1
|
Yang C, Hu J, Su Q, Zhang Z, Du Y, Wang J, Sun H, Han B, Tang J, Guo L, Li H, Cai W, Zheng H, Zhou X, Zhang X. A review on recent taxonomic updates of gut bacteria associated with social bees, with a curated genomic reference database. INSECT SCIENCE 2024. [PMID: 38594229 DOI: 10.1111/1744-7917.13365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 02/13/2024] [Accepted: 03/09/2024] [Indexed: 04/11/2024]
Abstract
Honeybees and bumblebees play a crucial role as essential pollinators. The special gut microbiome of social bees is a key factor in determining the overall fitness and health of the host. Although bees harbor relatively simple microbial communities at the genus level, recent studies have unveiled significant genetic divergence and variations in gene content within each bacterial genus. However, a comprehensive and refined genomics-based taxonomic database specific to social bee gut microbiomes remains lacking. Here, we first provided an overview of the current knowledge on the distribution and function of social bee gut bacteria, as well as the factors that influence the gut population dynamics. We then consolidated all available genomes of the gut bacteria of social bees and refined the species-level taxonomy, by constructing a maximum-likelihood core genome phylogeny and calculating genome-wide pairwise average nucleotide identity. On the basis of the refined species taxonomy, we constructed a curated genomic reference database, named the bee gut microbe genome sequence database (BGM-GDb). To evaluate the species-profiling performance of the curated BGM-GDb, we retrieved a series of bee gut metagenomic data and inferred the species-level composition using metagenomic intra-species diversity analysis system (MIDAS), and then compared the results with those obtained from a prebuilt MIDAS database. We found that compared with the default database, the BGM-GDb excelled in aligned read counts and bacterial richness. Overall, this high-resolution and precise genomic reference database will facilitate research in understanding the gut community structure of social bees.
Collapse
Affiliation(s)
- Chengfeng Yang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
- Sanya Institute of China Agricultural University, Hainan Province, China
| | - Jiawei Hu
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Qinzhi Su
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Beijing Laboratory of Biomedical Materials, Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Zijing Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Yating Du
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jieni Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Huihui Sun
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
- Sanya Institute of China Agricultural University, Hainan Province, China
| | - Benfeng Han
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Junbo Tang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Lizhen Guo
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Hu Li
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Wanzhi Cai
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Hao Zheng
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Xin Zhou
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
- Sanya Institute of China Agricultural University, Hainan Province, China
| | - Xue Zhang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
2
|
Jeffries CL, Tantely LM, Kadriaj P, Blagrove MSC, Lytra I, Orsborne J, Al-Amin HM, Mohammed AR, Alam MS, Girod R, Afrane YA, Bino S, Robert V, Boyer S, Baylis M, Velo E, Hughes GL, Walker T. Mitochondrial and microbial diversity of the invasive mosquito vector species Culex tritaeniorhynchus across its extensive inter-continental geographic range. Wellcome Open Res 2024; 9:18. [PMID: 38800519 PMCID: PMC11128058 DOI: 10.12688/wellcomeopenres.20761.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2023] [Indexed: 05/29/2024] Open
Abstract
Background Culex (Cx.) tritaeniorhynchus is an invasive mosquito species with an extensive and expanding inter-continental distribution, currently reported across Asia, Africa, the Middle East, Europe and now Australia. It is an important vector of medical and veterinary pathogens which cause significant morbidity and mortality in human and animal populations. Across regions endemic for Japanese encephalitis virus (JEV), Cx. tritaeniorhynchus is considered the major vector and has also been shown to contribute to the transmission of several other zoonotic arboviruses including Rift Valley fever virus (RVFV) and West Nile virus (WNV). Methods In this study, we used laboratory vector competence experiments to determine if Cx. tritaeniorhynchus from a Southern European population were competent JEV vectors. We also obtained samples from multiple geographically dispersed Cx. tritaeniorhynchus populations from countries within Europe, Africa, Eurasia and Asia to perform phylogenetic analysis to measure the level of mitochondrial divergence using the cytochrome oxidase subunit 1 ( CO1) gene. We also undertook bacterial 16S rRNA gene amplicon sequencing to determine microbial diversity and used multi-locus sequence typing (MLST) to determine any evidence for the presence of strains of the naturally occurring endosymbiotic bacterium Wolbachia. Results Cx. tritaeniorhynchus from a Greek population were shown be be competent vectors of JEV with high levels of virus present in saliva. We found a signficant level of mitochondrial genetic diversity using the mosquito CO1 gene between geographically dispersed populations. Furthermore, we report diverse microbiomes identified by 16S rRNA gene amplicon sequencing within and between geographical populations. Evidence for the detection of the endosymbiotic bacteria Wolbachia was confirmed using Wolbachia-specific PCR and MLST. Conclusions This study enhances our understanding of the diversity of Cx. tritaeniorhynchus and the associated microbiome across its inter-continental range and highlights the need for greater surveillance of this invasive vector species in Europe.
Collapse
Affiliation(s)
- Claire L. Jeffries
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Luciano M Tantely
- Unite d'entomologie medicale, Institute Pasteur de Madagascar, Antanarivo, Madagascar
| | - Perparim Kadriaj
- Vector Control Unit, Control of Infectious Diseases Department, Institute of Public Health, Tirana, Albania
| | - Marcus S C Blagrove
- Department of Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, England, UK
- Health Protection Research Unit on Emerging and Zoonotic Infections, University of Liverpool, Liverpool, England, UK
| | - Ioanna Lytra
- Department of Entomology and Agricultural Zoology, Benaki Phytopathological Institute, Athens, Greece
| | - James Orsborne
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Hasan Mohammad Al-Amin
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
- Berghofer Medical Research Institute, Queensland Institute of Medical Research, Brisbane, Australia
| | - Abdul Rahim Mohammed
- Department of Medical Microbiology, University of Ghana Medical School, University of Ghana, Accra, Greater Accra Region, Ghana
| | - Mohammad Shafiul Alam
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Romain Girod
- Unite d'entomologie medicale, Institute Pasteur de Madagascar, Antanarivo, Madagascar
| | - Yaw A Afrane
- Department of Medical Microbiology, University of Ghana Medical School, University of Ghana, Accra, Greater Accra Region, Ghana
| | - Silvia Bino
- Vector Control Unit, Control of Infectious Diseases Department, Institute of Public Health, Tirana, Albania
| | - Vincent Robert
- MIVEGEC, CNRS, Institute of Research for Development (IRD), University of Montpellier, Montpellier, France
| | - Sebastien Boyer
- Unite d'entomologie medicale, Institute Pasteur de Madagascar, Antanarivo, Madagascar
- Medical and Veterinary Entomology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Matthew Baylis
- Health Protection Research Unit on Emerging and Zoonotic Infections, University of Liverpool, Liverpool, England, UK
- Department of Livestock and One Health, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, England, UK
| | - Enkelejda Velo
- Vector Control Unit, Control of Infectious Diseases Department, Institute of Public Health, Tirana, Albania
| | - Grant L Hughes
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Disease, University of Liverpool, Liverpool, England, UK
| | - Thomas Walker
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
- School of Life Sciences, University of Warwick, Coventry, England, UK
| |
Collapse
|
3
|
Petrović M, Janakiev T, Grbić ML, Unković N, Stević T, Vukićević S, Dimkić I. Insights into Endophytic and Rhizospheric Bacteria of Five Sugar Beet Hybrids in Terms of Their Diversity, Plant-Growth Promoting, and Biocontrol Properties. MICROBIAL ECOLOGY 2023; 87:19. [PMID: 38148389 PMCID: PMC10751262 DOI: 10.1007/s00248-023-02329-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/05/2023] [Indexed: 12/28/2023]
Abstract
Sugar beet is the most important crop for sugar production in temperate zones. The plant microbiome is considered an important factor in crop productivity and health. Here, we investigated the bacterial diversity of seeds, roots, and rhizosphere of five sugar beet hybrids named Eduarda (ED), Koala (KO), Tibor (T), Tajfun (TF), and Cercospora-resistant (C). A culture-independent next-generation sequencing approach was used for the further investigation of seed-borne endophytes. Hybrid-associated bacteria were evaluated for their plant growth-promoting (PGP) characteristics, antagonistic activity towards Cercospora beticola and several Fusarium strains in dual culture assays, and drought and salinity tolerance. High-throughput sequencing revealed that the Proteobacteria phylum was most dominant in the seeds of all hybrids, followed by Cyanobacteria and Actinobacteriota. The predominant genus in all hybrids was Pantoea, followed by Pseudomonas, Acinetobacter, Chalicogloea, Corynebacterium, Enterobacter, Enterococcus, Glutamicibacter, Kosakonia, and Marinilactibacillus. Unique genera in the hybrids were Pleurocapsa and Arthrobacter (T), Klebsiella (TF), Apibacter (ED), and Alloscardovia (KO). The genera that were most represented in one hybrid were Weissella and Staphylococcus (TF); Streptococcus (T); Gardnerella, Prevotella, and Rothia (KO); and Gilliamella, Lactobacillus, and Snodgrassella (ED). Thirty-two bacteria out of 156 isolates from the rhizosphere, roots, and seeds were selected with respect to various plant growth-promoting activities in vitro, i.e., nitrogen fixation, phosphate solubilization, siderophore production, indole-3-acetic acid production, 1-aminocyclopropane-1-carboxylic acid deaminase activity, hydrogen cyanide production, exoenzymatic activity (amylase, protease, lipase, cellulase, xylanase, mannanases, gelatinase, and pectinase), mitigation of environmental stresses, and antifungal activity. Mixta theicola KO3-44, Providencia vermicola ED3-10, Curtobacterium pusillum ED2-6, and Bacillus subtilis KO3-18 had the highest potential to promote plant growth due to their multiple abilities (nitrogen fixation, phosphate solubilization, production of siderophores, and IAA). The best antagonistic activity towards phytopathogenic fungi was found for Bacillus velezensis C3-19, Paenibacillus polymyxa C3-36 and Bacillus halotolerans C3-16/2.1. Only four isolates B. velezensis T2-23, B. subtilis T3-4, B. velezensis ED2-2, and Bacillus halotolerans C3-16/2.1 all showed enzymatic activity, with the exception of xylanase production. B. halotolerans C3-16/2.1 exhibited the greatest tolerance to salinity, while two B. subtilis strains (C3-62 and TF2-1) grew successfully at the maximum concentration of PEG. The current study demonstrates that sugar beet-associated bacteria have a wide range of beneficial traits and are therefore highly promising for the formulation of biological control and PGP agents.
Collapse
Affiliation(s)
- Marija Petrović
- Faculty of Biology, University of Belgrade Studentski trg 16, Belgrade, 11158, Serbia
| | - Tamara Janakiev
- Faculty of Biology, University of Belgrade Studentski trg 16, Belgrade, 11158, Serbia
| | | | - Nikola Unković
- Faculty of Biology, University of Belgrade Studentski trg 16, Belgrade, 11158, Serbia
| | - Tatjana Stević
- Institute for Medicinal Plant Research "Dr Josif Pančić," Tadeuša Košćuška 1, Belgrade, 11000, Serbia
| | | | - Ivica Dimkić
- Faculty of Biology, University of Belgrade Studentski trg 16, Belgrade, 11158, Serbia.
| |
Collapse
|
4
|
Young MG, Just J, Lee YJ, McMahon T, Gonzalez J, Noh S, Angelini DR. Seasonally increasing parasite load is associated with microbiome dysbiosis in wild bumblebees. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.30.569473. [PMID: 38077090 PMCID: PMC10705496 DOI: 10.1101/2023.11.30.569473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
The microbiome is increasingly recognized for its complex relationship with host fitness. Bumblebees are host to a characteristic gut microbiome community that is derived and reinforced through social contact between individuals. The bumblebee microbiome is species-poor, and primarily composed from a small number of core taxa that are associated with the greater tribe of corbiculate bees. Experimental findings support a role for the core bumblebee microbiome in resistance to severe infections by a common trypanosomal parasite, Crithidia bombi. However, most studies have been small in scale, often considering just one or two bumblebee species, or making use of commercially-reared bees. To better understand the microbiome diversity of wild populations, we have deeply sampled field populations of ten sympatric species found throughout central and down east Maine in a three-year microbiome field survey. We have used 16S amplicon sequencing to produce microbiome community profiles, and qPCR to screen samples for infections by Crithidia bombi. The breadth of our dataset has enabled us to test for seasonal and interspecific trends in the microbiome community. Controlling for these external sources of variation, we have identified microbial factors associated with infection and parasite load that support the role of the core microbiome in resistance to severe infection.
Collapse
Affiliation(s)
- Mark G. Young
- Colby College, Department of Biology, 5700 Mayflower Hill, Waterville, ME 04901, USA
| | - Josefine Just
- Colby College, Department of Biology, 5700 Mayflower Hill, Waterville, ME 04901, USA
| | - Ye Jin Lee
- Colby College, Department of Biology, 5700 Mayflower Hill, Waterville, ME 04901, USA
| | - Thomas McMahon
- Colby College, Department of Biology, 5700 Mayflower Hill, Waterville, ME 04901, USA
| | - James Gonzalez
- Colby College, Department of Biology, 5700 Mayflower Hill, Waterville, ME 04901, USA
| | - Suegene Noh
- Colby College, Department of Biology, 5700 Mayflower Hill, Waterville, ME 04901, USA
| | - David R. Angelini
- Colby College, Department of Biology, 5700 Mayflower Hill, Waterville, ME 04901, USA
| |
Collapse
|
5
|
Botero J, Sombolestani AS, Cnockaert M, Peeters C, Borremans W, De Vuyst L, Vereecken NJ, Michez D, Smagghe G, Bonilla-Rosso G, Engel P, Vandamme P. A phylogenomic and comparative genomic analysis of Commensalibacter, a versatile insect symbiont. Anim Microbiome 2023; 5:25. [PMID: 37120592 PMCID: PMC10149009 DOI: 10.1186/s42523-023-00248-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/21/2023] [Indexed: 05/01/2023] Open
Abstract
BACKGROUND To understand mechanisms of adaptation and plasticity of pollinators and other insects a better understanding of diversity and function of their key symbionts is required. Commensalibacter is a genus of acetic acid bacterial symbionts in the gut of honey bees and other insect species, yet little information is available on the diversity and function of Commensalibacter bacteria. In the present study, whole-genome sequences of 12 Commensalibacter isolates from bumble bees, butterflies, Asian hornets and rowan berries were determined, and publicly available genome assemblies of 14 Commensalibacter strains were used in a phylogenomic and comparative genomic analysis. RESULTS The phylogenomic analysis revealed that the 26 Commensalibacter isolates represented four species, i.e. Commensalibacter intestini and three novel species for which we propose the names Commensalibacter melissae sp. nov., Commensalibacter communis sp. nov. and Commensalibacter papalotli sp. nov. Comparative genomic analysis revealed that the four Commensalibacter species had similar genetic pathways for central metabolism characterized by a complete tricarboxylic acid cycle and pentose phosphate pathway, but their genomes differed in size, G + C content, amino acid metabolism and carbohydrate-utilizing enzymes. The reduced genome size, the large number of species-specific gene clusters, and the small number of gene clusters shared between C. melissae and other Commensalibacter species suggested a unique evolutionary process in C. melissae, the Western honey bee symbiont. CONCLUSION The genus Commensalibacter is a widely distributed insect symbiont that consists of multiple species, each contributing in a species specific manner to the physiology of the holobiont host.
Collapse
Affiliation(s)
- Juliana Botero
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, K. L. Ledeganckstraat 35, 9000, Ghent, Belgium
| | - Atena Sadat Sombolestani
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, K. L. Ledeganckstraat 35, 9000, Ghent, Belgium
| | - Margo Cnockaert
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, K. L. Ledeganckstraat 35, 9000, Ghent, Belgium
| | - Charlotte Peeters
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, K. L. Ledeganckstraat 35, 9000, Ghent, Belgium
| | - Wim Borremans
- Research Group of Industrial Microbiology and Food Biotechnology, Department of Bioengineering Sciences, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology, Department of Bioengineering Sciences, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Nicolas J Vereecken
- Agroecology Lab, Université libre de Bruxelles, Boulevard du Triomphe CP 264/02, 1050, Brussels, Belgium
| | - Denis Michez
- Laboratory of Zoology, Research Institute for Biosciences, University of Mons, Place du parc 20, 7000, Mons, Belgium
| | - Guy Smagghe
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - German Bonilla-Rosso
- Department of Fundamental Microbiology, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Philipp Engel
- Department of Fundamental Microbiology, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Peter Vandamme
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, K. L. Ledeganckstraat 35, 9000, Ghent, Belgium.
| |
Collapse
|
6
|
Handy MY, Sbardellati DL, Yu M, Saleh NW, Ostwald MM, Vannette RL. Incipiently social carpenter bees (Xylocopa) host distinctive gut bacterial communities and display geographical structure as revealed by full-length PacBio 16S rRNA sequencing. Mol Ecol 2023; 32:1530-1543. [PMID: 36239475 DOI: 10.1111/mec.16736] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 09/14/2022] [Accepted: 09/28/2022] [Indexed: 11/27/2022]
Abstract
The gut microbiota of bees affects nutrition, immunity and host fitness, yet the roles of diet, sociality and geographical variation in determining microbiome structure, including variant-level diversity and relatedness, remain poorly understood. Here, we use full-length 16S rRNA amplicon sequencing to compare the crop and gut microbiomes of two incipiently social carpenter bee species, Xylocopa sonorina and Xylocopa tabaniformis, from multiple geographical sites within each species' range. We found that Xylocopa species share a set of core taxa consisting of Bombilactobacillus, Bombiscardovia and Lactobacillus, found in >95% of all individual bees sampled, and Gilliamella and Apibacter were also detected in the gut of both species with high frequency. The crop bacterial community of X. sonorina comprised nearly entirely Apilactobacillus with occasionally abundant nectar bacteria. Despite sharing core taxa, Xylocopa species' microbiomes were distinguished by multiple bacterial lineages, including species-specific variants of core taxa. The use of long-read amplicons revealed otherwise cryptic species and population-level differentiation in core microbiome members, which was masked when a shorter fragment of the 16S rRNA (V4) was considered. Of the core taxa, Bombilactobacillus and Bombiscardovia exhibited differentiation in amplicon sequence variants among bee populations, but this was lacking in Lactobacillus, suggesting that some bacterial genera in the gut may be structured by different processes. We conclude that these Xylocopa species host a distinctive microbiome, similar to that of previously characterized social corbiculate apids, which suggests that further investigation to understand the evolution of the bee microbiome and its drivers is warranted.
Collapse
Affiliation(s)
- Madeline Y Handy
- Department of Entomology and Nematology, University of California Davis, Davis, California, USA
| | - Dino L Sbardellati
- Microbiology Graduate Group, University of California Davis, Davis, California, USA
| | - Michael Yu
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, USA
| | - Nicholas W Saleh
- Entomology and Nematology Department, Fort Lauderdale Research and Education Center, University of Florida, Davie, Florida, USA
| | | | - Rachel L Vannette
- Department of Entomology and Nematology, University of California Davis, Davis, California, USA
| |
Collapse
|
7
|
Chamankar B, Maleki-Ravasan N, Karami M, Forouzan E, Karimian F, Naeimi S, Choobdar N. The structure and diversity of microbial communities in Paederus fuscipes (Coleoptera: Staphylinidae): from ecological paradigm to pathobiome. MICROBIOME 2023; 11:11. [PMID: 36670494 PMCID: PMC9862579 DOI: 10.1186/s40168-022-01456-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Paederus fuscipes is medically the most famous rove beetle, which causes dermatitis or conjunctivitis in humans, as well as gastrointestinal toxicosis in livestock, via releasing toxic hemolymph containing pederin. Pedrin biosynthesis genes have been identified in uncultured Pseudomonas-like endosymbionts that are speculated to be acquired through a horizontal transfer. However, the composition of the P. fuscipes microbial community, especially of the gut and genital microbiome, remains unclear. This study was aimed to characterize the structure and diversity of P. fuscipes-associated bacterial communities in terms of gender, organ, and location using the Illumina HiSeq platform in the southern littorals of Caspian Sea. RESULTS The OTUs identified from P. fuscipes specimens were collapsed into 40 phyla, 112 classes, 249 orders, 365 families, 576 genera, and 106 species. The most abundant families were Pseudomonadaceae, Spiroplasmataceae, Weeksellaceae, Enterococcaceae, and Rhizobiaceae, respectively. Thirty top genera made up > 94% of the P. fuscipes microbiome, with predominating Pseudomonas, followed by the Spiroplasma, Apibacter, Enterococcus, Dysgonomonas, Sebaldella, Ruminococcus, and Wolbachia. Interesting dissimilarities were also discovered within and between the beetle microbiomes in terms of genders and organs. Analyses showed that Spiroplasma / Apibacter as well as Pseudomonas / Pseudomonas were the most abundant in the genitals / intestines of male and female beetles, respectively. Bacterial richness did not display any significant difference in the three provinces but was higher in male beetles than in females and more in the genitals than intestines. CONCLUSIONS The present study identified Pseudomonas-like endobacterium as a common symbiont of P. fuscipes beetles; this bacterium begins its journey from gut and genitalia of females to reach the male rove beetles. Additionally, male and female rove beetles were characterized by distinctive microbiota in different organs, likely reflecting different functions and/or adaptation processes. Evidence of the extension of P. fuscipes microbiome from the environmental paradigm to the pathobiome was also presented herein. A comprehensive survey of P. fuscipes microbiome components may eventually lead to ecological insights into the production and utilization of defensive compound of pederin and also the management of linear dermatitis with the use of available antibiotics against bacterial pathogens released by the beetles. Video Abstract.
Collapse
Affiliation(s)
- Bahar Chamankar
- Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran
- Departments of Zoology Biosystematics, Payame Noor University, East Tehran Centre, Tehran, Iran
| | | | - Mohsen Karami
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | | | - Fateh Karimian
- Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran
| | - Sabah Naeimi
- Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran
| | - Nayyereh Choobdar
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Mehmet Bektas, Orhan F, Baris O. Isolation of Biological Control Agents and Biotechnological Bacteria from Aquatic Insect Gut Microbiota (Coleoptera: Helophoridae, Hydrophilidae). BIOL BULL+ 2022. [DOI: 10.1134/s1062359022060036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Xiao R, Chen S, Wang X, Chen K, Hu J, Wei K, Ning Y, Xiong T, Lu F. Microbial community starters affect the profiles of volatile compounds in traditional Chinese Xiaoqu rice wine: Assement via high-throughput sequencing and gas chromatography-ion mobility spectrometry. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Zhang ZJ, Zheng H. Bumblebees with the socially transmitted microbiome: A novel model organism for gut microbiota research. INSECT SCIENCE 2022; 29:958-976. [PMID: 35567381 DOI: 10.1111/1744-7917.13040] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/07/2022] [Accepted: 03/21/2022] [Indexed: 06/15/2023]
Abstract
Eusocial bumble and honey bees are important pollinators for global ecology and the agricultural economy. Although both the bumble and honey bees possess similar and host-restricted gut microbiota, they differ in aspects of morphology, autonomy, physiology, behavior, and life cycle. The social bee gut bacteria exhibit host specificity that is likely a result of long-term co-evolution. The unique life cycle of bumblebees is key for the acquisition and development of their gut microbiota, and affects the strain-level diversity of the core bacterial species. Studies on bumblebee gut bacteria show that they retain less functional capacity for carbohydrate metabolism compared with that of the honeybee. We discuss the potential roles of the bumblebee gut microbiota against pathogenic threats and the application of host-specific probiotics for bumblebees. Given the advantages of the bumblebee microbiome, including the simple structure and host specificity, and the ease of manipulating bumblebee colonies, we propose that bumblebees may provide a valuable system for understanding the general principles of host-microbe interactions, gut-brain axis, and vertical transmission.
Collapse
Affiliation(s)
- Zi-Jing Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Hao Zheng
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
11
|
Yun BR, Truong AT, Choi YS, Lee MY, Kim BY, Seo M, Yoon SS, Yoo MS, Van Quyen D, Cho YS. Comparison of the gut microbiome of sacbrood virus-resistant and -susceptible Apis cerana from South Korea. Sci Rep 2022; 12:10010. [PMID: 35705585 PMCID: PMC9200864 DOI: 10.1038/s41598-022-13535-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/25/2022] [Indexed: 11/12/2022] Open
Abstract
Honey bees are important pollinators for the conservation of the ecosystem and agricultural products and provide a variety of products important for human use, such as honey, pollen, and royal jelly. Sacbrood disease (SD) is a devastating viral disease in Apis cerana; an effective preventive measure for SD is urgently needed. In this study, the relationship between the gut microbiome of honey bees and SD was investigated by pyrosequencing. Results revealed that sacbrood virus (SBV)-resistant A. cerana strains harbour a unique acetic acid bacterium, Bombella intestini, and the lactic acid bacteria (LAB) Lactobacillus (unclassified)_uc, Bifidobacterium longum, B. catenulatum, Lactococcus lactis, and Leuconostoc mesenteroides in larvae and Hafnia alvei, B. indicum, and the LAB L. mellifer and Lactobacillus HM215046_s in adult bees. Changes in the gut microbiome due to SBV infection resulted in loss of bacteria that could affect host nutrients and inhibit honey bee pathogens, such as Gilliamella JFON_s, Gilliamella_uc, Pseudomonas putida, and L. kunkeei in A. cerana larvae and Frischella_uc, Pantoea agglomerans, Snodgrassella_uc, and B. asteroides in adult bees. These findings provide important information for the selection of probiotics for A. cerana larvae and adults to prevent pathogenic infections and keep honey bees healthy.
Collapse
Affiliation(s)
- Bo-Ram Yun
- Parasitic and Insect Disease Laboratory, Bacterial Disease Division, Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency, Gimcheon, 39660, Republic of Korea.,Division of Vectors and Parasitic Diseases, Korea Disease Control and Prevention Agency, 187 Osongsaengmyeong 2-ro, Heungdeok-gu, Cheongju, Chungbuk, 28159, Republic of Korea.,Department of Veterinary Medicine, College of Veterinary Medicine, Kyungpook National University, Buk-gu, Daegu, 41566, Republic of Korea
| | - A-Tai Truong
- Parasitic and Insect Disease Laboratory, Bacterial Disease Division, Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency, Gimcheon, 39660, Republic of Korea.,Faculty of Biotechnology, Thai Nguyen University of Sciences, Thai Nguyen, 250000, Vietnam
| | - Yong Soo Choi
- Department of Agricultural Biology, National Institute of Agricultural Science, Wanju, 55365, Republic of Korea
| | - Man Young Lee
- Department of Agricultural Biology, National Institute of Agricultural Science, Wanju, 55365, Republic of Korea
| | | | - Minjung Seo
- ChunLab Inc., Seoul, 06194, Republic of Korea
| | - Soon-Seek Yoon
- Parasitic and Insect Disease Laboratory, Bacterial Disease Division, Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency, Gimcheon, 39660, Republic of Korea
| | - Mi-Sun Yoo
- Parasitic and Insect Disease Laboratory, Bacterial Disease Division, Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency, Gimcheon, 39660, Republic of Korea.
| | - Dong Van Quyen
- University of Science and Technology of Ha Noi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam.
| | - Yun Sang Cho
- Parasitic and Insect Disease Laboratory, Bacterial Disease Division, Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency, Gimcheon, 39660, Republic of Korea.
| |
Collapse
|
12
|
Gruneck L, Gentekaki E, Khongphinitbunjong K, Popluechai S. Distinct gut microbiota profiles of Asian honey bee (Apis cerana) foragers. Arch Microbiol 2022; 204:187. [PMID: 35192066 DOI: 10.1007/s00203-022-02800-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/03/2022] [Accepted: 02/10/2022] [Indexed: 01/05/2023]
Abstract
Bee gut microbial communities have been studied extensively and linked to honey bee biology in terms of stages of bee development and behavior. Associations of bee gut microbiota in health and disease have also been explored. A large number of studies have centered on the gut microbiome of Apis mellifera, with similar investigations lagging far behind in Asian honey bee foragers. In this study, we characterized and compared the gut bacterial profiles of foragers and nurse bees of A. cerana and A. mellifera. Analysis of 16S rRNA partial gene sequences revealed significant differences in gut bacterial communities between the two honey bee species. Despite sharing dominant taxa, Bacteroides was more abundant in A. cerana, while Proteobacteria was higher in A. mellifera. Specific gut members are distinctly associated with hosts performing different tasks (i.e. nurse bees versus foragers). An exclusive abundance of Apibacter detected in Asian honey bee seemed to be a microbial signature of A. cerana foragers. Overall, our study highlights that variations in gut microbiota could be linked to task-specific (nurse bees and foragers) bacterial species associated with honey bees. Future investigations on the symbiotic relationship between host and the resident microbiota would be beneficial for improving honey bee health.
Collapse
Affiliation(s)
- Lucsame Gruneck
- Gut Microbiome Research Group, Mae Fah Luang University, Muang, Chiang Rai, Thailand
| | - Eleni Gentekaki
- Gut Microbiome Research Group, Mae Fah Luang University, Muang, Chiang Rai, Thailand.,School of Science, Mae Fah Luang University, Muang, Chiang Rai, Thailand
| | - Kitiphong Khongphinitbunjong
- School of Science, Mae Fah Luang University, Muang, Chiang Rai, Thailand.,Microbial Products and Innovation Group, Mae Fah Luang University, Muang, Chiang Rai, Thailand
| | - Siam Popluechai
- Gut Microbiome Research Group, Mae Fah Luang University, Muang, Chiang Rai, Thailand. .,School of Science, Mae Fah Luang University, Muang, Chiang Rai, Thailand.
| |
Collapse
|
13
|
Zhang W, Zhang X, Su Q, Tang M, Zheng H, Zhou X. Genomic features underlying the evolutionary transitions of Apibacter to honey bee gut symbionts. INSECT SCIENCE 2022; 29:259-275. [PMID: 33811731 DOI: 10.1111/1744-7917.12912] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/20/2021] [Accepted: 02/21/2021] [Indexed: 05/16/2023]
Abstract
The gut bacteria of honey bee recognized as a mutualistic partner with the insect host might have originated from a free-living or parasitic lifestyle. However, little is known about the genomic features underlying this lifestyle transition. Here we compared the genomes of bee gut bacteria Apibacter with their close relatives living in different lifestyles. We found that despite general reduction in the Apibacter genome, genes involved in amino acid synthesis and monosaccharide detoxification were retained, which is putatively beneficial to the host. Interestingly, the microaerobic Apibacter species specifically acquired genes encoding for the nitrate respiration (NAR). These together with nitrate transporter and enzymatic cofactor synthesis genes were found clustered in the genomes. The NAR system is also conserved in the cohabitating bee gut microbe Snodgrassella, although with a different structure. This convergence suggests a key role of respiratory nitrate reduction for microaerophilic microbiomes to colonize bee gut epithelium. Genes involved in lipid, histidine degradation were found partially or completely lost in Apibacter. Particularly, genes encoding for the conversion to the toxic intermediates in phenylacetate degradation, as well as other potential virulence factors, are specifically lost in Apibacter group. Antibiotic resistance genes are only sporadically distributed among Apibacter species, but are prevalent in their relatives, which may be related to the remotely living feature and less exposure to antibiotics of their bee hosts. Collectively, this study advanced our knowledge of genomic features specialized to bee gut symbionts.
Collapse
Affiliation(s)
- Wenjun Zhang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xue Zhang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Qinzhi Su
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Min Tang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Hao Zheng
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Xin Zhou
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
14
|
Soares KO, Oliveira CJBD, Rodrigues AE, Vasconcelos PC, Silva NMVD, Cunha Filho OGD, Madden C, Hale VL. Tetracycline Exposure Alters Key Gut Microbiota in Africanized Honey Bees (Apis mellifera scutellata x spp.). Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.716660] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Honey bees play a critical role in ecosystem health, biodiversity maintenance, and crop yield. Antimicrobials, such as tetracyclines, are used widely in agriculture, medicine, and in bee keeping, and bees can be directly or indirectly exposed to tetracycline residues in the environment. In European honey bees, tetracycline exposure has been linked with shifts in the gut microbiota that negatively impact bee health. However, the effects of antimicrobials on Africanized honey bee gut microbiota have not been examined. The aim of this study was to investigate the effects of tetracycline exposure on the gut microbial community of Africanized honey bees (Apis mellifera scutellata x spp.), which are important pollinators in South, Central, and North America. Bees (n = 1,000) were collected from hives in Areia-PB, Northeastern Brazil, placed into plastic chambers and kept under controlled temperature and humidity conditions. The control group (CON) was fed daily with syrup (10 g) consisting of a 1:1 solution of demerara sugar and water, plus a solid protein diet (10 g) composed of 60% soy extract and 40% sugar syrup. The tetracycline group (TET) was fed identically but with the addition of tetracycline hydrochloride (450 μg/g) to the sugar syrup. Bees were sampled from each group before (day 0), and after tetracycline exposure (days 3, 6, and 9). Abdominal contents dissected out of each bee underwent DNA extraction and 16S rRNA sequencing (V3-V4) on an Illumina MiSeq. Sequences were filtered and processed through QIIME2 and DADA2. Microbial community composition and diversity and differentially abundant taxa were evaluated by treatment and time. Bee gut microbial composition (Jaccard) and diversity (Shannon) differed significantly and increasingly over time and between CON and TET groups. Tetracycline exposure was associated with decreased relative abundances of Bombella and Fructobacillus, along with decreases in key core microbiota such as Snodgrassella, Gilliamella, Rhizobiaceae, and Apibacter. These microbes are critical for nutrient metabolism and pathogen defense, and it is possible that decreased abundances of these microbes could negatively affect bee health. Considering the global ecological and economic importance of honey bees as pollinators, it is critical to understand the effects of agrochemicals including antimicrobials on honey bees.
Collapse
|
15
|
Evolution of Interbacterial Antagonism in Bee Gut Microbiota Reflects Host and Symbiont Diversification. mSystems 2021; 6:6/3/e00063-21. [PMID: 33975963 PMCID: PMC8125069 DOI: 10.1128/msystems.00063-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antagonistic interactions between bacteria affect diversity and dynamics of host-associated communities, including gut communities that are linked to host health. In many bacterial communities, including human and honey bee gut microbiotas, antagonism is mediated by type VI secretion systems (T6SSs) that deliver lethal toxins to competing strains. Gram-negative bacteria frequently possess type VI secretion systems (T6SSs), protein complexes that are able to inject toxic proteins into nearby cells. Many aspects of T6SS structure and function have been characterized for model species, but less is known about the evolutionary processes that shape T6SS and effector (toxin) diversity in host-associated microbial communities. The bee gut microbiota is a simple community that has codiversified with bees for >80 million years. This study investigated how complements of T6SSs and effectors within the bee microbiota changed as bacteria and their hosts diversified into isolated species. We used protein homology to survey 198 isolate genomes of 9 Gram-negative species for genes encoding T6SS structural components; Rhs toxins, which are common T6SS effectors; and VgrG proteins, which are structural components associated with specific toxins. T6SS loci were present in 5 species clusters found only in bees, namely Apibacter spp., Gilliamella spp., Frischella perrara, “Candidatus Schmidhempelia bombi,” and Snodgrassella alvi. The distribution of T6SS loci suggests that at least 3 were present in the microbiota of the common ancestor of social bees and that loss of these genes in some bacterial lineages was linked to both host and bacterial speciation. Isolates differed enormously in repertoires of Rhs and VgrG proteins. We found that bacterial species employ different mechanisms for toxin acquisition and diversification and that species and strains sometimes lose the T6SS entirely, likely causing shifts in competitive dynamics within these communities. IMPORTANCE Antagonistic interactions between bacteria affect diversity and dynamics of host-associated communities, including gut communities that are linked to host health. In many bacterial communities, including human and honey bee gut microbiotas, antagonism is mediated by type VI secretion systems (T6SSs) that deliver lethal toxins to competing strains. In this study, we explored how T6SSs and associated toxins have evolved in the simple, host-specific gut microbiota of honey bees and bumble bees. Using comparative genomics, we explored the conservation, recombination, horizontal transfer, and loss of T6SSs and effectors during 80 million years of evolution of this bee-associated community. We find that that patterns of T6SS loss and retention are linked to differences in biology across host species, while trends in effector diversification are mostly specific to bacterial lineages.
Collapse
|
16
|
Dong ZX, Chen YF, Li HY, Tang QH, Guo J. The Succession of the Gut Microbiota in Insects: A Dynamic Alteration of the Gut Microbiota During the Whole Life Cycle of Honey Bees ( Apis cerana). Front Microbiol 2021; 12:513962. [PMID: 33935980 PMCID: PMC8079811 DOI: 10.3389/fmicb.2021.513962] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 03/23/2021] [Indexed: 01/15/2023] Open
Abstract
The Asian honey bee Apis cerana is a valuable biological resource insect that plays an important role in the ecological environment and agricultural economy. The composition of the gut microbiota has a great influence on the health and development of the host. However, studies on the insect gut microbiota are rarely reported, especially studies on the dynamic succession of the insect gut microbiota. Therefore, this study used high-throughput sequencing technology to sequence the gut microbiota of A. cerana at different developmental stages (0 days post emergence (0 dpe), 1 dpe, 3 dpe, 7 dpe, 12 dpe, 19 dpe, 25 dpe, 30 dpe, and 35 dpe). The results of this study indicated that the diversity of the gut microbiota varied significantly at different developmental stages (ACE, P = 0.045; Chao1, P = 0.031; Shannon, P = 0.0019; Simpson, P = 0.041). In addition, at the phylum and genus taxonomic levels, the dominant constituents in the gut microbiota changed significantly at different developmental stages. Our results also suggest that environmental exposure in the early stages of development has the greatest impact on the gut microbiota. The results of this study reveal the general rule of gut microbiota succession in the A. cerana life cycle. This study not only deepens our understanding of the colonization pattern of the gut microbiota in workers but also provides more comprehensive information for exploring the colonization of the gut microbiota in insects and other animals.
Collapse
Affiliation(s)
- Zhi-Xiang Dong
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Yi-Fei Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Huan-Yuan Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Qi-He Tang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Jun Guo
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
17
|
Daisley BA, Reid G. BEExact: a Metataxonomic Database Tool for High-Resolution Inference of Bee-Associated Microbial Communities. mSystems 2021; 6:e00082-21. [PMID: 33824193 PMCID: PMC8546966 DOI: 10.1128/msystems.00082-21] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/08/2021] [Indexed: 01/04/2023] Open
Abstract
High-throughput 16S rRNA gene sequencing technologies have robust potential to improve our understanding of bee (Hymenoptera: Apoidea)-associated microbial communities and their impact on hive health and disease. Despite recent computation algorithms now permitting exact inferencing of high-resolution exact amplicon sequence variants (ASVs), the taxonomic classification of these ASVs remains a challenge due to inadequate reference databases. To address this, we assemble a comprehensive data set of all publicly available bee-associated 16S rRNA gene sequences, systematically annotate poorly resolved identities via inclusion of 618 placeholder labels for uncultivated microbial dark matter, and correct for phylogenetic inconsistencies using a complementary set of distance-based and maximum likelihood correction strategies. To benchmark the resultant database (BEExact), we compare performance against all existing reference databases in silico using a variety of classifier algorithms to produce probabilistic confidence scores. We also validate realistic classification rates on an independent set of ∼234 million short-read sequences derived from 32 studies encompassing 50 different bee types (36 eusocial and 14 solitary). Species-level classification rates on short-read ASVs range from 80 to 90% using BEExact (with ∼20% due to "bxid" placeholder names), whereas only ∼30% at best can be resolved with current universal databases. A series of data-driven recommendations are developed for future studies. We conclude that BEExact (https://github.com/bdaisley/BEExact) enables accurate and standardized microbiota profiling across a broad range of bee species-two factors of key importance to reproducibility and meaningful knowledge exchange within the scientific community that together, can enhance the overall utility and ecological relevance of routine 16S rRNA gene-based sequencing endeavors.IMPORTANCE The failure of current universal taxonomic databases to support the rapidly expanding field of bee microbiota research has led to many investigators relying on "in-house" reference sets or manual classification of sequence reads (usually based on BLAST searches), often with vague identity thresholds and subjective taxonomy choices. This time-consuming, error- and bias-prone process lacks standardization, cripples the potential for comparative cross-study analysis, and in many cases is likely to incorrectly sway study conclusions. BEExact is structured on and leverages several complementary bioinformatic techniques to enable refined inference of bee host-associated microbial communities without any other methodological modifications necessary. It also bridges the gap between current practical outcomes (i.e., phylotype-to-genus level constraints with 97% operational taxonomic units [OTUs]) and the theoretical resolution (i.e., species-to-strain level classification with 100% ASVs) attainable in future microbiota investigations. Other niche habitats could also likely benefit from customized database curation via implementation of the novel approaches introduced in this study.
Collapse
Affiliation(s)
- Brendan A Daisley
- Department of Microbiology & Immunology, The University of Western Ontario, London, Ontario, Canada
- Canadian Centre for Human Microbiome and Probiotics Research, London, Ontario, Canada
| | - Gregor Reid
- Department of Microbiology & Immunology, The University of Western Ontario, London, Ontario, Canada
- Canadian Centre for Human Microbiome and Probiotics Research, London, Ontario, Canada
- Department of Surgery, Schulich School of Medicine, London, Ontario, Canada
| |
Collapse
|
18
|
Nowak A, Szczuka D, Górczyńska A, Motyl I, Kręgiel D. Characterization of Apis mellifera Gastrointestinal Microbiota and Lactic Acid Bacteria for Honeybee Protection-A Review. Cells 2021; 10:cells10030701. [PMID: 33809924 PMCID: PMC8004194 DOI: 10.3390/cells10030701] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 12/15/2022] Open
Abstract
Numerous honeybee (Apis mellifera) products, such as honey, propolis, and bee venom, are used in traditional medicine to prevent illness and promote healing. Therefore, this insect has a huge impact on humans’ way of life and the environment. While the population of A. mellifera is large, there is concern that widespread commercialization of beekeeping, combined with environmental pollution and the action of bee pathogens, has caused significant problems for the health of honeybee populations. One of the strategies to preserve the welfare of honeybees is to better understand and protect their natural microbiota. This paper provides a unique overview of the latest research on the features and functioning of A. mellifera. Honeybee microbiome analysis focuses on both the function and numerous factors affecting it. In addition, we present the characteristics of lactic acid bacteria (LAB) as an important part of the gut community and their special beneficial activities for honeybee health. The idea of probiotics for honeybees as a promising tool to improve their health is widely discussed. Knowledge of the natural gut microbiota provides an opportunity to create a broad strategy for honeybee vitality, including the development of modern probiotic preparations to use instead of conventional antibiotics, environmentally friendly biocides, and biological control agents.
Collapse
Affiliation(s)
- Adriana Nowak
- Department of Environmental Biotechnology, Lodz University of Technology, Wólczańska 171/173, 90-924 Łódź, Poland; (D.S.); (I.M.); (D.K.)
- Correspondence:
| | - Daria Szczuka
- Department of Environmental Biotechnology, Lodz University of Technology, Wólczańska 171/173, 90-924 Łódź, Poland; (D.S.); (I.M.); (D.K.)
| | - Anna Górczyńska
- Faculty of Law and Administration, University of Lodz, Kopcińskiego 8/12, 90-232 Łódź, Poland;
| | - Ilona Motyl
- Department of Environmental Biotechnology, Lodz University of Technology, Wólczańska 171/173, 90-924 Łódź, Poland; (D.S.); (I.M.); (D.K.)
| | - Dorota Kręgiel
- Department of Environmental Biotechnology, Lodz University of Technology, Wólczańska 171/173, 90-924 Łódź, Poland; (D.S.); (I.M.); (D.K.)
| |
Collapse
|
19
|
Tola YH, Waweru JW, Hurst GDD, Slippers B, Paredes JC. Characterization of the Kenyan Honey Bee ( Apis mellifera) Gut Microbiota: A First Look at Tropical and Sub-Saharan African Bee Associated Microbiomes. Microorganisms 2020; 8:microorganisms8111721. [PMID: 33153032 PMCID: PMC7692941 DOI: 10.3390/microorganisms8111721] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/15/2022] Open
Abstract
Gut microbiota plays important roles in many physiological processes of the host including digestion, protection, detoxification, and development of immune responses. The honey bee (Apis mellifera) has emerged as model for gut-microbiota host interaction studies due to its gut microbiota being highly conserved and having a simple composition. A key gap in this model is understanding how the microbiome differs regionally, including sampling from the tropics and in particular from Africa. The African region is important from the perspective of the native diversity of the bees, and differences in landscape and bee management. Here, we characterized the honey bee gut microbiota in sub-Saharan Africa using 16S rRNA amplicon sequencing. We confirm the presence of the core gut microbiota members and highlight different compositions of these communities across regions. We found that bees from the coastal regions harbor a higher relative abundance and diversity on core members. Additionally, we showed that Gilliamella, Snodgrassella, and Frischella dominate in all locations, and that altitude and humidity affect Gilliamella abundance. In contrast, we found that Lactobacillus was less common compared temperate regions of the world. This study is a first comprehensive characterization of the gut microbiota of honey bees from sub-Saharan Africa and underscores the need to study microbiome diversity in other indigenous bee species and regions.
Collapse
Affiliation(s)
- Yosef Hamba Tola
- International Centre of Insect Physiology and Ecology (icipe), Nairobi 30772-00100, Kenya; (Y.H.T.); (J.W.W.)
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa;
| | - Jacqueline Wahura Waweru
- International Centre of Insect Physiology and Ecology (icipe), Nairobi 30772-00100, Kenya; (Y.H.T.); (J.W.W.)
| | - Gregory D. D. Hurst
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 3BX, UK;
| | - Bernard Slippers
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa;
| | - Juan C. Paredes
- International Centre of Insect Physiology and Ecology (icipe), Nairobi 30772-00100, Kenya; (Y.H.T.); (J.W.W.)
- Correspondence:
| |
Collapse
|
20
|
Huang Y, Wang X, Yang J, Lu S, Lai XH, Jin D, Pu J, Huang Y, Ren Z, Zhu W, Liang H, Zhou P, Shi Z, Xu J. Apibacter raozihei sp. nov. isolated from bat feces of Hipposideros and Taphozous spp. Int J Syst Evol Microbiol 2020; 70:611-617. [PMID: 31661042 DOI: 10.1099/ijsem.0.003801] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Strains HY041T and HY039 were oxidase- and Gram-stain-negative, catalase-positive, rod-shaped, non-motile, and facultatively anaerobic bacteria. They were isolated from the feces of bats of the Hipposideros and Taphozous spp. collected from Chongqing City and Guangxi province (PR China), respectively. Phylogenetic analysis based on the 16S rRNA gene and 463 core genes indicated that HY041T and HY039 represent members of the genus Apibacter, forming a clade with Apibacter adventoris wkB301T (95.2 % 16S rRNA gene sequence similarity) and Apibacter mensalis R-53146T (94.0 %). In silico DNA-DNA hybridization (isDDH) and average nucleotide identity (ANI) values of our isolates with the most closely related species were lower than the 70 % and 95-96 % threshold, respectively, in contrast to values above these two thresholds (isDDH value: 89.1 %; ANI value: 98.5 %) between strains HY041T and HY039. The novel isolates could grow on nutrient and MacConkey agar. HY041T and HY039 could produce β-galactosidase and N-acetyl-β-glucosaminidase, and utilize d-adonitol, d-mannose, gentiobiose, glucose and salicin. The major fatty acids (>10.0 %) of HY041T were iso-C17 : 0 3OH, iso-C15 : 0, C16 : 0, summed feature 9 (C16 : 0 10-methyl and/or iso-C17 : 1ω9c) and C16 : 0 3OH. Polar lipids included phosphatidylethanolamine, glycolipid, two unidentified aminolipids and four unidentified lipids. Menaquinone 6 (MK-6) was the sole respiratory quinone. On the basis of all analyses so far, strains HY041T and HY039 represent a novel species of the genus Apibacter, for which the name Apibacter raozihei sp. nov. is proposed. The type strain is HY041T (=CGMCC 1.16567T=JCM 33423T) with a genomic DNA G+C content of 32.2 mol%.
Collapse
Affiliation(s)
- Yuyuan Huang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, PR China.,Guangxi Key Laboratory of AIDS Prevention and Treatment & Guangxi Collaborative Innovation Center for Biomedicine, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, PR China
| | - Xiaoxia Wang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, PR China.,Guangxi Key Laboratory of AIDS Prevention and Treatment & Guangxi Collaborative Innovation Center for Biomedicine, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, PR China
| | - Jing Yang
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing 100730, PR China.,Shanghai Institute for Emerging and Re-emerging Infectious Diseases, Shanghai Public Health Clinical Center, Shanghai 201508, PR China.,State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, PR China
| | - Shan Lu
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing 100730, PR China.,Shanghai Institute for Emerging and Re-emerging Infectious Diseases, Shanghai Public Health Clinical Center, Shanghai 201508, PR China.,State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, PR China
| | - Xin-He Lai
- School of Biology and Food Sciences, Shangqiu Normal University, Shangqiu, Henan 476000, PR China
| | - Dong Jin
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing 100730, PR China.,Shanghai Institute for Emerging and Re-emerging Infectious Diseases, Shanghai Public Health Clinical Center, Shanghai 201508, PR China.,State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, PR China
| | - Ji Pu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, PR China
| | - Ying Huang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, PR China
| | - Zhihong Ren
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing 100730, PR China.,State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, PR China
| | - Wentao Zhu
- Shanghai Institute for Emerging and Re-emerging Infectious Diseases, Shanghai Public Health Clinical Center, Shanghai 201508, PR China
| | - Hao Liang
- Guangxi Key Laboratory of AIDS Prevention and Treatment & Guangxi Collaborative Innovation Center for Biomedicine, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, PR China
| | - Peng Zhou
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Zhengli Shi
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Jianguo Xu
- Shanghai Institute for Emerging and Re-emerging Infectious Diseases, Shanghai Public Health Clinical Center, Shanghai 201508, PR China.,Guangxi Key Laboratory of AIDS Prevention and Treatment & Guangxi Collaborative Innovation Center for Biomedicine, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, PR China.,Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing 100730, PR China.,State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, PR China
| |
Collapse
|
21
|
Park R, Dzialo MC, Nsabimana D, Lievens B, Verstrepen KJ. Apibacter muscae sp. nov., a novel bacterial species isolated from house flies. Int J Syst Evol Microbiol 2019; 69:3586-3592. [PMID: 31460862 DOI: 10.1099/ijsem.0.003667] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We describe the isolation and characterization of three bacterial isolates from the common house fly, Musca domestica, caught in Londerzeel, Belgium and Huye District, Rwanda. Although isolated from distinct geographical locations, the strains show >99 % identical 16S rRNA gene sequences and are <95 % identical to type strains of Apibacter species. Whole-genome sequences were obtained for all three strains. The genomes are 2.4-2.5 Mb with a G+C content of ~30.3 mol%. Bacteriological and biochemical analysis of the strains demonstrate distinctly different characteristics compared to known Apibacter species. Particularly, the three strains investigated in this study can be distinguished from the known Apibacter species (Apibacter mensalisand Apibacter adventoris) through urease and β-glucosidase activities. Whole-cell fatty acid methyl ester analysis shows that the fatty acid composition of the novel strains is also unique. On the basis of phylogenetic, genotypic and phenotypic data, we propose to classify these isolates as representatives of a novel species of the genus Apibacter, Apibacter muscae sp. nov., in reference to its prevalence in house flies, with strain G8T (=LMG 30898T=DSM 107922T) as the type strain.
Collapse
Affiliation(s)
- Rahel Park
- Leuven Institute for BeerResearch (LIBR), Gaston Geenslaan 1, 3001 Leuven, Belgium.,CMPG Laboratory of Genetics andGenomics, Department M2S, KU Leuven, Gaston Geenslaan 1, 3001 Leuven, Belgium.,VIB - KU Leuven Center for Microbiology, Gaston Geenslaan 1, 3001 Leuven, Belgium
| | - Maria C Dzialo
- Leuven Institute for BeerResearch (LIBR), Gaston Geenslaan 1, 3001 Leuven, Belgium.,CMPG Laboratory of Genetics andGenomics, Department M2S, KU Leuven, Gaston Geenslaan 1, 3001 Leuven, Belgium.,VIB - KU Leuven Center for Microbiology, Gaston Geenslaan 1, 3001 Leuven, Belgium
| | - Donat Nsabimana
- Biology Department, School of Science, College of Science and Technology, University of Rwanda, Kigali, Rwanda
| | - Bart Lievens
- Laboratory for ProcessMicrobial Ecology and Bioinspirational Management (PME&BIM), DepartmentM2S, KU Leuven, Campus De Nayer, Fortsesteenweg30A, 2860 Sint-Katelijne Waver, Belgium.,Leuven Institute for BeerResearch (LIBR), Gaston Geenslaan 1, 3001 Leuven, Belgium
| | - Kevin J Verstrepen
- VIB - KU Leuven Center for Microbiology, Gaston Geenslaan 1, 3001 Leuven, Belgium.,CMPG Laboratory of Genetics andGenomics, Department M2S, KU Leuven, Gaston Geenslaan 1, 3001 Leuven, Belgium.,Leuven Institute for BeerResearch (LIBR), Gaston Geenslaan 1, 3001 Leuven, Belgium
| |
Collapse
|
22
|
Honey bees as models for gut microbiota research. Lab Anim (NY) 2018; 47:317-325. [PMID: 30353179 DOI: 10.1038/s41684-018-0173-x] [Citation(s) in RCA: 163] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 08/07/2018] [Indexed: 12/15/2022]
Abstract
The gut microbiota of the honey bee (Apis mellifera) offers several advantages as an experimental system for addressing how gut communities affect their hosts and for exploring the processes that determine gut community composition and dynamics. A small number of bacterial species dominate the honey bee gut community. These species are restricted to bee guts and can be grown axenically and genetically manipulated. Large numbers of microbiota-free hosts can be economically reared and then inoculated with single isolates or defined communities to examine colonization patterns and effects on host phenotypes. Honey bees have been studied extensively, due to their importance as agricultural pollinators and as models for sociality. Because of this history of bee research, the physiology, development, and behavior of honey bees is relatively well understood, and established behavioral and phenotypic assays are available. To date, studies on the honey bee gut microbiota show that it affects host nutrition, weight gain, endocrine signaling, immune function, and pathogen resistance, while perturbation of the microbiota can lead to reduced host fitness. As in humans, the microbiota is concentrated in the distal part of the gut, where it contributes to digestion and fermentation of plant cell wall components. Much like the human gut microbiota, many bee gut bacteria are specific to the bee gut and can be directly transmitted between individuals through social interaction. Although simpler than the human gut microbiota, the bee gut community presents opportunities to understand the processes that govern the assembly of specialized gut communities as well as the routes through which gut communities impact host biology.
Collapse
|