1
|
Inwood SN, Harrop TWR, Shields MW, Goldson SL, Dearden PK. Immune system modulation & virus transmission during parasitism identified by multi-species transcriptomics of a declining insect biocontrol system. BMC Genomics 2024; 25:311. [PMID: 38532315 DOI: 10.1186/s12864-024-10215-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/12/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND The Argentine stem weevil (ASW, Listronotus bonariensis) is a significant pasture pest in Aotearoa New Zealand, primarily controlled by the parasitoid biocontrol agent Microctonus hyperodae. Despite providing effective control of ASW soon after release, M. hyperodae parasitism rates have since declined significantly, with ASW hypothesised to have evolved resistance to its biocontrol agent. While the parasitism arsenal of M. hyperodae has previously been investigated, revealing many venom components and an exogenous novel DNA virus Microctonus hyperodae filamentous virus (MhFV), the effects of said arsenal on gene expression in ASW during parasitism have not been examined. In this study, we performed a multi-species transcriptomic analysis to investigate the biology of ASW parasitism by M. hyperodae, as well as the decline in efficacy of this biocontrol system. RESULTS The transcriptomic response of ASW to parasitism by M. hyperodae involves modulation of the weevil's innate immune system, flight muscle components, and lipid and glucose metabolism. The multispecies approach also revealed continued expression of venom components in parasitised ASW, as well as the transmission of MhFV to weevils during parasitism and some interrupted parasitism attempts. Transcriptomics did not detect a clear indication of parasitoid avoidance or other mechanisms to explain biocontrol decline. CONCLUSIONS This study has expanded our understanding of interactions between M. hyperodae and ASW in a biocontrol system of critical importance to Aotearoa-New Zealand's agricultural economy. Transmission of MhFV to ASW during successful and interrupted parasitism attempts may link to a premature mortality phenomenon in ASW, hypothesised to be a result of a toxin-antitoxin system. Further research into MhFV and its potential role in ASW premature mortality is required to explore whether manipulation of this viral infection has the potential to increase biocontrol efficacy in future.
Collapse
Affiliation(s)
- Sarah N Inwood
- Bioprotection Aotearoa, Genomics Aotearoa, and the Biochemistry Department, University of Otago, Dunedin, New Zealand
| | - Thomas W R Harrop
- Bioprotection Aotearoa, Genomics Aotearoa, and the Biochemistry Department, University of Otago, Dunedin, New Zealand
- Melbourne Bioinformatics, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Morgan W Shields
- BioProtection Research Centre, Lincoln University, Lincoln, New Zealand
| | - Stephen L Goldson
- Biocontrol and Biosecurity Group, AgResearch Limited, Lincoln, Aotearoa, New Zealand
| | - Peter K Dearden
- Bioprotection Aotearoa, Genomics Aotearoa, and the Biochemistry Department, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
2
|
Guinet B, Leobold M, Herniou EA, Bloin P, Burlet N, Bredlau J, Navratil V, Ravallec M, Uzbekov R, Kester K, Gundersen Rindal D, Drezen JM, Varaldi J, Bézier A. A novel and diverse family of filamentous DNA viruses associated with parasitic wasps. Virus Evol 2024; 10:veae022. [PMID: 38617843 PMCID: PMC11013392 DOI: 10.1093/ve/veae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/20/2023] [Accepted: 02/23/2024] [Indexed: 04/16/2024] Open
Abstract
Large dsDNA viruses from the Naldaviricetes class are currently composed of four viral families infecting insects and/or crustaceans. Since the 1970s, particles described as filamentous viruses (FVs) have been observed by electronic microscopy in several species of Hymenoptera parasitoids but until recently, no genomic data was available. This study provides the first comparative morphological and genomic analysis of these FVs. We analyzed the genomes of seven FVs, six of which were newly obtained, to gain a better understanding of their evolutionary history. We show that these FVs share all genomic features of the Naldaviricetes while encoding five specific core genes that distinguish them from their closest relatives, the Hytrosaviruses. By mining public databases, we show that FVs preferentially infect Hymenoptera with parasitoid lifestyle and that these viruses have been repeatedly integrated into the genome of many insects, particularly Hymenoptera parasitoids, overall suggesting a long-standing specialization of these viruses to parasitic wasps. Finally, we propose a taxonomical revision of the class Naldaviricetes in which FVs related to the Leptopilina boulardi FV constitute a fifth family. We propose to name this new family, Filamentoviridae.
Collapse
Affiliation(s)
- Benjamin Guinet
- LBBE, UMR CNRS 5558, Universite Claude Bernard Lyon 1, 43 bd du 11 novembre 1918, Villeurbanne CEDEX F-69622, France
| | - Matthieu Leobold
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS-Université de Tours, 20 Avenue Monge, Parc de Grandmont, Tours 37200, France
| | - Elisabeth A Herniou
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS-Université de Tours, 20 Avenue Monge, Parc de Grandmont, Tours 37200, France
| | - Pierrick Bloin
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS-Université de Tours, 20 Avenue Monge, Parc de Grandmont, Tours 37200, France
| | - Nelly Burlet
- LBBE, UMR CNRS 5558, Universite Claude Bernard Lyon 1, 43 bd du 11 novembre 1918, Villeurbanne CEDEX F-69622, France
| | - Justin Bredlau
- Department of Biology, Virginia Commonwealth University, 1000 W. Cary Street, Room 126, Richmond, VA 23284-9067, USA
| | - Vincent Navratil
- PRABI, Rhône-Alpes Bioinformatics Center, Université Lyon 1, 43 bd du 11 novembre 1918, Villeurbanne CEDEX 69622, France
- UMS 3601, Institut Français de Bioinformatique, IFB-Core, 2 rue Gaston Crémieu, Évry CEDEX 91057, France
- European Virus Bioinformatics Center, Leutragraben 1, Jena 07743, Germany
| | - Marc Ravallec
- Diversité, génomes et interactions microorganismes insectes (DGIMI), UMR 1333 INRA, Université de Montpellier 2, 2 Place Eugène Bataillon cc101, Montpellier CEDEX 5 34095, France
| | - Rustem Uzbekov
- Laboratory of Cell Biology and Electron Microscopy, Faculty of Medicine, Université de Tours, 10 bd Tonnelle, BP 3223, Tours CEDEX 37032, France
- Faculty of Bioengineering and Bioinformatics, Moscow State University, Leninskye Gory 73, Moscow 119992, Russia
| | - Karen Kester
- Department of Biology, Virginia Commonwealth University, 1000 W. Cary Street, Room 126, Richmond, VA 23284-9067, USA
| | - Dawn Gundersen Rindal
- USDA-ARS Invasive Insect Biocontrol and Behavior Laboratory, Beltsville, MD 20705, USA
| | - Jean-Michel Drezen
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS-Université de Tours, 20 Avenue Monge, Parc de Grandmont, Tours 37200, France
| | - Julien Varaldi
- LBBE, UMR CNRS 5558, Universite Claude Bernard Lyon 1, 43 bd du 11 novembre 1918, Villeurbanne CEDEX F-69622, France
| | - Annie Bézier
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS-Université de Tours, 20 Avenue Monge, Parc de Grandmont, Tours 37200, France
| |
Collapse
|
3
|
Inwood SN, Skelly J, Guhlin JG, Harrop TWR, Goldson SL, Dearden PK. Chromosome-level genome assemblies of two parasitoid biocontrol wasps reveal the parthenogenesis mechanism and an associated novel virus. BMC Genomics 2023; 24:440. [PMID: 37543591 PMCID: PMC10403939 DOI: 10.1186/s12864-023-09538-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/27/2023] [Indexed: 08/07/2023] Open
Abstract
BACKGROUND Biocontrol is a key technology for the control of pest species. Microctonus parasitoid wasps (Hymenoptera: Braconidae) have been released in Aotearoa New Zealand as biocontrol agents, targeting three different pest weevil species. Despite their value as biocontrol agents, no genome assemblies are currently available for these Microctonus wasps, limiting investigations into key biological differences between the different species and strains. METHODS AND FINDINGS Here we present high-quality genomes for Microctonus hyperodae and Microctonus aethiopoides, assembled with short read sequencing and Hi-C scaffolding. These assemblies have total lengths of 106.7 Mb for M. hyperodae and 129.2 Mb for M. aethiopoides, with scaffold N50 values of 9 Mb and 23 Mb respectively. With these assemblies we investigated differences in reproductive mechanisms, and association with viruses between Microctonus wasps. Meiosis-specific genes are conserved in asexual Microctonus, with in-situ hybridisation validating expression of one of these genes in the ovaries of asexual Microctonus aethiopoides. This implies asexual reproduction in these Microctonus wasps involves meiosis, with the potential for sexual reproduction maintained. Investigation of viral gene content revealed candidate genes that may be involved in virus-like particle production in M. aethiopoides, as well as a novel virus infecting M. hyperodae, for which a complete genome was assembled. CONCLUSION AND SIGNIFICANCE These are the first published genomes for Microctonus wasps which have been deployed as biocontrol agents, in Aotearoa New Zealand. These assemblies will be valuable resources for continued investigation and monitoring of these biocontrol systems. Understanding the biology underpinning Microctonus biocontrol is crucial if we are to maintain its efficacy, or in the case of M. hyperodae to understand what may have influenced the significant decline of biocontrol efficacy. The potential for sexual reproduction in asexual Microctonus is significant given that empirical modelling suggests this asexual reproduction is likely to have contributed to biocontrol decline. Furthermore the identification of a novel virus in M. hyperodae highlights a previously unknown aspect of this biocontrol system, which may contribute to premature mortality of the host pest. These findings have potential to be exploited in future in attempt to increase the effectiveness of M. hyperodae biocontrol.
Collapse
Affiliation(s)
- Sarah N Inwood
- Bioprotection Aotearoa and Biochemistry Department, University of Otago, Dunedin, Aotearoa, New Zealand
| | - John Skelly
- Bioprotection Aotearoa and Biochemistry Department, University of Otago, Dunedin, Aotearoa, New Zealand
- Humble Bee Bio, Wellington, Aotearoa, New Zealand
| | - Joseph G Guhlin
- Genomics Aotearoa, University of Otago, Dunedin, Aotearoa, New Zealand
| | - Thomas W R Harrop
- Melbourne Bioinformatics, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Stephen L Goldson
- Biocontrol and Biosecurity Group, AgResearch Limited, Lincoln, Aotearoa, New Zealand
| | - Peter K Dearden
- Bioprotection Aotearoa and Biochemistry Department, University of Otago, Dunedin, Aotearoa, New Zealand.
- Genomics Aotearoa, University of Otago, Dunedin, Aotearoa, New Zealand.
| |
Collapse
|
4
|
van Oers MM, Herniou EA, Jehle JA, Krell PJ, Abd-Alla AMM, Ribeiro BM, Theilmann DA, Hu Z, Harrison RL. Developments in the classification and nomenclature of arthropod-infecting large DNA viruses that contain pif genes. Arch Virol 2023; 168:182. [PMID: 37322175 PMCID: PMC10271883 DOI: 10.1007/s00705-023-05793-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Viruses of four families of arthropod-specific, large dsDNA viruses (the nuclear arthropod large DNA viruses, or NALDVs) possess homologs of genes encoding conserved components involved in the baculovirus primary infection mechanism. The presence of such homologs encoding per os infectivity factors (pif genes), along with their absence from other viruses and the occurrence of other shared characteristics, suggests a common origin for the viruses of these families. Therefore, the class Naldaviricetes was recently established, accommodating these four families. In addition, within this class, the ICTV approved the creation of the order Lefavirales for three of these families, whose members carry homologs of the baculovirus genes that code for components of the viral RNA polymerase, which is responsible for late gene expression. We further established a system for the binomial naming of all virus species in the order Lefavirales, in accordance with a decision by the ICTV in 2019 to move towards a standardized nomenclature for all virus species. The binomial species names for members of the order Lefavirales consist of the name of the genus to which the species belongs (e.g., Alphabaculovirus), followed by a single epithet that refers to the host species from which the virus was originally isolated. The common names of viruses and the abbreviations thereof will not change, as the format of virus names lies outside the remit of the ICTV.
Collapse
Affiliation(s)
- Monique M van Oers
- Laboratory of Virology, Wageningen University and Research, Wageningen, the Netherlands.
| | - Elisabeth A Herniou
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS - University of Tours, 37200, Tours, France
| | - Johannes A Jehle
- Institute for Biological Control, Julius Kühn-Institut, 69221, Dossenheim, Germany
| | - Peter J Krell
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, N1G 2W1, Canada
| | - Adly M M Abd-Alla
- Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Vienna International Centre, Vienna, Austria
| | - Bergmann M Ribeiro
- Laboratory of Baculovirus, Cell Biology Department, University of Brasília, Brasília, Brazil
| | - David A Theilmann
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, 4200 Highway 97, Box 5000, Summerland, BC, V0H1Z0, Canada
| | - Zhihong Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, P. R. China
| | - Robert L Harrison
- Invasive Insect Biocontrol and Behavior Laboratory, USDA-ARS, 10300 Baltimore Avenue, Bldg 007 Barc‑West, Beltsville, MD, 20705, USA
| |
Collapse
|
5
|
Guinet B, Lepetit D, Charlat S, Buhl PN, Notton DG, Cruaud A, Rasplus JY, Stigenberg J, de Vienne DM, Boussau B, Varaldi J. Endoparasitoid lifestyle promotes endogenization and domestication of dsDNA viruses. eLife 2023; 12:85993. [PMID: 37278068 DOI: 10.7554/elife.85993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/12/2023] [Indexed: 06/07/2023] Open
Abstract
The accidental endogenization of viral elements within eukaryotic genomes can occasionally provide significant evolutionary benefits, giving rise to their long-term retention, that is, to viral domestication. For instance, in some endoparasitoid wasps (whose immature stages develop inside their hosts), the membrane-fusion property of double-stranded DNA viruses have been repeatedly domesticated following ancestral endogenizations. The endogenized genes provide female wasps with a delivery tool to inject virulence factors that are essential to the developmental success of their offspring. Because all known cases of viral domestication involve endoparasitic wasps, we hypothesized that this lifestyle, relying on a close interaction between individuals, may have promoted the endogenization and domestication of viruses. By analyzing the composition of 124 Hymenoptera genomes, spread over the diversity of this clade and including free-living, ecto, and endoparasitoid species, we tested this hypothesis. Our analysis first revealed that double-stranded DNA viruses, in comparison with other viral genomic structures (ssDNA, dsRNA, ssRNA), are more often endogenized and domesticated (that is, retained by selection) than expected from their estimated abundance in insect viral communities. Second, our analysis indicates that the rate at which dsDNA viruses are endogenized is higher in endoparasitoids than in ectoparasitoids or free-living hymenopterans, which also translates into more frequent events of domestication. Hence, these results are consistent with the hypothesis that the endoparasitoid lifestyle has facilitated the endogenization of dsDNA viruses, in turn, increasing the opportunities of domestications that now play a central role in the biology of many endoparasitoid lineages.
Collapse
Affiliation(s)
- Benjamin Guinet
- Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622, Villeurbanne, France
| | - David Lepetit
- Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622, Villeurbanne, France
| | - Sylvain Charlat
- Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622, Villeurbanne, France
| | - Peter N Buhl
- Zoological Museum, Department of Entomology, University of Copenhagen, Universitetsparken, Copenhagen, Denmark
| | - David G Notton
- Natural Sciences Department, National Museums Collection Centre, Edinburgh, United Kingdom
| | - Astrid Cruaud
- INRAE, UMR 1062 CBGP, 755 avenue 11 du campus Agropolis CS 30016, 34988, Montferrier-sur-Lez, France
| | - Jean-Yves Rasplus
- INRAE, UMR 1062 CBGP, 755 avenue 11 du campus Agropolis CS 30016, 34988, Montferrier-sur-Lez, France
| | - Julia Stigenberg
- Department of Zoology, Swedish Museum of Natural History, Stockholm, Sweden
| | - Damien M de Vienne
- Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622, Villeurbanne, France
| | - Bastien Boussau
- Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622, Villeurbanne, France
| | - Julien Varaldi
- Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622, Villeurbanne, France
| |
Collapse
|
6
|
Santos BF, Klopfstein S, Whitfield JB, Sharanowski BJ. Many evolutionary roads led to virus domestication in ichneumonoid parasitoid wasps. CURRENT OPINION IN INSECT SCIENCE 2022; 50:100861. [PMID: 34896617 DOI: 10.1016/j.cois.2021.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/13/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
The investigation of endogenous viral elements (EVEs) has historically focused on only a few lineages of parasitoid wasps, with negative results consistently underreported. Recent studies show that multiple viral lineages were integrated in at least seven instances in Ichneumonoidea and may be much more widespread than previously thought. Increasingly affordable genomic and bioinformatic approaches have made it feasible to search for viral sequences within wasp genomes, opening an extremely promising research avenue. Advances in wasp phylogenetics have shed light on the evolutionary history of EVE integration, although many questions remain. Phylogenetic proximity can be used as a guide to facilitate targeted screening, to estimate the number and age of integration events and to identify taxa involved in major host switches.
Collapse
Affiliation(s)
- Bernardo F Santos
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, SU, EPHE, UA, 57 rue Cuvier CP50, Paris Cedex 05, 75231, France
| | - Seraina Klopfstein
- Naturhistorisches Museum Basel, Augustinergasse 2, Basel, 4501, Switzerland
| | - James B Whitfield
- Department of Entomology, 505 S. Goodwin Ave., University of Illinois, Urbana, IL 61801, USA
| | - Barbara J Sharanowski
- University of Central Florida, Department of Biology, 4110 Libra Drive, Biological Sciences Bldg Rm 301, Orlando, FL 32816, USA.
| |
Collapse
|
7
|
Lorenzi A, Strand MR, Burke GR, Volkoff AN. Identifying bracovirus and ichnovirus genes involved in virion morphogenesis. CURRENT OPINION IN INSECT SCIENCE 2022; 49:63-70. [PMID: 34839031 DOI: 10.1016/j.cois.2021.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/03/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
Bracoviruses (BVs) and ichnoviruses (IVs) evolved from different endogenized viruses but through convergence have been coopted by parasitoids in the families Braconidae and Ichneumonidae for similar functions in parasitizing hosts. Experimentally studying the role of endogenized viral genes in virion morphogenesis remains a key challenge in the study of BVs and IVs. Here we summarize how multiomics, electron microscopy, and RNA interference (RNAi) methods have provided new insights about BV and IV gene function.
Collapse
Affiliation(s)
- Ange Lorenzi
- Department of Entomology, University of Georgia, Athens 30602, GA, USA.
| | - Michael R Strand
- Department of Entomology, University of Georgia, Athens 30602, GA, USA
| | - Gaelen R Burke
- Department of Entomology, University of Georgia, Athens 30602, GA, USA
| | | |
Collapse
|
8
|
Drezen JM, Bézier A, Burke GR, Strand MR. Bracoviruses, ichnoviruses, and virus-like particles from parasitoid wasps retain many features of their virus ancestors. CURRENT OPINION IN INSECT SCIENCE 2022; 49:93-100. [PMID: 34954138 DOI: 10.1016/j.cois.2021.12.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/08/2021] [Accepted: 12/12/2021] [Indexed: 06/14/2023]
Abstract
Animal genomes commonly contain genes or sequences that have been acquired from different types of viruses. The vast majority of these endogenous virus elements (EVEs) are inactive or consist of only a small number of components that show no evidence of cooption for new functions or interaction. Unlike most EVEs, bracoviruses (BVs), ichnoviruses (IVs) and virus-like particles (VLPs) in parasitoid wasps have evolved through retention and interaction of many genes from virus ancestors. Here, we discuss current understanding of BV, IV and VLP evolution along with associated implications for what constitutes a virus. We suggest that BVs and IVs are domesticated endogenous viruses (DEVs) that differ in several important ways from other known EVEs.
Collapse
Affiliation(s)
- Jean-Michel Drezen
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS - Université de Tours, Tours, France.
| | - Annie Bézier
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS - Université de Tours, Tours, France
| | - Gaelen R Burke
- Department of Entomology, University of Georgia, Athens, GA 30602, USA
| | - Michael R Strand
- Department of Entomology, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
9
|
Burke GR, Hines HM, Sharanowski BJ. The Presence of Ancient Core Genes Reveals Endogenization from Diverse Viral Ancestors in Parasitoid Wasps. Genome Biol Evol 2021; 13:evab105. [PMID: 33988720 PMCID: PMC8325570 DOI: 10.1093/gbe/evab105] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2021] [Indexed: 12/12/2022] Open
Abstract
The Ichneumonoidea (Ichneumonidae and Braconidae) is an incredibly diverse superfamily of parasitoid wasps that includes species that produce virus-like entities in their reproductive tracts to promote successful parasitism of host insects. Research on these entities has traditionally focused upon two viral genera Bracovirus (in Braconidae) and Ichnovirus (in Ichneumonidae). These viruses are produced using genes known collectively as endogenous viral elements (EVEs) that represent historical, now heritable viral integration events in wasp genomes. Here, new genome sequence assemblies for 11 species and 6 publicly available genomes from the Ichneumonoidea were screened with the goal of identifying novel EVEs and characterizing the breadth of species in lineages with known EVEs. Exhaustive similarity searches combined with the identification of ancient core genes revealed sequences from both known and novel EVEs. One species harbored a novel, independently derived EVE related to a divergent large double-stranded DNA (dsDNA) virus that manipulates behavior in other hymenopteran species. Although bracovirus or ichnovirus EVEs were identified as expected in three species, the absence of ichnoviruses in several species suggests that they are independently derived and present in two younger, less widespread lineages than previously thought. Overall, this study presents a novel bioinformatic approach for EVE discovery in genomes and shows that three divergent virus families (nudiviruses, the ancestors of ichnoviruses, and Leptopilina boulardi Filamentous Virus-like viruses) are recurrently acquired as EVEs in parasitoid wasps. Virus acquisition in the parasitoid wasps is a common process that has occurred in many more than two lineages from a diverse range of arthropod-infecting dsDNA viruses.
Collapse
Affiliation(s)
- Gaelen R Burke
- Department of Entomology, University of Georgia, Athens, Georgia, USA
| | - Heather M Hines
- Department of Biology and Department of Entomology, Pennsylvania State University, University Park, Pennsylvania, USA
| | | |
Collapse
|
10
|
Wallace MA, Coffman KA, Gilbert C, Ravindran S, Albery GF, Abbott J, Argyridou E, Bellosta P, Betancourt AJ, Colinet H, Eric K, Glaser-Schmitt A, Grath S, Jelic M, Kankare M, Kozeretska I, Loeschcke V, Montchamp-Moreau C, Ometto L, Onder BS, Orengo DJ, Parsch J, Pascual M, Patenkovic A, Puerma E, Ritchie MG, Rota-Stabelli O, Schou MF, Serga SV, Stamenkovic-Radak M, Tanaskovic M, Veselinovic MS, Vieira J, Vieira CP, Kapun M, Flatt T, González J, Staubach F, Obbard DJ. The discovery, distribution, and diversity of DNA viruses associated with Drosophila melanogaster in Europe. Virus Evol 2021; 7:veab031. [PMID: 34408913 PMCID: PMC8363768 DOI: 10.1093/ve/veab031] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Drosophila melanogaster is an important model for antiviral immunity in arthropods, but very few DNA viruses have been described from the family Drosophilidae. This deficiency limits our opportunity to use natural host-pathogen combinations in experimental studies, and may bias our understanding of the Drosophila virome. Here, we report fourteen DNA viruses detected in a metagenomic analysis of 6668 pool-sequenced Drosophila, sampled from forty-seven European locations between 2014 and 2016. These include three new nudiviruses, a new and divergent entomopoxvirus, a virus related to Leptopilina boulardi filamentous virus, and a virus related to Musca domestica salivary gland hypertrophy virus. We also find an endogenous genomic copy of galbut virus, a double-stranded RNA partitivirus, segregating at very low frequency. Remarkably, we find that Drosophila Vesanto virus, a small DNA virus previously described as a bidnavirus, may be composed of up to twelve segments and thus represent a new lineage of segmented DNA viruses. Two of the DNA viruses, Drosophila Kallithea nudivirus and Drosophila Vesanto virus are relatively common, found in 2 per cent or more of wild flies. The others are rare, with many likely to be represented by a single infected fly. We find that virus prevalence in Europe reflects the prevalence seen in publicly available datasets, with Drosophila Kallithea nudivirus and Drosophila Vesanto virus the only ones commonly detectable in public data from wild-caught flies and large population cages, and the other viruses being rare or absent. These analyses suggest that DNA viruses are at lower prevalence than RNA viruses in D.melanogaster, and may be less likely to persist in laboratory cultures. Our findings go some way to redressing an earlier bias toward RNA virus studies in Drosophila, and lay the foundation needed to harness the power of Drosophila as a model system for the study of DNA viruses.
Collapse
Affiliation(s)
- Megan A Wallace
- The European Drosophila Population Genomics Consortium (DrosEU)
- Ashworth Laboratories, Institute of Evolutionary Biology, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
| | - Kelsey A Coffman
- Department of Entomology, University of Georgia, Athens, GA, USA
| | - Clément Gilbert
- The European Drosophila Population Genomics Consortium (DrosEU)
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198 Gif-sur-Yvette, France
| | - Sanjana Ravindran
- Ashworth Laboratories, Institute of Evolutionary Biology, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
| | - Gregory F Albery
- Department of Biology, Georgetown University, Washington, DC, USA
| | - Jessica Abbott
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Biology, Section for Evolutionary Ecology, Lund University, Sölvegatan 37, Lund 223 62, Sweden
| | - Eliza Argyridou
- The European Drosophila Population Genomics Consortium (DrosEU)
- Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg, Germany
| | - Paola Bellosta
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Cellular, Computational and Integrative Biology, CIBIO University of Trento, Via Sommarive 9, Trento 38123, Italy
- Department of Medicine & Endocrinology, NYU Langone Medical Center, 550 First Avenue, New York, NY 10016, USA
| | - Andrea J Betancourt
- The European Drosophila Population Genomics Consortium (DrosEU)
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Hervé Colinet
- The European Drosophila Population Genomics Consortium (DrosEU)
- UMR CNRS 6553 ECOBIO, Université de Rennes1, Rennes, France
| | - Katarina Eric
- The European Drosophila Population Genomics Consortium (DrosEU)
- Institute for Biological Research “Sinisa Stankovic”, National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, Serbia
| | - Amanda Glaser-Schmitt
- The European Drosophila Population Genomics Consortium (DrosEU)
- Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg, Germany
| | - Sonja Grath
- The European Drosophila Population Genomics Consortium (DrosEU)
- Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg, Germany
| | - Mihailo Jelic
- The European Drosophila Population Genomics Consortium (DrosEU)
- Faculty of Biology, University of Belgrade, Studentski trg 16, Belgrade, Serbia
| | - Maaria Kankare
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Biological and Environmental Science, University of Jyväskylä, Finland
| | - Iryna Kozeretska
- The European Drosophila Population Genomics Consortium (DrosEU)
- National Antarctic Scientific Center of Ukraine, 16 Shevchenko Avenue, Kyiv, 01601, Ukraine
| | - Volker Loeschcke
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Biology, Genetics, Ecology and Evolution, Aarhus University, Ny Munkegade 116, Aarhus C DK-8000, Denmark
| | - Catherine Montchamp-Moreau
- The European Drosophila Population Genomics Consortium (DrosEU)
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198 Gif-sur-Yvette, France
| | - Lino Ometto
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Biology and Biotechnology, University of Pavia, Pavia 27100, Italy
| | - Banu Sebnem Onder
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Biology, Faculty of Science, Hacettepe University, Ankara, Turkey
| | - Dorcas J Orengo
- The European Drosophila Population Genomics Consortium (DrosEU)
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - John Parsch
- The European Drosophila Population Genomics Consortium (DrosEU)
- Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg, Germany
| | - Marta Pascual
- The European Drosophila Population Genomics Consortium (DrosEU)
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Aleksandra Patenkovic
- The European Drosophila Population Genomics Consortium (DrosEU)
- Institute for Biological Research “Sinisa Stankovic”, National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, Serbia
| | - Eva Puerma
- The European Drosophila Population Genomics Consortium (DrosEU)
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Michael G Ritchie
- The European Drosophila Population Genomics Consortium (DrosEU)
- Centre for Biological Diversity, St Andrews University, St Andrews HY15 4SS, UK
| | - Omar Rota-Stabelli
- The European Drosophila Population Genomics Consortium (DrosEU)
- Research and Innovation Center, Fondazione E. Mach, San Michele all’Adige (TN) 38010, Italy
- Centre Agriculture Food Environment, University of Trento, San Michele all’Adige (TN) 38010, Italy
| | - Mads Fristrup Schou
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Biology, Section for Evolutionary Ecology, Lund University, Sölvegatan 37, Lund 223 62, Sweden
- Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Svitlana V Serga
- The European Drosophila Population Genomics Consortium (DrosEU)
- National Antarctic Scientific Center of Ukraine, 16 Shevchenko Avenue, Kyiv, 01601, Ukraine
- Taras Shevchenko National University of Kyiv, 64 Volodymyrska str, Kyiv 01601, Ukraine
| | - Marina Stamenkovic-Radak
- The European Drosophila Population Genomics Consortium (DrosEU)
- Faculty of Biology, University of Belgrade, Studentski trg 16, Belgrade, Serbia
| | - Marija Tanaskovic
- The European Drosophila Population Genomics Consortium (DrosEU)
- Institute for Biological Research “Sinisa Stankovic”, National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, Serbia
| | - Marija Savic Veselinovic
- The European Drosophila Population Genomics Consortium (DrosEU)
- Faculty of Biology, University of Belgrade, Studentski trg 16, Belgrade, Serbia
| | - Jorge Vieira
- The European Drosophila Population Genomics Consortium (DrosEU)
- Instituto de Biologia Molecular e Celular (IBMC), University of Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, University of Porto, i3S, Porto, Portugal
| | - Cristina P Vieira
- The European Drosophila Population Genomics Consortium (DrosEU)
- Instituto de Biologia Molecular e Celular (IBMC), University of Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, University of Porto, i3S, Porto, Portugal
| | - Martin Kapun
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland
- Division of Cell & Developmental Biology, Medical University of Vienna, Vienna, Austria
| | - Thomas Flatt
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Biology, University of Fribourg, Fribourg CH-1700, Switzerland
| | - Josefa González
- The European Drosophila Population Genomics Consortium (DrosEU)
- Institute of Evolutionary Biology (CSIC-UPF), Barcelona, Spain
| | - Fabian Staubach
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Evolution and Ecology, University of Freiburg, Freiburg 79104, Germany
| | - Darren J Obbard
- The European Drosophila Population Genomics Consortium (DrosEU)
- Ashworth Laboratories, Institute of Evolutionary Biology, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
| |
Collapse
|
11
|
Shrinking of repeating unit length in leucine-rich repeats from double-stranded DNA viruses. Arch Virol 2020; 166:43-64. [PMID: 33052487 DOI: 10.1007/s00705-020-04820-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/19/2020] [Indexed: 02/07/2023]
Abstract
Leucine-rich repeats (LRRs) are present in over 563,000 proteins from viruses to eukaryotes. LRRs repeat in tandem and have been classified into fifteen classes in which the repeat unit lengths range from 20 to 29 residues. Most LRR proteins are involved in protein-protein or ligand interactions. The amount of genome sequence data from viruses is increasing rapidly, and although viral LRR proteins have been identified, a comprehensive sequence analysis has not yet been done, and their structures, functions, and evolution are still unknown. In the present study, we characterized viral LRRs by sequence analysis and identified over 600 LRR proteins from 89 virus species. Most of these proteins were from double-stranded DNA (dsDNA) viruses, including nucleocytoplasmic large dsDNA viruses (NCLDVs). We found that the repeating unit lengths of 11 types are one to five residues shorter than those of the seven known corresponding LRR classes. The repeating units of six types are 19 residues long and are thus the shortest among all LRRs. In addition, two of the LRR types are unique and have not been observed in bacteria, archae or eukaryotes. Conserved strongly hydrophobic residues such as Leu, Val or Ile in the consensus sequences are replaced by Cys with high frequency. Phylogenetic analysis indicated that horizontal gene transfer of some viral LRR genes had occurred between the virus and its host. We suggest that the shortening might contribute to the survival strategy of viruses. The present findings provide a new perspective on the origin and evolution of LRRs.
Collapse
|
12
|
Khan S, Sowpati DT, Srinivasan A, Soujanya M, Mishra RK. Long-Read Genome Sequencing and Assembly of Leptopilina boulardi: A Specialist Drosophila Parasitoid. G3 (BETHESDA, MD.) 2020; 10:1485-1494. [PMID: 32217632 PMCID: PMC7202025 DOI: 10.1534/g3.120.401151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 03/15/2020] [Indexed: 02/06/2023]
Abstract
Leptopilinaboulardi (Hymenoptera: Figitidae) is a specialist parasitoid of Drosophila The Drosophila-Leptopilina system has emerged as a suitable model for understanding several aspects of host-parasitoid biology. However, a good quality genome of the wasp counterpart was lacking. Here, we report a whole-genome assembly of L. boulardi to bring it in the scope of the applied and fundamental research on Drosophila parasitoids with access to epigenomics and genome editing tools. The 375Mb draft genome has an N50 of 275Kb with 6315 scaffolds >500bp and encompasses >95% complete BUSCOs. Using a combination of ab-initio and RNA-Seq based methods, 25259 protein-coding genes were predicted and 90% (22729) of them could be annotated with at least one function. We demonstrate the quality of the assembled genome by recapitulating the phylogenetic relationship of L. boulardi with other Hymenopterans. The key developmental regulators like Hox genes and sex determination genes are well conserved in L. boulardi, and so is the basic toolkit for epigenetic regulation. The search for epigenetic regulators has also revealed that L. boulardi genome possesses DNMT1 (maintenance DNA methyltransferase), DNMT2 (tRNA methyltransferase) but lacks the de novo DNA methyltransferase (DNMT3). Also, the heterochromatin protein 1 family appears to have expanded as compared to other hymenopterans. The draft genome of L. boulardi (Lb17) will expedite the research on Drosophila parasitoids. This genome resource and early indication of epigenetic aspects in its specialization make it an interesting system to address a variety of questions on host-parasitoid biology.
Collapse
Affiliation(s)
- Shagufta Khan
- CSIR - Centre for Cellular and Molecular Biology, Hyderabad - 500007, Telangana, India
| | - Divya Tej Sowpati
- CSIR - Centre for Cellular and Molecular Biology, Hyderabad - 500007, Telangana, India
| | - Arumugam Srinivasan
- CSIR - Centre for Cellular and Molecular Biology, Hyderabad - 500007, Telangana, India
| | - Mamilla Soujanya
- CSIR - Centre for Cellular and Molecular Biology, Hyderabad - 500007, Telangana, India
| | - Rakesh K Mishra
- CSIR - Centre for Cellular and Molecular Biology, Hyderabad - 500007, Telangana, India
| |
Collapse
|
13
|
Crustacean Genome Exploration Reveals the Evolutionary Origin of White Spot Syndrome Virus. J Virol 2019; 93:JVI.01144-18. [PMID: 30404800 DOI: 10.1128/jvi.01144-18] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/23/2018] [Indexed: 01/25/2023] Open
Abstract
White spot syndrome virus (WSSV) is a crustacean-infecting, double-stranded DNA virus and is the most serious viral pathogen in the global shrimp industry. WSSV is the sole recognized member of the family Nimaviridae, and the lack of genomic data on other nimaviruses has obscured the evolutionary history of WSSV. Here, we investigated the evolutionary history of WSSV by characterizing WSSV relatives hidden in host genomic data. We surveyed 14 host crustacean genomes and identified five novel nimaviral genomes. Comparative genomic analysis of Nimaviridae identified 28 "core genes" that are ubiquitously conserved in Nimaviridae; unexpected conservation of 13 uncharacterized proteins highlighted yet-unknown essential functions underlying the nimavirus replication cycle. The ancestral Nimaviridae gene set contained five baculoviral per os infectivity factor homologs and a sulfhydryl oxidase homolog, suggesting a shared phylogenetic origin of Nimaviridae and insect-associated double-stranded DNA viruses. Moreover, we show that novel gene acquisition and subsequent amplification reinforced the unique accessory gene repertoire of WSSV. Expansion of unique envelope protein and nonstructural virulence-associated genes may have been the key genomic event that made WSSV such a deadly pathogen.IMPORTANCE WSSV is the deadliest viral pathogen threatening global shrimp aquaculture. The evolutionary history of WSSV has remained a mystery, because few WSSV relatives, or nimaviruses, had been reported. Our aim was to trace the history of WSSV using the genomes of novel nimaviruses hidden in host genome data. We demonstrate that WSSV emerged from a diverse family of crustacean-infecting large DNA viruses. By comparing the genomes of WSSV and its relatives, we show that WSSV possesses an expanded set of unique host-virus interaction-related genes. This extensive gene gain may have been the key genomic event that made WSSV such a deadly pathogen. Moreover, conservation of insect-infecting virus protein homologs suggests a common phylogenetic origin of crustacean-infecting Nimaviridae and other insect-infecting DNA viruses. Our work redefines the previously poorly characterized crustacean virus family and reveals the ancient genomic events that preordained the emergence of a devastating shrimp pathogen.
Collapse
|