterial separation, stalling growth, while ftsZ targeting yielded elongated cells in broth with compromised agar growth. Further studies on F. nucleatum clinical strain CTI-2 and Fusobacterium periodonticum revealed reduced indole synthesis when targeting tnaA. Moreover, silencing clpB in F. periodonticum decreased ClpB, increasing thermal sensitivity. In summary, our CRISPRi system streamlines gene inactivation across various fusobacterial strains.IMPORTANCEHow can we effectively investigate the gene functions in Fusobacterium nucleatum, given the dual challenges of gene inactivation and the inherent genetic resistance of many strains? Traditional methods have been cumbersome and often inadequate. Addressing this, our work introduces a novel inducible CRISPR interference (CRISPRi) system in which dCas9 expression is controlled at the translation level by a theophylline-responsive riboswitch unit, and single-guide RNA expression is driven by the robust, constitutive rpsJ promoter. This approach simplifies gene inactivation in the model organism (ATCC 23726) and extends its application to previously considered genetically intractable strains like CTI-2 and Fusobacterium periodonticum. With CRISPRi's potential, it is a pivotal tool for in-depth genetic studies into fusobacterial pathogenesis, potentially unlocking targeted therapeutic strategies.
Collapse
Affiliation(s)
- Peng Zhou
- Department of Microbiology & Molecular Genetics, The University of Texas Health Science Center, Houston, Texas, USA
| | - Bibek G. C.
- Department of Microbiology & Molecular Genetics, The University of Texas Health Science Center, Houston, Texas, USA
| | - Flynn Stolte
- Department of Microbiology & Molecular Genetics, The University of Texas Health Science Center, Houston, Texas, USA
| | - Chenggang Wu
- Department of Microbiology & Molecular Genetics, The University of Texas Health Science Center, Houston, Texas, USA
| |
Collapse
|
4
|
Krieger M, Guo M, Merritt J. Reexamining the role of Fusobacterium nucleatum subspecies in clinical and experimental studies. Gut Microbes 2024; 16:2415490. [PMID: 39394990 PMCID: PMC11486156 DOI: 10.1080/19490976.2024.2415490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/17/2024] [Accepted: 10/04/2024] [Indexed: 10/14/2024] Open
Abstract
The Gram-negative anaerobic species Fusobacterium nucleatum was originally described as a commensal organism from the human oral microbiome. However, it is now widely recognized as a key inflammophilic pathobiont associated with a wide variety of oral and extraoral diseases. Historically, F. nucleatum has been classified into four subspecies that have been generally considered as functionally interchangeable in their pathogenic potential. Recent studies have challenged this notion, as clinical data reveal a highly biased distribution of F. nucleatum subspecies within disease sites of both inflammatory oral diseases and various malignancies. This review details the historical basis for the F. nucleatum subspecies designations and summarizes our current understanding of the similarities and distinctions between these organisms to provide important context for future clinical and laboratory studies of F. nucleatum.
Collapse
Affiliation(s)
- Madeline Krieger
- Division of Biomaterial and Biomedical Sciences, School of Dentistry, Oregon Health & Science University (OHSU), Portland, OR, USA
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University (OHSU), Portland, OR, USA
| | - Mingzhe Guo
- Division of Biomaterial and Biomedical Sciences, School of Dentistry, Oregon Health & Science University (OHSU), Portland, OR, USA
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University (OHSU), Portland, OR, USA
| | - Justin Merritt
- Division of Biomaterial and Biomedical Sciences, School of Dentistry, Oregon Health & Science University (OHSU), Portland, OR, USA
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University (OHSU), Portland, OR, USA
| |
Collapse
|
5
|
Tan KY, Deng S, Tan TK, Hari R, Sitam FT, Othman RY, Wong KT, Mohidin TBM, Choo SW. Genome sequence analysis of Malayan pangolin ( Manis javanica) forensic samples reveals the presence of Paraburkholderia fungorum sequences. PeerJ 2023; 11:e16002. [PMID: 37810781 PMCID: PMC10559893 DOI: 10.7717/peerj.16002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 08/09/2023] [Indexed: 10/10/2023] Open
Abstract
Background The Malayan pangolin (Manis javanica) is a placental mammal and is listed as Critically Endangered on the IUCN Red List of Threatened Species. Most previous attempts to breed pangolins in captivity have met with little success because of dietary issues, infections, and other complications, although a previous study reported breeding pangolins in captivity to the third generation. In our previous pangolin genome sequencing data analysis, we obtained a considerable amount of bacterial DNA from a pregnant female Malayan pangolin (named "UM3"), which was likely infected by Paraburkholderia fungorum-an agent of biodegradation and bioremediation in agriculture. Methodology Here, we further confirmed and characterized this bacterial species using PCR, histological staining, whole-genome sequencing, and bioinformatics approaches. PCR assays with in-house designed primer sets and 16S universal primers showed clear positive bands in the cerebrum, cerebellum, lung, and blood of UM3 suggesting that UM3 might have developed septicaemia. Histological staining showed the presence of Gram-negative rod-shaped bacteria in the pangolin brain and lungs, indicating the colonization of the bacteria in these two organs. In addition, PCR screening of UM3's fetal tissues revealed the presence of P. fungorum in the gastrocnemius muscle, but not in other tissues that we examined. We also sequenced and reconstructed the genome of pangolin P. fungorum, which has a genome size of 7.7 Mbps. Conclusion Our study is the first to present detailed evidence of the presence of P. fungorum in a pangolin and her fetus (although preliminary results were presented in our previous article). Here, we raise the concern that P. fungorum may potentially infect humans, especially YOPI (young, old, pregnant, and immunocompromised) people. Therefore, caution should be exercised when using this bacterial species as biodegradation or bioremediation agents in agriculture.
Collapse
Affiliation(s)
- Ka Yun Tan
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Siwei Deng
- College of Science and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang, China
| | - Tze King Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Ranjeev Hari
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Frankie Thomas Sitam
- National Wildlife Forensic Laboratory, Department of Wildlife and National Parks (PERHILITAN), Kuala Lumpur, Malaysia
| | - Rofina Yasmin Othman
- Centre for Research in Biotechnology for Agriculture (CEBAR), University of Malaya, Kuala Lumpur, Malaysia
| | - Kum Thong Wong
- Department of Pathology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | | | - Siew Woh Choo
- College of Science and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang, China
- Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou, Zhejiang, China
- Wenzhou Municipal Key Laboratory for Applied Biomedical and Biopharmaceutical Informatics, Wenzhou, Zhejiang, China
| |
Collapse
|
6
|
Zhou P, G C B, Stolte F, Wu C. Use of CRISPR interference for efficient and rapid gene inactivation in Fusobacterium nucleatum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.19.558491. [PMID: 37781593 PMCID: PMC10541141 DOI: 10.1101/2023.09.19.558491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Gene inactivation via creating in-frame deletion mutations in Fusobacterium nucleatum is time-consuming, and most fusobacterial strains are genetically intractable. Addressing these problems, we introduced a riboswitch-based inducible CRISPRi system. This system employs the nuclease-inactive Streptococcus pyogenes Cas9 protein (dCas9), specifically guided to the gene of interest by a constantly expressed single guide RNA (sgRNA). Mechanistically, this dCas9-sgRNA complex serves as an insurmountable roadblock for RNA polymerase, thus repressing the target gene transcription. Leveraging this system, we first examined two non-essential genes, ftsX, and radD , pivotal for fusobacterial cytokinesis and coaggregation. Upon adding the inducer, theophylline, ftsX suppression caused filamentous cell formation akin to chromosomal ftsX deletion, while targeting radD significantly reduced RadD protein levels, abolishing coaggregation. The system was then extended to probe essential genes bamA and ftsZ , vital for outer membrane biogenesis and cell division. Impressively, bamA suppression disrupted membrane integrity and bacterial separation, stalling growth, while ftsZ- targeting yielded elongated cells in broth with compromised agar growth. Further studies on F. nucleatum clinical strain CTI-2 and Fusobacterium periodonticum revealed reduced indole synthesis when targeting tnaA . Moreover, silencing clpB in F. periodonticum decreased ClpB, increasing thermal sensitivity. In summary, our CRISPRi system streamlines gene inactivation across various fusobacterial strains. IMPORTANCE How can we effectively investigate the gene functions in Fusobacterium nucleatum , given the dual challenges of gene inactivation and the inherent genetic resistance of many strains? Traditional methods have been cumbersome and often inadequate. Addressing this, our work introduces a novel inducible CRISPRi system in which dCas9 expression is controlled at the translation level by a theophylline-responsive riboswitch unit, and sgRNA expression is driven by the robust, constitutive rpsJ promoter. This approach simplifies gene inactivation in the model organism (ATCC 23726) and extends its application to previously considered resistant strains like CTI-2 and Fusobacterium periodontium . With CRISPRi's potential, it is a pivotal tool for in-depth genetic studies into fusobacterial pathogenesis, potentially unlocking targeted therapeutic strategies.
Collapse
|
7
|
Sanders BE, Umaña A, Nguyen TTD, Williams KJ, Yoo CC, Casasanta MA, Wozniak B, Slade DJ. Type IV pili facilitated natural competence in Fusobacterium nucleatum. Anaerobe 2023; 82:102760. [PMID: 37451427 DOI: 10.1016/j.anaerobe.2023.102760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
OBJECTIVES Many bacterial species naturally take up DNA from their surroundings and recombine it into their chromosome through homologous gene transfer (HGT) to aid in survival and gain advantageous functions. Herein we present the first characterization of Type IV pili facilitated natural competence in Fusobacterium nucleatum, which is a Gram-negative, anaerobic bacterium that participates in a range of infections and diseases including periodontitis, preterm birth, and cancer. METHODS Here we used bioinformatics on multiple Fusobacterium species, as well as molecular genetics to characterize natural competence in strain F. nucleatum subsp. nucleatum ATCC 23726. RESULTS We bioinformatically identified components of the Type IV conjugal pilus machinery and show this is a conserved system within the Fusobacterium genus. We next validate Type IV pili in natural competence in F. nucleatum ATCC 23726 and show that gene deletions in key components of pilus deployment (pilQ) and cytoplasmic DNA import (comEC) abolish DNA uptake and chromosomal incorporation. We next show that natural competence may require native F. nucleatum DNA methylation to bypass restriction modification systems and allow subsequent genomic homologous recombination. CONCLUSIONS In summary, this proof of principle study provides the first characterization of natural competence in Fusobacterium nucleatum and highlights the potential to exploit this DNA import mechanism as a genetic tool to characterize virulence mechanisms of an opportunistic oral pathogen.
Collapse
Affiliation(s)
- Blake E Sanders
- Virginia Polytechnic Institute and State University, Department of Biochemistry, Blacksburg, VA, USA
| | - Ariana Umaña
- Virginia Polytechnic Institute and State University, Department of Biochemistry, Blacksburg, VA, USA
| | - Tam T D Nguyen
- Virginia Polytechnic Institute and State University, Department of Biochemistry, Blacksburg, VA, USA
| | - Kevin J Williams
- Virginia Polytechnic Institute and State University, Department of Biochemistry, Blacksburg, VA, USA
| | - Christopher C Yoo
- Virginia Polytechnic Institute and State University, Department of Biochemistry, Blacksburg, VA, USA
| | - Michael A Casasanta
- Virginia Polytechnic Institute and State University, Department of Biochemistry, Blacksburg, VA, USA
| | - Bryce Wozniak
- Virginia Polytechnic Institute and State University, Department of Biochemistry, Blacksburg, VA, USA
| | - Daniel J Slade
- Virginia Polytechnic Institute and State University, Department of Biochemistry, Blacksburg, VA, USA.
| |
Collapse
|
8
|
Visentin D, Gobin I, Maglica Ž. Periodontal Pathogens and Their Links to Neuroinflammation and Neurodegeneration. Microorganisms 2023; 11:1832. [PMID: 37513004 PMCID: PMC10385044 DOI: 10.3390/microorganisms11071832] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/05/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Pathogens that play a role in the development and progression of periodontitis have gained significant attention due to their implications in the onset of various systemic diseases. Periodontitis is characterized as an inflammatory disease of the gingival tissue that is mainly caused by bacterial pathogens. Among them, Porphyromonas gingivalis, Treponema denticola, Fusobacterium nucleatum, Aggregatibacter actinomycetemcomitans, and Tannerella forsythia are regarded as the main periodontal pathogens. These pathogens elicit the release of cytokines, which in combination with their virulence factors induce chronic systemic inflammation and subsequently impact neural function while also altering the permeability of the blood-brain barrier. The primary objective of this review is to summarize the existing information regarding periodontal pathogens, their virulence factors, and their potential association with neuroinflammation and neurodegenerative diseases. We systematically reviewed longitudinal studies that investigated the association between periodontal disease and the onset of neurodegenerative disorders. Out of the 24 studies examined, 20 showed some degree of positive correlation between periodontal disease and neurodegenerative disorders, with studies focusing on cognitive function demonstrating the most robust effects. Therefore, periodontal pathogens might represent an exciting new approach to develop novel preventive treatments for neurodegenerative diseases.
Collapse
Affiliation(s)
- David Visentin
- Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
| | - Ivana Gobin
- Department of Microbiology and Parasitology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Željka Maglica
- Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
| |
Collapse
|
9
|
Ma X, Sun T, Zhou J, Zhi M, Shen S, Wang Y, Gu X, Li Z, Gao H, Wang P, Feng Q. Pangenomic Study of Fusobacterium nucleatum Reveals the Distribution of Pathogenic Genes and Functional Clusters at the Subspecies and Strain Levels. Microbiol Spectr 2023; 11:e0518422. [PMID: 37042769 PMCID: PMC10269558 DOI: 10.1128/spectrum.05184-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/26/2023] [Indexed: 04/13/2023] Open
Abstract
Fusobacterium nucleatum is a prevalent periodontal pathogen and is associated with many systemic diseases. Our knowledge of the genomic characteristics and pathogenic effectors of different F. nucleatum strains is limited. In this study, we completed the whole genome assembly of the 4 F. nucleatum strains and carried out a comprehensive pangenomic study of 30 strains with their complete genome sequences. Phylogenetic analysis revealed that the F. nucleatum strains are mainly divided into 4 subspecies, while 1 of the sequenced strains was classified into a new subspecies. Gene composition analysis revealed that a total of 517 "core/soft-core genes" with housekeeping functions widely distributed in almost all the strains. Each subspecies had a unique gene cluster shared by strains within the subspecies. Analysis of the virulence factors revealed that many virulence factors were widely distributed across all the strains, with some present in multiple copies. Some virulence genes showed no consistent occurrence rule at the subspecies level and were specifically distributed in certain strains. The genomic islands mainly revealed strain-specific characteristics instead of subspecies level consistency, while CRISPR types and secondary metabolite biosynthetic gene clusters were identically distributed in F. nucleatum strains from the same subspecies. The variation in amino acid sites in the adhesion protein FadA did not affect the monomer and dimer 3D structures, but it may affect the binding surface and the stability of binding to host receptors. This study provides a basis for the pathogenic study of F. nucleatum at the subspecies and strain levels. IMPORTANCE We used F. nucleatum as an example to analyze the genomic characteristics of oral pathogens at the species, subspecies, and strain levels and elucidate the similarities and differences in functional genes and virulence factors among different subspecies/strains of the same oral pathogen. We believe that the unique biological characteristics of each subspecies/strain can be attributed to the differences in functional gene clusters or the presence/absence of certain virulence genes. This study showed that F. nucleatum strains from the same subspecies had similar functional gene compositions, CRISPR types, and secondary metabolite biosynthetic gene clusters, while pathogenic genes, such as virulence genes, antibiotic resistance genes, and GIs, had more strain level specificity. The findings of this study suggest that, for microbial pathogenicity studies, we should carefully consider the subspecies/strains being used, as different strains may vary greatly.
Collapse
Affiliation(s)
- Xiaomei Ma
- Department of Human Microbiome & Implantology & Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Tianyong Sun
- Department of Human Microbiome & Implantology & Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Jiannan Zhou
- Department of Human Microbiome & Implantology & Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
- The State Key Laboratory Breeding Base of Basic Sciences of Stomatology, Key Laboratory of Oral Biomedicine, Ministry of Education (Hubei-MOST KLOS & KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Mengfan Zhi
- Department of Human Microbiome & Implantology & Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Song Shen
- Department of Human Microbiome & Implantology & Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Yushang Wang
- Department of Human Microbiome & Implantology & Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Xiufeng Gu
- Department of Human Microbiome & Implantology & Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Zixuan Li
- Department of Human Microbiome & Implantology & Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Haiting Gao
- Department of Human Microbiome & Implantology & Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Pingping Wang
- Department of Human Microbiome & Implantology & Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Qiang Feng
- Department of Human Microbiome & Implantology & Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
10
|
Comparison of Conventional Molecular and Whole-Genome Sequencing Methods for Differentiating Salmonella enterica Serovar Schwarzengrund Isolates Obtained from Food and Animal Sources. Microorganisms 2021; 9:microorganisms9102046. [PMID: 34683367 PMCID: PMC8540620 DOI: 10.3390/microorganisms9102046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 09/17/2021] [Accepted: 09/25/2021] [Indexed: 11/16/2022] Open
Abstract
Over the last decade, Salmonella enterica serovar Schwarzengrund has become more prevalent in Asia, Europe, and the US with the simultaneous emergence of multidrug-resistant isolates. As these pathogens are responsible for many sporadic illnesses and chronic complications, as well as outbreaks over many countries, improved surveillance is urgently needed. For 20 years, pulsed-field gel electrophoresis (PFGE) has been the gold standard for determining bacterial relatedness by targeting genome-wide restriction enzyme polymorphisms. Despite its utility, recent studies have reported that PFGE results correlate poorly with that of closely related outbreak strains and clonally dominant endemic strains. Due to these concerns, alternative amplification-based molecular methods for bacterial strain typing have been developed, including clustered regular interspaced short palindromic repeats (CRISPR) and multilocus sequence typing (MLST). Furthermore, as the cost of sequencing continues to decrease, whole genome sequencing (WGS) is poised to replace other molecular strain typing methods. In this study, we assessed the discriminatory power of PFGE, CRISPR, MLST, and WGS methods to differentiate between 23 epidemiologically unrelated S. enterica serovar Schwarzengrund isolates collected over an 18-year period from distinct locations in Taiwan. The discriminatory index (DI) of each method for different isolates was calculated, resulting in values between 0 (not discriminatory) and 1 (highly discriminatory). Our results showed that WGS has the greatest resolution (DI = 0.982) compared to PFGE (DI = 0.938), CRISPR (DI = 0.906), and MLST (DI = 0.463) methods. In conclusion, the WGS typing approach was shown to be the most sensitive for S. enterica serovar Schwarzengrund fingerprinting.
Collapse
|
11
|
Bi D, Zhu Y, Gao Y, Li H, Zhu X, Wei R, Xie R, Wei Q, Qin H. A newly developed PCR-based method revealed distinct Fusobacterium nucleatum subspecies infection patterns in colorectal cancer. Microb Biotechnol 2021; 14:2176-2186. [PMID: 34309194 PMCID: PMC8449656 DOI: 10.1111/1751-7915.13900] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 07/12/2021] [Indexed: 12/28/2022] Open
Abstract
Fusobacterium nucleatum, which has four subspecies (nucleatum, animalis, vincentii and polymorphum), plays an important role in promoting colorectal cancer (CRC). However, as there is no efficient method of differentiating these subspecies in the context of a rich gut microbiota, the compositions in CRC remain largely unknown. In this study, a PCR-based differentiation method enabling profiling of F. nucleatum infection in CRC at the subspecies level was developed. Based on the analysis of 53 F. nucleatum genomes, we identified genetic markers specific to each subspecies and designed primers for the conserved sequences of those markers. The PCR performance of the primers was tested with F. nucleatum and non-nucleatum Fusobacterium strains, and complete consistence with taxonomy was achieved. Additionally, no non-specific amplification occurred when using human DNA. The method was then applied to faecal (n = 58) and fresh-frozen tumour tissue (n = 100) samples from CRC patients, and wide heterogeneity in F. nucleatum subspecies compositions in the gut microbiota among CRC patients was observed. Single-subspecies colonization was common, whereas coexistence of four subspecies was rare. Subspecies animalis was most prevalent, while nucleatum was not frequently detected. The results of this study contribute to our understanding of the pathogenicity of F. nucleatum at the subspecies level and the method developed has potential for clinical and epidemiological use.
Collapse
Affiliation(s)
- Dexi Bi
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Yin Zhu
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Yaohui Gao
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Hao Li
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Xingchen Zhu
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Rong Wei
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Ruting Xie
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Qing Wei
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Huanlong Qin
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| |
Collapse
|
12
|
Ponath F, Tawk C, Zhu Y, Barquist L, Faber F, Vogel J. RNA landscape of the emerging cancer-associated microbe Fusobacterium nucleatum. Nat Microbiol 2021; 6:1007-1020. [PMID: 34239075 DOI: 10.1038/s41564-021-00927-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 05/24/2021] [Indexed: 12/14/2022]
Abstract
Fusobacterium nucleatum, long known as a constituent of the oral microflora, has recently garnered renewed attention for its association with several different human cancers. The growing interest in this emerging cancer-associated bacterium contrasts with a paucity of knowledge about its basic gene expression features and physiological responses. As fusobacteria lack all established small RNA-associated proteins, post-transcriptional networks in these bacteria are also unknown. In the present study, using differential RNA-sequencing, we generate high-resolution global RNA maps for five clinically relevant fusobacterial strains-F. nucleatum subspecies nucleatum, animalis, polymorphum and vincentii, as well as F. periodonticum-for early, mid-exponential growth and early stationary phase. These data are made available in an online browser, and we use these to uncover fundamental aspects of fusobacterial gene expression architecture and a suite of non-coding RNAs. Developing a vector for functional analysis of fusobacterial genes, we discover a conserved fusobacterial oxygen-induced small RNA, FoxI, which serves as a post-transcriptional repressor of the major outer membrane porin FomA. Our findings provide a crucial step towards delineating the regulatory networks enabling F. nucleatum adaptation to different environments, which may elucidate how these bacteria colonize different compartments of the human body.
Collapse
Affiliation(s)
- Falk Ponath
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany
| | - Caroline Tawk
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Yan Zhu
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Lars Barquist
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany.,Faculty of Medicine, University of Würzburg, Würzburg, Germany
| | - Franziska Faber
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Jörg Vogel
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany. .,Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany. .,Faculty of Medicine, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
13
|
Queen J, Domingue JC, White JR, Stevens C, Udayasuryan B, Nguyen TTD, Wu S, Ding H, Fan H, McMann M, Corona A, Larman TC, Verbridge SS, Housseau F, Slade DJ, Drewes JL, Sears CL. Comparative Analysis of Colon Cancer-Derived Fusobacterium nucleatum Subspecies: Inflammation and Colon Tumorigenesis in Murine Models. mBio 2021; 13:e0299121. [PMID: 35130731 PMCID: PMC8822350 DOI: 10.1128/mbio.02991-21] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/13/2022] [Indexed: 02/07/2023] Open
Abstract
Fusobacteria are commonly associated with human colorectal cancer (CRC), but investigations are hampered by the absence of a stably colonized murine model. Further, Fusobacterium nucleatum subspecies isolated from human CRC have not been investigated. While F. nucleatum subspecies are commonly associated with CRC, their ability to induce tumorigenesis and contributions to human CRC pathogenesis are uncertain. We sought to establish a stably colonized murine model and to understand the inflammatory potential and virulence genes of human CRC F. nucleatum, representing the 4 subspecies, animalis, nucleatum, polymorphum, and vincentii. Five human CRC-derived and two non-CRC derived F. nucleatum strains were tested for colonization, tumorigenesis, and cytokine induction in specific-pathogen-free (SPF) and/or germfree (GF) wild-type and ApcMin/+ mice, as well as in vitro assays and whole-genome sequencing (WGS). SPF wild-type and ApcMin/+ mice did not achieve stable colonization with F. nucleatum, whereas certain subspecies stably colonized some GF mice but without inducing colon tumorigenesis. F. nucleatum subspecies did not form in vivo biofilms or associate with the mucosa in mice. In vivo inflammation was inconsistent across subspecies, whereas F. nucleatum induced greater cytokine responses in a human colorectal cell line, HCT116. While F. nucleatum subspecies displayed genomic variability, no distinct virulence genes associated with human CRC strains were identified that could reliably distinguish these strains from non-CRC clinical isolates. We hypothesize that the lack of F. nucleatum-induced tumorigenesis in our model reflects differences in human and murine biology and/or a synergistic role for F. nucleatum in concert with other bacteria to promote carcinogenesis. IMPORTANCE Colon cancer is a leading cause of cancer morbidity and mortality, and it is hypothesized that dysbiosis in the gut microbiota contributes to colon tumorigenesis. Fusobacterium nucleatum, a member of the oropharyngeal microbiome, is enriched in a subset of human colon tumors. However, it is unclear whether this genetically varied species directly promotes tumor formation, modulates mucosal immune responses, or merely colonizes the tumor microenvironment. Mechanistic studies to address these questions have been stymied by the lack of an animal model that does not rely on daily orogastric gavage. Using multiple murine models, in vitro assays with a human colon cancer cell line, and whole-genome sequencing analysis, we investigated the proinflammatory and tumorigenic potential of several F. nucleatum clinical isolates. The significance of this research is development of a stable colonization model of F. nucleatum that does not require daily oral gavages in which we demonstrate that a diverse library of clinical isolates do not promote tumorigenesis.
Collapse
Affiliation(s)
- Jessica Queen
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jada C. Domingue
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Courtney Stevens
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Barath Udayasuryan
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute, Blacksburg, Virginia, USA
| | - Tam T. D. Nguyen
- Department of Biochemistry, Virginia Polytechnic Institute, Blacksburg, Virginia, USA
| | - Shaoguang Wu
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Hua Ding
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Hongni Fan
- Department of Oncology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Madison McMann
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Alina Corona
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Tatianna C. Larman
- Division of Gastrointestinal and Liver Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Scott S. Verbridge
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute, Blacksburg, Virginia, USA
| | - Franck Housseau
- Department of Oncology, Johns Hopkins University, Baltimore, Maryland, USA
- Bloomberg-Kimmel Institute, Johns Hopkins University, Baltimore, Maryland, USA
| | - Daniel J. Slade
- Department of Biochemistry, Virginia Polytechnic Institute, Blacksburg, Virginia, USA
| | - Julia L. Drewes
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Cynthia L. Sears
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Oncology, Johns Hopkins University, Baltimore, Maryland, USA
- Bloomberg-Kimmel Institute, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
14
|
Chhabra R, Saha A, Chamani A, Schneider N, Shah R, Nanjundan M. Iron Pathways and Iron Chelation Approaches in Viral, Microbial, and Fungal Infections. Pharmaceuticals (Basel) 2020; 13:E275. [PMID: 32992923 PMCID: PMC7601909 DOI: 10.3390/ph13100275] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/13/2020] [Accepted: 09/23/2020] [Indexed: 12/13/2022] Open
Abstract
Iron is an essential element required to support the health of organisms. This element is critical for regulating the activities of cellular enzymes including those involved in cellular metabolism and DNA replication. Mechanisms that underlie the tight control of iron levels are crucial in mediating the interaction between microorganisms and their host and hence, the spread of infection. Microorganisms including viruses, bacteria, and fungi have differing iron acquisition/utilization mechanisms to support their ability to acquire/use iron (e.g., from free iron and heme). These pathways of iron uptake are associated with promoting their growth and virulence and consequently, their pathogenicity. Thus, controlling microorganismal survival by limiting iron availability may prove feasible through the use of agents targeting their iron uptake pathways and/or use of iron chelators as a means to hinder development of infections. This review will serve to assimilate findings regarding iron and the pathogenicity of specific microorganisms, and furthermore, find whether treating infections mediated by such organisms via iron chelation approaches may have potential clinical benefit.
Collapse
Affiliation(s)
| | | | | | | | | | - Meera Nanjundan
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL 33620, USA; (R.C.); (A.S.); (A.C.); (N.S.); (R.S.)
| |
Collapse
|
15
|
Tan KY, Dutta A, Tan TK, Hari R, Othman RY, Choo SW. Comprehensive genome analysis of a pangolin-associated Paraburkholderia fungorum provides new insights into its secretion systems and virulence. PeerJ 2020; 8:e9733. [PMID: 32953261 PMCID: PMC7474880 DOI: 10.7717/peerj.9733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/25/2020] [Indexed: 12/26/2022] Open
Abstract
Background Paraburkholderia fungorum (P. fungorum) is a Gram-negative environmental species that has been commonly used as a beneficial microorganism in agriculture as an agent for biocontrol and bioremediation. Its use in agriculture is controversial as many people believe that it could harm human health; however, there is no clear evidence to support. Methodology The pangolin P. fungorum (pangolin Pf) genome has a genomic size of approximately 7.7 Mbps with N50 of 69,666 bps. Our study showed that pangolin Pf is a Paraburkholderia fungorum supported by evidence from the core genome SNP-based phylogenetic analysis and the ANI analysis. Functional analysis has shown that the presence of a considerably large number of genes related to stress response, virulence, disease, and defence. Interestingly, we identified different types of secretion systems in the genome of pangolin Pf, which are highly specialized and responsible for a bacterium’s response to its environment and in physiological processes such as survival, adhesion, and adaptation. The pangolin Pf also shared some common virulence genes with the known pathogenic member of the Burkholderiales. These genes play important roles in adhesion, motility, and invasion. Conclusion This study may provide better insights into the functions, secretion systems and virulence of this pangolin-associated bacterial strain. The addition of this genome sequence is also important for future comparative analysis and functional work of P. fungorum.
Collapse
Affiliation(s)
- Ka Yun Tan
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia.,Genome Informatics Research Laboratory, Centre for Research in Biotechnology for Agriculture (CEBAR), High Impact Research Building, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Avirup Dutta
- Genome Informatics Research Laboratory, Centre for Research in Biotechnology for Agriculture (CEBAR), High Impact Research Building, Universiti Malaya, Kuala Lumpur, Malaysia.,Current affiliation: The Novo Nordisk Foundation Center for Basic Metabolic Research, Human Genomics and Metagenomics in Metabolism, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tze King Tan
- Genome Informatics Research Laboratory, Centre for Research in Biotechnology for Agriculture (CEBAR), High Impact Research Building, Universiti Malaya, Kuala Lumpur, Malaysia.,Current affiliation: Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Ranjeev Hari
- Genome Informatics Research Laboratory, Centre for Research in Biotechnology for Agriculture (CEBAR), High Impact Research Building, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Rofina Y Othman
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia.,Centre for Research in Biotechnology for Agriculture (CEBAR), Level 3, Research Management & Innovation Complex, Universiti Malaya, Copenhagen, Kuala Lumpur, Malaysia
| | - Siew Woh Choo
- College of Science and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China
| |
Collapse
|
16
|
Sun CH, Li BB, Wang B, Zhao J, Zhang XY, Li TT, Li WB, Tang D, Qiu MJ, Wang XC, Zhu CM, Qian ZR. The role of Fusobacterium nucleatum in colorectal cancer: from carcinogenesis to clinical management. Chronic Dis Transl Med 2019; 5:178-187. [PMID: 31891129 PMCID: PMC6926109 DOI: 10.1016/j.cdtm.2019.09.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is a common malignant tumor that affects people worldwide. Metagenomic analyses have shown an enrichment of Fusobacterium nucleatum (F. nucleatum) in colorectal carcinoma tissue; many studies have indicated that F. nucleatum is closely related to the colorectal carcinogenesis. In this review, we provide the latest information to reveal the related molecular mechanisms. The known virulence factors of F. nucleatum promote adhesion to intestinal epithelial cells via FadA and Fap2. Besides, Fap2 also binds to immune cells causing immunosuppression. Furthermore, F. nucleatum recruits tumor-infiltrating immune cells, thus yielding a pro-inflammatory microenvironment, which promotes colorectal neoplasia progression. F. nucleatum was also found to potentiate CRC development through toll-like receptor 2 (TLR2)/toll-like receptor 4 (TLR4) signaling and microRNA (miRNA)-21 expression. In addition, F. nucleatum increases CRC recurrence along with chemoresistance by mediating a molecular network of miRNA-18a*, miRNA-4802, and autophagy components. Moreover, viable F. nucleatum was detected in mouse xenografts of human primary colorectal adenocarcinomas through successive passages. These findings indicated that an increased number of F. nucleatum in the tissues is a biomarker for the diagnosis and prognosis of CRC, and the underlying molecular mechanism can probably provide a potential intervention treatment strategy for patients with F. nucleatum-associated CRC.
Collapse
Affiliation(s)
- Chun-Hui Sun
- Equipe Communication Intercellulaire et Infections Microbiennes, Centre de Recherche Interdisciplinaire en Biologie (CIRB), Collège de France, Paris 75005, France.,Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Bin-Bin Li
- Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518107, China.,School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Bo Wang
- Department of Oncology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Jing Zhao
- Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Xiao-Ying Zhang
- Health Management Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Ting-Ting Li
- Department of Gastroenterology, The Second Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Wen-Bing Li
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100021, China
| | - Di Tang
- Department of General Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Miao-Juan Qiu
- Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Xin-Cheng Wang
- Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Cheng-Ming Zhu
- Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Zhi-Rong Qian
- Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| |
Collapse
|
17
|
Hayashi Sant’Anna F, Bach E, Porto RZ, Guella F, Hayashi Sant’Anna E, Passaglia LMP. Genomic metrics made easy: what to do and where to go in the new era of bacterial taxonomy. Crit Rev Microbiol 2019; 45:182-200. [DOI: 10.1080/1040841x.2019.1569587] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Fernando Hayashi Sant’Anna
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Evelise Bach
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Renan Z. Porto
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Felipe Guella
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Eduardo Hayashi Sant’Anna
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Luciane M. P. Passaglia
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| |
Collapse
|
18
|
Zhou Z, Chen J, Yao H, Hu H. Fusobacterium and Colorectal Cancer. Front Oncol 2018; 8:371. [PMID: 30374420 PMCID: PMC6196248 DOI: 10.3389/fonc.2018.00371] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 08/21/2018] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide and its pathogenesis has been extensively explored over the past decades. Recently, microorganisms in the gastrointestinal tract have emerged as potential etiological agents. In particular, a direct proportional association between Fusobacterium and CRC has been described. Since then, the functional impact of Fusobacterium in CRC development has been studied using various mouse models. Although some epidemiologic studies did not establish an obvious relationship between Fusobacterium and CRC, numerous pathogenic mechanisms leading to the disease have been described. For instance, Fusobacterium can activate the E-cadherin/β-catenin signaling pathway and is associated with particular epigenetic phenotype, such as microsatellite instability (MSI) and hypermethylation, via its strong adhesive and invasive abilities resulting in malignant transformation of epithelial cells. Also, Fusobacterium could alter the tumor microenvironment (TME) significantly by myeloid-derived suppressor cells (MDSCs), tumor associated macrophages (TAMs), and tumor associated neutrophils (TANs) recruitment and local immune suppression. Herein, we provide an in-depth review of the relationship between Fusobacterium and colorectal cancer. In light of the emergence of microbiome-based therapeutics, potential therapies and preventive strategies for colorectal cancer related to Fusobacterium are also discussed.
Collapse
Affiliation(s)
- Ziwei Zhou
- Department of Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jiewen Chen
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Herui Yao
- Department of Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hai Hu
- Department of Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
19
|
Forward Genetic Dissection of Biofilm Development by Fusobacterium nucleatum: Novel Functions of Cell Division Proteins FtsX and EnvC. mBio 2018; 9:mBio.00360-18. [PMID: 29691334 PMCID: PMC5915739 DOI: 10.1128/mbio.00360-18] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Fusobacterium nucleatum is a key member of the human oral biofilm. It is also implicated in preterm birth and colorectal cancer. To facilitate basic studies of fusobacterial virulence, we describe here a versatile transposon mutagenesis procedure and a pilot screen for mutants defective in biofilm formation. Out of 10 independent biofilm-defective mutants isolated, the affected genes included the homologs of the Escherichia coli cell division proteins FtsX and EnvC, the electron transport protein RnfA, and four proteins with unknown functions. Next, a facile new gene deletion method demonstrated that nonpolar, in-frame deletion of ftsX or envC produces viable bacteria that are highly filamentous due to defective cell division. Transmission electron and cryo-electron microscopy revealed that the ΔftsX and ΔenvC mutant cells remain joined with apparent constriction, and scanning electron microscopy (EM) uncovered a smooth cell surface without the microfolds present in wild-type cells. FtsX and EnvC proteins interact with each other as well as a common set of interacting partners, many with unknown function. Last, biofilm development is altered when cell division is blocked by MinC overproduction; however, unlike the phenotypes of ΔftsX and ΔenvC mutants, a weakly adherent biofilm is formed, and the wild-type rugged cell surface is maintained. Therefore, FtsX and EnvC may perform novel functions in Fusobacterium cell biology. This is the first report of an unbiased approach to uncover genetic determinants of fusobacterial biofilm development. It points to an intriguing link among cytokinesis, cell surface dynamics, and biofilm formation, whose molecular underpinnings remain to be elucidated. Little is known about the virulence mechanisms and associated factors in F. nucleatum, due mainly to the lack of convenient genetic tools for this organism. We employed two efficient genetic strategies to identify F. nucleatum biofilm-defective mutants, revealing FtsX and EnvC among seven biofilm-associated factors. Electron microscopy established cell division defects of the ΔftsX and ΔenvC mutants, accompanied with a smooth cell surface, unlike the microfold, rugged appearance of wild-type bacteria. Proteomic studies demonstrated that FtsX and EnvC interact with each other as well as a set of common and unique interacting proteins, many with unknown functions. Importantly, blocking cell division by MinC overproduction led to formation of a weakly adherent biofilm, without alteration of the wild-type cell surface. Thus, this work links cell division and surface dynamics to biofilm development and lays a foundation for future genetic and biochemical investigations of basic cellular processes in this clinically significant pathogen.
Collapse
|
20
|
Guerrero-Preston R, White JR, Godoy-Vitorino F, Rodríguez-Hilario A, Navarro K, González H, Michailidi C, Jedlicka A, Canapp S, Bondy J, Dziedzic A, Mora-Lagos B, Rivera-Alvarez G, Ili-Gangas C, Brebi-Mieville P, Westra W, Koch W, Kang H, Marchionni L, Kim Y, Sidransky D. High-resolution microbiome profiling uncovers Fusobacterium nucleatum, Lactobacillus gasseri/johnsonii, and Lactobacillus vaginalis associated to oral and oropharyngeal cancer in saliva from HPV positive and HPV negative patients treated with surgery and chemo-radiation. Oncotarget 2017; 8:110931-110948. [PMID: 29340028 PMCID: PMC5762296 DOI: 10.18632/oncotarget.20677] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/12/2017] [Indexed: 12/19/2022] Open
Abstract
Microbiome studies show altered microbiota in head and neck squamous cell carcinoma (HNSCC), both in terms of taxonomic composition and metabolic capacity. These studies utilized a traditional bioinformatics methodology, which allows for accurate taxonomic assignment down to the genus level, but cannot accurately resolve species level membership. We applied Resphera Insight, a high-resolution methodology for 16S rRNA taxonomic assignment that is able to provide species-level context in its assignments of 16S rRNA next generation sequencing (NGS) data. Resphera Insight applied to saliva samples from HNSCC patients and healthy controls led to the discovery that a subset of HNSCC saliva samples is significantly enriched with commensal species from the vaginal flora, including Lactobacillus gasseri/johnsonii (710x higher in saliva) and Lactobacillus vaginalis (52x higher in saliva). These species were not observed in normal saliva from Johns Hopkins patients, nor in 16S rRNA NGS saliva samples from the Human Microbiome Project (HMP). Interestingly, both species were only observed in saliva from Human Papilloma Virus (HPV) positive and HPV negative oropharyngeal cancer patients. We confirmed the representation of both species in HMP data obtained from mid-vagina (n=128) and vaginal introitus (n=121) samples. Resphera Insight also led to the discovery that Fusobacterium nucleatum, an oral cavity flora commensal bacterium linked to colon cancer, is enriched (600x higher) in saliva from a subset of HNSCC patients with advanced tumors stages. Together, these high-resolution analyses on 583 samples suggest a possible role for bacterial species in the therapeutic outcome of HPV positive and HPV negative HNSCC patients.
Collapse
Affiliation(s)
- Rafael Guerrero-Preston
- Department of Otolaryngology and Head and Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA.,Department of Obstetrics and Gynecology, University of Puerto Rico, School of Medicine, San Juan, Puerto Rico
| | - James Robert White
- Department of Computational Biology Resphera Biosciences, Baltimore, MD, USA
| | - Filipa Godoy-Vitorino
- Natural Sciences Department, Microbial Ecology and Genomics Lab, Inter American University of Puerto Rico, Metropolitan Campus, San Juan, Puerto Rico
| | - Arnold Rodríguez-Hilario
- Natural Sciences Department, Microbial Ecology and Genomics Lab, Inter American University of Puerto Rico, Metropolitan Campus, San Juan, Puerto Rico
| | - Kelvin Navarro
- Natural Sciences Department, Microbial Ecology and Genomics Lab, Inter American University of Puerto Rico, Metropolitan Campus, San Juan, Puerto Rico
| | - Herminio González
- Natural Sciences Department, Microbial Ecology and Genomics Lab, Inter American University of Puerto Rico, Metropolitan Campus, San Juan, Puerto Rico
| | - Christina Michailidi
- Department of Otolaryngology and Head and Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Anne Jedlicka
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, School of Public Health, Baltimore, Maryland, USA
| | - Sierra Canapp
- Department of Otolaryngology and Head and Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Jessica Bondy
- Department of Otolaryngology and Head and Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Amanda Dziedzic
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, School of Public Health, Baltimore, Maryland, USA
| | - Barbara Mora-Lagos
- Department of Otolaryngology and Head and Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA.,Laboratory of Molecular Pathology, Department of Pathological Anatomy, School of Medicine, Universidad de La Frontera, Temuco, Chile
| | - Gustavo Rivera-Alvarez
- Department of Otolaryngology and Head and Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA.,Department of Obstetrics and Gynecology, University of Puerto Rico, School of Medicine, San Juan, Puerto Rico
| | - Carmen Ili-Gangas
- Laboratory of Molecular Pathology, Department of Pathological Anatomy, School of Medicine, Universidad de La Frontera, Temuco, Chile.,Center of Excellence in Translational Medicine - Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Universidad de La Frontera, Temuco, Chile
| | - Priscilla Brebi-Mieville
- Laboratory of Molecular Pathology, Department of Pathological Anatomy, School of Medicine, Universidad de La Frontera, Temuco, Chile.,Center of Excellence in Translational Medicine - Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Universidad de La Frontera, Temuco, Chile
| | - William Westra
- Department of Otolaryngology and Head and Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Wayne Koch
- Department of Otolaryngology and Head and Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Hyunseok Kang
- Department of Oncology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Luigi Marchionni
- Department of Oncology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Young Kim
- Department of Otolaryngology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - David Sidransky
- Department of Otolaryngology and Head and Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
21
|
Cortés-Acha B, Figueiredo R, Seminago R, Roig FJ, Llorens C, Valmaseda-Castellón E. Microbiota Analysis of Biofilms on Experimental Abutments Mimicking Dental Implants: An In Vivo Model. J Periodontol 2017; 88:1090-1104. [PMID: 28492362 DOI: 10.1902/jop.2017.170051] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND The microbiota colonizing dental implants has been said to be similar to the microbiome surrounding teeth. In the absence of inflammation, a biofilm with pathologic bacteria can cover implant surfaces exposed to the oral cavity, for example, due to a remodeling process. The aim of the present study is to identify microbiota surrounding exposed dental implants in patients with and without a history of periodontitis through a deep-sequencing approach. METHODS An experimental abutment with the same surface and structure as a commercially available dental implant was used. Bacterial DNA was isolated, and the 16S ribosomal RNA gene was amplified and sequenced. Multiplexed tag-encoded sequencing of DNA from the samples was performed, and the reads were processed by metagenomic rapid annotation. RESULTS A wide variety of bacteria, 96 species, were identified. The most frequently found bacteria were Fusobacterium nucleatum and Prevotella denticola. Some species generally associated with periodontitis were found to a greater extent in patients without a history of periodontitis. Some bacteria that have never been described as part of the oral microbiome were identified in the present sample. CONCLUSIONS Analysis of data suggests that the bacteria surrounding exposed dental implants form a diverse microbiome regardless of the periodontal profile of patients. Further research is needed to clarify the role of these microorganisms in the oral environment.
Collapse
Affiliation(s)
- Berta Cortés-Acha
- Oral Surgery and Implantology, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Rui Figueiredo
- Oral Surgery and Implantology, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.,Bellvitge Biomedical Research Institute, Barcelona, Spain
| | - Ramón Seminago
- Unit of Genomics, Scientific and Technological Centers, University of Barcelona
| | | | - Carlos Llorens
- Unit of Genomics, Scientific and Technological Centers, University of Barcelona.,Biotechvana, Valencia, Spain
| | - Eduard Valmaseda-Castellón
- Oral Surgery and Implantology, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.,Bellvitge Biomedical Research Institute, Barcelona, Spain
| |
Collapse
|