1
|
Lin YJ, Ding XY, Huang YW, Lu L. First De Novo genome assembly and characterization of Gaultheria prostrata. FRONTIERS IN PLANT SCIENCE 2024; 15:1456102. [PMID: 39534108 PMCID: PMC11554542 DOI: 10.3389/fpls.2024.1456102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024]
Abstract
Gaultheria Kalm ex L. (Ericaceae), a type of evergreen shrub, known as a natural source of methyl salicylate, possesses rich germplasm resources, strong habitat adaptability, significant ornamental value, and noteworthy pharmacological activities. However, due to the paucity of whole genomic information, genetically deep research in these areas remains limited. Consequently, we intend to obtain genome data through high-throughput sequencing, gene annotation, flow cytometry, transcription factors prediction and genetic marker analysis for a representative species of this genus, with Gaultheria prostrata selected for our study. In this study, we preliminarily obtained the genome of G. prostrata through next-generation sequencing methods. Utilizing 47.94 Gb of high-quality sequence data (108.95× coverage), assembled into 114,436 scaffolds, with an N50 length of 33,667 bp. The genome size assembled by SOAPdenovo, approximately 417 Mb, corresponded closely to predictions by flow cytometry (440 Mb) and k-mer analysis (447 Mb). The genome integrity was evaluated using BUSCO with 91%. The heterozygosity ratio was 0.159%, the GC content was 38.85%, and the repetitive regions encompassed over 34.6% of the genome. A total of 26,497 protein-coding genes have been predicted and annotated across Nr, Swissprot, GO, KEGG, and Pfam databases. Among these, 14,377 and 2,387 genes received functional annotation in Nr and Swissprot, respectively; 21,895, 24,424, and 22,330 genes were similarly annotated in GO, KEGG, and Pfam. Moreover, A total of 279,785 SSRs were identified and 345,270 primers for these SSRs were designed. Within the various nucleotide types of SSRs, AG/CT and AAG/CTT constituted the predominant dinucleotide and trinucleotide repeat types in G. prostrata. In addition, 1,395 transcription factors (TFs) from 75 TF families, 462 transcription regulators (TRs) from 33 TR families and 840 protein kinase (PKs) from 118 PK families were identified in this genome. We also performed phylogenetic analyses of G. prostrata and related species, including estimation of divergence times and expansion and contraction analyses, followed by positive selection analyses of orthologous gene pairs of G. prostrata and its close relative Vaccinium corymbosum. These results provide a reference for in-depth study of genus Gaultheria, contributing to future functional and comparative genomics analyses and providing supporting data for the development of molecular markers.
Collapse
Affiliation(s)
- Yan-Jun Lin
- School of Pharmaceutical Sciences, Yunnan Key Laboratory of Pharmacology for Natural Products, and Yunnan College of Modern Biomedical Industry, Kunming Medical University, Kunming, Yunnan, China
| | - Xiao-Ya Ding
- School of Pharmaceutical Sciences, Yunnan Key Laboratory of Pharmacology for Natural Products, and Yunnan College of Modern Biomedical Industry, Kunming Medical University, Kunming, Yunnan, China
| | - Yi-Wei Huang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lu Lu
- School of Pharmaceutical Sciences, Yunnan Key Laboratory of Pharmacology for Natural Products, and Yunnan College of Modern Biomedical Industry, Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
2
|
Xia XM, Du HL, Hu XD, Wu JJ, Yang FS, Li CL, Huang SX, Wang Q, Liang C, Wang XQ. Genomic insights into adaptive evolution of the species-rich cosmopolitan plant genus Rhododendron. Cell Rep 2024; 43:114745. [PMID: 39298317 DOI: 10.1016/j.celrep.2024.114745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 07/17/2024] [Accepted: 08/28/2024] [Indexed: 09/21/2024] Open
Abstract
The species-rich cosmopolitan genus Rhododendron offers a good system for exploring the genomic mechanisms underlying adaptation to diverse habitats. Here, we report high-quality chromosomal-level genome assemblies of nine species, representing all five subgenera, different altitudinal distributions, and all flower color types of this genus. Further comprehensive genomic analyses indicate diverse adaptive strategies employed by Rhododendron, particularly adaptation to alpine and subalpine habitats by expansion/contraction of gene families involved in pathogen defense and oxidative phosphorylation, genomic convergent evolution, and gene copy-number variation. The convergent adaptation to high altitudes is further shown by population genomic analysis of R. nivale from the Himalaya-Hengduan Mountains. Moreover, we identify the genes involved in the biosynthesis of anthocyanins and carotenoids, which play a crucial role in shaping flower color diversity and environmental adaptation. Our study is significant for comprehending plant adaptive evolution and the uneven distribution of species diversity across different geographical regions.
Collapse
Affiliation(s)
- Xiao-Mei Xia
- State Key Laboratory of Plant Diversity and Specialty Crops and Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China
| | - Hui-Long Du
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei 071000, China
| | - Xiao-Di Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jing-Jie Wu
- State Key Laboratory of Plant Diversity and Specialty Crops and Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China
| | - Fu-Sheng Yang
- State Key Laboratory of Plant Diversity and Specialty Crops and Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China
| | - Cong-Li Li
- State Key Laboratory of Plant Diversity and Specialty Crops and Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China
| | - Si-Xin Huang
- State Key Laboratory of Plant Diversity and Specialty Crops and Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China
| | - Qiang Wang
- State Key Laboratory of Plant Diversity and Specialty Crops and Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China
| | - Chengzhi Liang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xiao-Quan Wang
- State Key Laboratory of Plant Diversity and Specialty Crops and Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Rawat S, Jugran AK, Sharma H. Recent advancements in the physiological, genetic, and genomic research on Rhododendrons for trait improvement. 3 Biotech 2024; 14:164. [PMID: 38808301 PMCID: PMC11128433 DOI: 10.1007/s13205-024-04006-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/09/2024] [Indexed: 05/30/2024] Open
Abstract
High species diversity, hybridization potential, broad geographical dispersal range and ornamental characteristics (i.e., attractive size, shape, structure, flowers, and evergreen) have fetched a good international market for Rhododendron. However, most species are restricted to specific geographic areas due to their habitat specificity in acidic soil and cold climates, resulting many species being classified under threat categories of the IUCN. In this review, advances in research on Rhododendron for improvement to floral display quality and stress resistance have been described. The low genetic barrier among species has created opportunities for extensive hybridization and ploidy alteration for introducing quality and adaptive traits during the development of new varieties. Recent technological advances have supported investigations into the mechanism of flower development, as well as cold tolerance and pathogen resistance mechanisms in the Rhododendron. However, most of the species have limited adaptability to drought, line-tolerance, pathogen resistance, and high-temperature conditions and this resistance ability present in few species largely remains unexplored. Additionally, the available genetic diversity and genomic information on species, and possibilities for their application in molecular breeding have been summarized. Overall, genomic resource data are scarce in the majority of the members of this genus. Finally, various research gaps such as genetic mapping of quality traits, understanding the molecular mechanism of quality-related traits and genomic assortment in Rhododendron members have been discussed in the future perspective section. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04006-6.
Collapse
Affiliation(s)
- Sandeep Rawat
- Sikkim Regional Centre, G. B. Pant National Institute of Himalayan Environment, Pangthang, Gangtok, Sikkim 737101 India
| | - Arun K. Jugran
- Garhwal Regional Centre, G. B. Pant National Institute of Himalayan Environment, Srinagar, Uttarakhand 246174 India
| | - Himanshu Sharma
- National Agri-Food Biotechnology Institute (NABI), Sector-81, SAS Nagar, Mohali, Punjab 140306 India
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh 173229 India
| |
Collapse
|
4
|
Hirabayashi K, Debnath SC, Owens GL. Unveiling the evolutionary history of lingonberry (Vaccinium vitis-idaea L.) through genome sequencing and assembly of European and North American subspecies. G3 (BETHESDA, MD.) 2024; 14:jkad294. [PMID: 38142435 PMCID: PMC10917501 DOI: 10.1093/g3journal/jkad294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 10/23/2023] [Accepted: 12/18/2023] [Indexed: 12/26/2023]
Abstract
Lingonberry (Vaccinium vitis-idaea L.) produces tiny red berries that are tart and nutty in flavor. It grows widely in the circumpolar region, including Scandinavia, northern parts of Eurasia, Alaska, and Canada. Although cultivation is currently limited, the plant has a long history of cultural use among indigenous communities. Given its potential as a food source, genomic resources for lingonberry are significantly lacking. To advance genomic knowledge, the genomes for 2 subspecies of lingonberry (V. vitis-idaea ssp. minus and ssp. vitis-idaea var. 'Red Candy') were sequenced and de novo assembled into contig-level assemblies. The assemblies were scaffolded using the bilberry genome (Vaccinium myrtillus) to generate a chromosome-anchored reference genome consisting of 12 chromosomes each with a total length of 548.07 Mb [contig N50 = 1.17 Mb, BUSCO (C%) = 96.5%] for ssp. vitis-idaea and 518.70 Mb [contig N50 = 1.40 Mb, BUSCO (C%) = 96.9%] for ssp. minus. RNA-seq-based gene annotation identified 27,243 and 25,718 genes on the respective assembly, and transposable element detection methods found that 45.82 and 44.58% of the genome were repeats. Phylogenetic analysis confirmed that lingonberry was most closely related to bilberry and was more closely related to blueberries than cranberries. Estimates of past effective population size suggested a continuous decline over the past 1-3 MYA, possibly due to the impacts of repeated glacial cycles during the Pleistocene leading to frequent population fragmentation. The genomic resource created in this study can be used to identify industry-relevant genes (e.g. anthocyanin production), infer phylogeny, and call sequence-level variants (e.g. SNPs) in future research.
Collapse
Affiliation(s)
- Kaede Hirabayashi
- Department of Biology, University of Victoria, 3800 Finnerty Road, Victoria, BC V8W 2Y2, Canada
| | - Samir C Debnath
- Agriculture and Agri-Food Canada, St.John's Research and Development Centre, 204 Brookfield Road, St. John’s, Newfoundland and Labrador L A1E 0B2, Canada
| | - Gregory L Owens
- Department of Biology, University of Victoria, 3800 Finnerty Road, Victoria, BC V8W 2Y2, Canada
| |
Collapse
|
5
|
Chen T, Zuo D, Yu J, Hou Y, Wang H, Gu L, Zhu B, Wang H, Du X. Full-Length Transcriptome Sequencing Analysis and Characterization of WRKY Transcription Factors Responsive to Cadmium Stress in Arabis paniculata. PLANTS (BASEL, SWITZERLAND) 2023; 12:3779. [PMID: 37960135 PMCID: PMC10649556 DOI: 10.3390/plants12213779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/03/2023] [Accepted: 11/04/2023] [Indexed: 11/15/2023]
Abstract
Arabis paniculata is a newly discovered hyperaccumulator known for its ability to accumulate multiple metals. WRKY proteins play a significant role in plant responses to various stresses, including cadmium (Cd) stress. However, there is limited research on the molecular biology of Arabis paniculata, especially regarding the WRKY family. In this study, we conducted third-generation sequencing for functional annotation and structural analysis of Arabis paniculata. We obtained 41,196 high-quality isoforms from the full-length transcriptome, with an average length of 1043 bp. A total of 26,670 genes were predicted against NR, Swissprot, KOG, and KEGG databases. Functional comparison using the KOG database revealed excellent annotation in 25 functional categories, with general function prediction (1822 items) being the most predominant. MISA analysis identified 12,593 SSR loci, with single nucleotide repeats being the largest category (44.83% of the total). Moreover, our predictions provide insights into 20,022 coding sequences (CDS), 811 transcription factors, and 17,963 LncRNAs. In total, 34 WRKY gene sequences were identified in Arabis paniculata. Bioinformatics analysis revealed diverse numbers of amino acids in these WRKYs (113 to 545 aa), and a conserved WRKYGQK sequence within the N-terminus of the WRKY protein. Furthermore, all WRKYs were found to be localized in the nucleus. Phylogenetic analysis classified the WRKY genes into three categories: I (14 members), II (17 members), and III (3 members). Category II was subsequently divided into four sub-categories: II-a (8 members), II-b (1 member), II-c (1 member), and II-d (7 members). Our quantitative real-time polymerase chain reaction (qRT-PCR) experiments revealed that ApWRKY23 and ApWRKY34 exhibited the highest expression levels at the 24-h time point, suggesting their potential role as the candidate genes for Cd stress response. These findings contribute to our understanding of the genomic information of Arabis paniculata and provide a basis for the analysis of its genetic diversity. Additionally, this study paves the way for a comprehensive exploration of the molecular mechanisms underlying the WRKY genes in Arabis paniculata under Cd stress conditions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Huinan Wang
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (T.C.); (D.Z.); (J.Y.); (Y.H.); (H.W.); (L.G.); (B.Z.)
| | - Xuye Du
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (T.C.); (D.Z.); (J.Y.); (Y.H.); (H.W.); (L.G.); (B.Z.)
| |
Collapse
|
6
|
Ferrari G, Esselens L, Hart ML, Janssens S, Kidner C, Mascarello M, Peñalba JV, Pezzini F, von Rintelen T, Sonet G, Vangestel C, Virgilio M, Hollingsworth PM. Developing the Protocol Infrastructure for DNA Sequencing Natural History Collections. Biodivers Data J 2023; 11:e102317. [PMID: 38327316 PMCID: PMC10848826 DOI: 10.3897/bdj.11.e102317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 08/04/2023] [Indexed: 02/09/2024] Open
Abstract
Intentionally preserved biological material in natural history collections represents a vast repository of biodiversity. Advances in laboratory and sequencing technologies have made these specimens increasingly accessible for genomic analyses, offering a window into the genetic past of species and often permitting access to information that can no longer be sampled in the wild. Due to their age, preparation and storage conditions, DNA retrieved from museum and herbarium specimens is often poor in yield, heavily fragmented and biochemically modified. This not only poses methodological challenges in recovering nucleotide sequences, but also makes such investigations susceptible to environmental and laboratory contamination. In this paper, we review the practical challenges associated with making the recovery of DNA sequence data from museum collections more routine. We first review key operational principles and issues to address, to guide the decision-making process and dialogue between researchers and curators about when and how to sample museum specimens for genomic analyses. We then outline the range of steps that can be taken to reduce the likelihood of contamination including laboratory set-ups, workflows and working practices. We finish by presenting a series of case studies, each focusing on protocol practicalities for the application of different mainstream methodologies to museum specimens including: (i) shotgun sequencing of insect mitogenomes, (ii) whole genome sequencing of insects, (iii) genome skimming to recover plant plastid genomes from herbarium specimens, (iv) target capture of multi-locus nuclear sequences from herbarium specimens, (v) RAD-sequencing of bird specimens and (vi) shotgun sequencing of ancient bovid bone samples.
Collapse
Affiliation(s)
- Giada Ferrari
- Royal Botanic Garden Edinburgh, Edinburgh, United KingdomRoyal Botanic Garden EdinburghEdinburghUnited Kingdom
| | - Lore Esselens
- Royal Museum for Central Africa, Tervuren, BelgiumRoyal Museum for Central AfricaTervurenBelgium
- Royal Belgian Institute of Natural Sciences, Brussels, BelgiumRoyal Belgian Institute of Natural SciencesBrusselsBelgium
| | - Michelle L Hart
- Royal Botanic Garden Edinburgh, Edinburgh, United KingdomRoyal Botanic Garden EdinburghEdinburghUnited Kingdom
| | - Steven Janssens
- Meise Botanic Garden, Meise, BelgiumMeise Botanic GardenMeiseBelgium
- Leuven Plant Institute, Department of Biology, Leuven, BelgiumLeuven Plant Institute, Department of BiologyLeuvenBelgium
| | - Catherine Kidner
- Royal Botanic Garden Edinburgh, Edinburgh, United KingdomRoyal Botanic Garden EdinburghEdinburghUnited Kingdom
| | | | - Joshua V Peñalba
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, GermanyMuseum für Naturkunde, Leibniz Institute for Evolution and Biodiversity ScienceBerlinGermany
| | - Flávia Pezzini
- Royal Botanic Garden Edinburgh, Edinburgh, United KingdomRoyal Botanic Garden EdinburghEdinburghUnited Kingdom
| | - Thomas von Rintelen
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, GermanyMuseum für Naturkunde, Leibniz Institute for Evolution and Biodiversity ScienceBerlinGermany
| | - Gontran Sonet
- Royal Belgian Institute of Natural Sciences, Brussels, BelgiumRoyal Belgian Institute of Natural SciencesBrusselsBelgium
| | - Carl Vangestel
- Royal Belgian Institute of Natural Sciences, Brussels, BelgiumRoyal Belgian Institute of Natural SciencesBrusselsBelgium
| | - Massimiliano Virgilio
- Royal Museum for Central Africa, Department of African Zoology, Tervuren, BelgiumRoyal Museum for Central Africa, Department of African ZoologyTervurenBelgium
| | - Peter M Hollingsworth
- Royal Botanic Garden Edinburgh, Edinburgh, United KingdomRoyal Botanic Garden EdinburghEdinburghUnited Kingdom
| |
Collapse
|
7
|
Arbøll TP, Rasmussen SL, de Jonge N, Hansen AH, Pertoldi C, Nielsen JL. Revealing the secrets of a 2900-year-old clay brick, discovering a time capsule of ancient DNA. Sci Rep 2023; 13:13092. [PMID: 37608001 PMCID: PMC10444888 DOI: 10.1038/s41598-023-38191-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 07/04/2023] [Indexed: 08/24/2023] Open
Abstract
The recent development of techniques to sequence ancient DNA has provided valuable insights into the civilisations that came before us. However, the full potential of these methods has yet to be realised. We extracted ancient DNA from a recently exposed fracture surface of a clay brick deriving from the palace of king Ashurnasirpal II (883-859 BCE) in Nimrud, Iraq. We detected 34 unique taxonomic groups of plants. With this research we have made the pioneering discovery that ancient DNA, effectively protected from contamination inside a mass of clay, can successfully be extracted from a 2900-year-old clay brick. We encourage future research into this subject, as the scientific prospects for this approach are substantial, potentially leading to a deeper understanding of ancient and lost civilisations.
Collapse
Affiliation(s)
- Troels Pank Arbøll
- Department of Cross-Cultural and Regional Studies, University of Copenhagen, Copenhagen, Denmark.
- Faculty of Asian and Middle Eastern Studies, University of Oxford, Oxford, UK.
- Linacre College, Oxford, UK.
| | - Sophie Lund Rasmussen
- Linacre College, Oxford, UK
- Wildlife Conservation Research Unit, The Recanati-Kaplan Centre, Department of Biology, University of Oxford, Abingdon, UK
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Nadieh de Jonge
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Anne Haslund Hansen
- Modern History and World Cultures, National Museum of Denmark, Copenhagen, Denmark
| | - Cino Pertoldi
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
- Aalborg Zoo, Aalborg, Denmark
| | - Jeppe Lund Nielsen
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| |
Collapse
|
8
|
Chang Y, Zhang R, Ma Y, Sun W. A haplotype-resolved genome assembly of Rhododendron vialii based on PacBio HiFi reads and Hi-C data. Sci Data 2023; 10:451. [PMID: 37438373 DOI: 10.1038/s41597-023-02362-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/03/2023] [Indexed: 07/14/2023] Open
Abstract
Rhododendron vialii (subgen. Azaleastrum) is an evergreen shrub with high ornamental value. This species has been listed as a plant species with extremely small populations (PSESP) for urgent protection by China's Yunnan provincial government in 2021, due to anthropogenic habitat fragmentation. However, limited genomic resources hinder scientifically understanding of genetic threats that the species is currently facing. In this study, we assembled a high-quality haplotype-resolved genome of R. vialii based on PacBio HiFi long reads and Hi-C reads. The assembly contains two haploid genomes with sizes 532.73 Mb and 521.98 Mb, with contig N50 length of 35.67 Mb and 34.70 Mb, respectively. About 99.92% of the assembled sequences could be anchored to 26 pseudochromosomes, and 14 gapless assembled chromosomes were included in this assembly. Additionally, 60,926 protein-coding genes were identified, of which 93.82% were functionally annotated. This is the first reported genome of R. vialii, and hopefully it will lay the foundations for further research into the conservation genomics and horticultural domestication of this ornamentally important species.
Collapse
Affiliation(s)
- Yuhang Chang
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Chinese Academy of Sciences, Kunming Institute of Botany, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Rengang Zhang
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Chinese Academy of Sciences, Kunming Institute of Botany, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Yongpeng Ma
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Chinese Academy of Sciences, Kunming Institute of Botany, Kunming, 650201, China.
| | - Weibang Sun
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Chinese Academy of Sciences, Kunming Institute of Botany, Kunming, 650201, China.
- Kunming Botanical Garden, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| |
Collapse
|
9
|
Hu L, Tate JA, Gardiner SE, MacKay M. Ploidy variation in Rhododendron subsection Maddenia and its implications for conservation. AOB PLANTS 2023; 15:plad016. [PMID: 37197711 PMCID: PMC10184449 DOI: 10.1093/aobpla/plad016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 04/06/2023] [Indexed: 05/19/2023]
Abstract
Polyploidy, which is common in plants, can confound taxon recognition and hence conservation assessments. In the taxonomically complex genus Rhododendron, 25 % of the over 1,300 taxa are considered under threat and 27 % Near Threatened or Data Deficient, with their taxonomy needing to be resolved urgently. Although ploidy levels of Rhododendron taxa range from diploid (2x) to dodecaploid (12x) according to previous reports, the extent of polyploidy across the genus has not been examined. We first summarized the taxonomic distribution of polyploids in the genus based on the literature. Then as a case study, we estimated ploidy levels of 47 taxa in subsection Maddenia (subgenus Rhododendron, section Rhododendron) using flow cytometry, together with verification of meiotic chromosome counts for representative taxa. The summary of reported ploidy in Rhododendron indicates that polyploidy is most common in subgenera Pentanthera and Rhododendron. In subsection Maddenia, all examined taxa are diploids except for the R. maddenii complex that shows a high ploidy variation (2-8x, 12x). We investigated ploidy level of 12 taxa in subsection Maddenia for the first time, and estimated genome sizes of two Rhododendron species. Knowledge of ploidy levels will inform phylogenetic analysis of unresolved species complexes. Overall, our study of subsection Maddenia provides a model for examining multiple issues including taxonomic complexity, ploidy variation and geographic distribution in relation to biodiversity conservation.
Collapse
Affiliation(s)
- Ling Hu
- Corresponding author’s e-mail address:
| | - Jennifer A Tate
- School of Natural Sciences, Massey University, Palmerston North 4442, New Zealand
| | - Susan E Gardiner
- The New Zealand Institute for Plant and Food Research Limited, Fitzherbert Science Centre, Palmerston North 4472, New Zealand
| | - Marion MacKay
- School of Agriculture and Environment, Massey University, Palmerston North 4442, New Zealand
| |
Collapse
|
10
|
Wu X, Zhang L, Wang X, Zhang R, Jin G, Hu Y, Yang H, Wu Z, Ma Y, Zhang C, Wang J. Evolutionary history of two evergreen Rhododendron species as revealed by chromosome-level genome assembly. FRONTIERS IN PLANT SCIENCE 2023; 14:1123707. [PMID: 37025132 PMCID: PMC10070854 DOI: 10.3389/fpls.2023.1123707] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/20/2023] [Indexed: 06/19/2023]
Abstract
Background The genus Rhododendron (Ericaceae), a species-rich and widely distributed genus of woody plants, is distinguished for the beautiful and diverse flowers. Rhododendron delavayi Franch. and Rhododendron irroratum Franch., are highly attractive species widely distributed in south-west China and abundant new varieties have been selected from their genetic resources. Methods We constructed chromosome-scale genome assemblies for Rhododendron delavayi and Rhododendron irroratum. Phylogenetic and whole-genome duplication analyses were performed to elucidate the evolutionary history of Rhododendron. Further, different types of gene duplications were identified and their contributions to gene family expansion were investigated. Finally, comprehensive characterization and evolutionary analysis of R2R3-MYB and NBS-encoding genes were conducted to explore their evolutionary patterns. Results The phylogenetic analysis classified Rhododendron species into two sister clades, 'rhododendrons' and 'azaleas'. Whole-genome duplication (WGD) analysis unveiled only one WGD event that occurred in Rhododendron after the ancestral γ triplication. Gene duplication and gene family expansion analyses suggested that the younger tandem and proximal duplications contributed greatly to the expansion of gene families involved in secondary metabolite biosynthesis and stress response. The candidate R2R3-MYB genes likely regulating anthocyanin biosynthesis and stress tolerance in Rhododendron will facilitate the breeding for ornamental use. NBS-encoding genes had undergone significant expansion and experienced species-specific gain and loss events in Rhododendron plants. Conclusions The reference genomes presented here will provide important genetic resources for molecular breeding and genetic improvement of plants in this economically important Rhododendron genus.
Collapse
Affiliation(s)
- Xiaopei Wu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lu Zhang
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Kunming, China
| | - Xiuyun Wang
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Rengang Zhang
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming, China
| | - Guihua Jin
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Yanting Hu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Hong Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Zhenzhen Wu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yongpeng Ma
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming, China
| | - Chengjun Zhang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Zhejiang Institute of Advanced Technology, Haiyan Engineering & Technology Center, Jiaxing, China
| | - Jihua Wang
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Kunming, China
| |
Collapse
|
11
|
Nie S, Zhao SW, Shi TL, Zhao W, Zhang RG, Tian XC, Guo JF, Yan XM, Bao YT, Li ZC, Kong L, Ma HY, Chen ZY, Liu H, El-Kassaby YA, Porth I, Yang FS, Mao JF. Gapless genome assembly of azalea and multi-omics investigation into divergence between two species with distinct flower color. HORTICULTURE RESEARCH 2023; 10:uhac241. [PMID: 36643737 PMCID: PMC9832866 DOI: 10.1093/hr/uhac241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/17/2022] [Indexed: 05/09/2023]
Abstract
The genus Rhododendron (Ericaceae), with more than 1000 species highly diverse in flower color, is providing distinct ornamental values and a model system for flower color studies. Here, we investigated the divergence between two parental species with different flower color widely used for azalea breeding. Gapless genome assembly was generated for the yellow-flowered azalea, Rhododendron molle. Comparative genomics found recent proliferation of long terminal repeat retrotransposons (LTR-RTs), especially Gypsy, has resulted in a 125 Mb (19%) genome size increase in species-specific regions, and a significant amount of dispersed gene duplicates (13 402) and pseudogenes (17 437). Metabolomic assessment revealed that yellow flower coloration is attributed to the dynamic changes of carotenoids/flavonols biosynthesis and chlorophyll degradation. Time-ordered gene co-expression networks (TO-GCNs) and the comparison confirmed the metabolome and uncovered the specific gene regulatory changes underpinning the distinct flower pigmentation. B3 and ERF TFs were found dominating the gene regulation of carotenoids/flavonols characterized pigmentation in R. molle, while WRKY, ERF, WD40, C2H2, and NAC TFs collectively regulated the anthocyanins characterized pigmentation in the red-flowered R simsii. This study employed a multi-omics strategy in disentangling the complex divergence between two important azaleas and provided references for further functional genetics and molecular breeding.
Collapse
Affiliation(s)
- Shuai Nie
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Shi-Wei Zhao
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Tian-Le Shi
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Wei Zhao
- Department of Ecology and Environmental Science, Umeå Plant Science Centre, Umeå University, SE-901 87 Umeå, Sweden
| | - Ren-Gang Zhang
- Department of Bioinformatics, Ori (Shandong) Gene Science and Technology Co., Ltd., Weifang 261322, China
| | - Xue-Chan Tian
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Jing-Fang Guo
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xue-Mei Yan
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yu-Tao Bao
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Zhi-Chao Li
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Lei Kong
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Hai-Yao Ma
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Zhao-Yang Chen
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Hui Liu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yousry A El-Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Ilga Porth
- Départment des Sciences du Bois et de la Forêt, Faculté de Foresterie, de Géographie et Géomatique, Université Laval, Québec, QC, G1V 0A6, Canada
| | | | | |
Collapse
|
12
|
Jin C, Dong L, Wei C, Wani MA, Yang C, Li S, Li F. Creating novel ornamentals via new strategies in the era of genome editing. FRONTIERS IN PLANT SCIENCE 2023; 14:1142866. [PMID: 37123857 PMCID: PMC10140431 DOI: 10.3389/fpls.2023.1142866] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/27/2023] [Indexed: 05/03/2023]
Abstract
Ornamental breeding has traditionally focused on improving novelty, yield, quality, and resistance to biotic or abiotic stress. However, achieving these goals has often required laborious crossbreeding, while precise breeding techniques have been underutilized. Fortunately, recent advancements in plant genome sequencing and editing technology have opened up exciting new frontiers for revolutionizing ornamental breeding. In this review, we provide an overview of the current state of ornamental transgenic breeding and propose four promising breeding strategies that have already proven successful in crop breeding and could be adapted for ornamental breeding with the help of genome editing. These strategies include recombination manipulation, haploid inducer creation, clonal seed production, and reverse breeding. We also discuss in detail the research progress, application status, and feasibility of each of these tactics.
Collapse
Affiliation(s)
- Chunlian Jin
- Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Key Laboratory for Flower Breeding of Yunnan Province, Kunming, China
| | - Liqing Dong
- Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Key Laboratory for Flower Breeding of Yunnan Province, Kunming, China
- School of Agriculture, Yunnan University, Kunming, China
| | - Chang Wei
- Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Key Laboratory for Flower Breeding of Yunnan Province, Kunming, China
- School of Agriculture, Yunnan University, Kunming, China
| | - Muneeb Ahmad Wani
- Department of Floriculture and Landscape Architecture, Faculty of Horticulture, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Chunmei Yang
- Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Key Laboratory for Flower Breeding of Yunnan Province, Kunming, China
| | - Shenchong Li
- Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Key Laboratory for Flower Breeding of Yunnan Province, Kunming, China
- *Correspondence: Fan Li, ; Shenchong Li,
| | - Fan Li
- Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Key Laboratory for Flower Breeding of Yunnan Province, Kunming, China
- *Correspondence: Fan Li, ; Shenchong Li,
| |
Collapse
|
13
|
Zhou GL, Li Y, Pei F, Gong T, Chen TJ, Chen JJ, Yang JL, Li QH, Yu SS, Zhu P. Chromosome-scale genome assembly of Rhododendron molle provides insights into its evolution and terpenoid biosynthesis. BMC PLANT BIOLOGY 2022; 22:342. [PMID: 35836128 PMCID: PMC9284817 DOI: 10.1186/s12870-022-03720-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/28/2022] [Indexed: 05/24/2023]
Abstract
BACKGROUND Rhododendron molle (Ericaceae) is a traditional Chinese medicine, which has been used to treat rheumatism and relieve pain since ancient times. The characteristic grayanoids of this plant have been demonstrated to be the chemical basis for the analgesic activity. Moreover, unlike morphine, these diterpenoids are non-addictive. Grayanoids mainly distribute in the leaves, flowers, roots, and fruits of R. molle, with low content. Currently the research on the biosynthesis of grayanoids is hindered, partially due to lack of the genomic information. RESULTS In the present study, a total of 744 Mb sequences were generated and assembled into 13 chromosomes. An ancient whole-genome duplication event (Ad-β) was discovered that occurred around 70 million years ago. Tandem and segmental gene duplications led to specific gene expansions in the terpene synthase and cytochrome P450 (CYP450) gene families. Two diterpene synthases were demonstrated to be responsible for the biosynthesis of 16α-hydroxy-ent-kaurane, the key precursor for grayanoids. Phylogenetic analysis revealed a species-specific bloom of the CYP71AU subfamily, which may involve the candidate CYP450s responsible for the biosynthesis of grayanoids. Additionally, three putative terpene biosynthetic gene clusters were found. CONCLUSIONS We reported the first genome assembly of R. molle and investigated the molecular basis underpinning terpenoids biosynthesis. Our work provides a foundation for elucidating the complete biosynthetic pathway of grayanoids and studying the terpenoids diversity in R. molle.
Collapse
Affiliation(s)
- Guo-Lin Zhou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biosynthesis of Natural Products, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, China
| | - Yong Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biosynthesis of Natural Products, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, China
| | - Fei Pei
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biosynthesis of Natural Products, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, China
| | - Ting Gong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biosynthesis of Natural Products, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, China
| | - Tian-Jiao Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biosynthesis of Natural Products, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, China
| | - Jing-Jing Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biosynthesis of Natural Products, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, China
| | - Jin-Ling Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biosynthesis of Natural Products, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, China
| | - Qi-Han Li
- Institute of medical biology, Chinese Academy of Medical Sciences & Peking Union Medical College, 935 Jiaoling Street, Kunming, 650118, Yunnan Province, China.
| | - Shi-Shan Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biosynthesis of Natural Products, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, China.
| | - Ping Zhu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biosynthesis of Natural Products, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, China.
| |
Collapse
|
14
|
Qiao X, Zhang S, Paterson AH. Pervasive genome duplications across the plant tree of life and their links to major evolutionary innovations and transitions. Comput Struct Biotechnol J 2022; 20:3248-3256. [PMID: 35782740 PMCID: PMC9237934 DOI: 10.1016/j.csbj.2022.06.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/12/2022] [Accepted: 06/12/2022] [Indexed: 01/09/2023] Open
Abstract
Whole-genome duplication (WGD) has occurred repeatedly during plant evolution and diversification, providing genetic layers for evolving new functions and phenotypes. Advances in long-read sequencing technologies have enabled sequencing and assembly of over 1000 plant genomes spanning nearly 800 species, in which a large set of ancient WGDs has been uncovered. Here, we review the recently reported WGDs that occurred in major plant lineages and key evolutionary positions, and highlight their contributions to morphological innovation and adaptive evolution. Current gaps and challenges in integrating enormous volumes of sequenced plant genomes, accurately inferring WGDs, and developing web-based analysis tools are emphasized. Looking to the future, ambitious genome sequencing projects and global efforts may substantially recapitulate the plant tree of life based on broader sampling of phylogenetic diversity, reveal much of the timetable of ancient WGDs, and address the biological significance of WGDs in plant adaptation and radiation.
Collapse
Affiliation(s)
- Xin Qiao
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Shaoling Zhang
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Andrew H. Paterson
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA 30605, USA
| |
Collapse
|
15
|
Huang Y, Escalona M, Morrison G, Marimuthu MPA, Nguyen O, Toffelmier E, Shaffer HB, Litt A. Reference Genome Assembly of the Big Berry Manzanita (Arctostaphylos glauca). J Hered 2022; 113:188-196. [PMID: 35575079 PMCID: PMC9113465 DOI: 10.1093/jhered/esab071] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/18/2021] [Indexed: 01/30/2023] Open
Abstract
Arctostaphylos (Ericaceae) species, commonly known as manzanitas, are an invaluable fire-adapted chaparral clade in the California Floristic Province (CFP), a world biodiversity hotspot on the west coast of North America. This diverse woody genus includes many rare and/or endangered taxa, and the genus plays essential ecological roles in native ecosystems. Despite their importance in conservation management, and the many ecological and evolutionary studies that have focused on manzanitas, virtually no research has been conducted on the genomics of any manzanita species. Here, we report the first genome assembly of a manzanita species, the widespread Arctostaphylos glauca. Consistent with the genomics strategy of the California Conservation Genomics project, we used Pacific Biosciences HiFi long reads and Hi-C chromatin-proximity sequencing technology to produce a de novo assembled genome. The assembly comprises a total of 271 scaffolds spanning 547Mb, close to the genome size estimated by flow cytometry. This assembly, with a scaffold N50 of 31Mb and BUSCO complete score of 98.2%, will be used as a reference genome for understanding the genetic diversity and the basis of adaptations of both common and rare and endangered manzanita species.
Collapse
Affiliation(s)
- Yi Huang
- Department of Botany and Plant Science, University of California, Riverside, Riverside, CA 92521, USA
| | - Merly Escalona
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Glen Morrison
- Department of Botany and Plant Science, University of California, Riverside, Riverside, CA 92521, USA
| | - Mohan P A Marimuthu
- UC Davis Genome Center, DNA Technologies and Expression Analysis Cores, University of California, Davis, CA 95691, USA
| | - Oanh Nguyen
- UC Davis Genome Center, DNA Technologies and Expression Analysis Cores, University of California, Davis, CA 95691, USA
| | - Erin Toffelmier
- Department of Ecology & Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA 90095-7239, USA
- the La Kretz Center for California Conservation Science, Institute of the Environment and Sustainability, University of California, Los Angeles, Los Angeles, CA 90095-7239, USA
| | - H Bradley Shaffer
- Department of Ecology & Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA 90095-7239, USA
- the La Kretz Center for California Conservation Science, Institute of the Environment and Sustainability, University of California, Los Angeles, Los Angeles, CA 90095-7239, USA
| | - Amy Litt
- Department of Botany and Plant Science, University of California, Riverside, Riverside, CA 92521, USA
| |
Collapse
|
16
|
Soza VL, Kriebel R, Ramage E, Hall BD, Twyford AD. The symmetry spectrum in a hybridising, tropical group of rhododendrons. THE NEW PHYTOLOGIST 2022; 234:1491-1506. [PMID: 35274743 PMCID: PMC9313591 DOI: 10.1111/nph.18083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/23/2022] [Indexed: 06/14/2023]
Abstract
Many diverse plant clades possess bilaterally symmetrical flowers and specialised pollination syndromes, suggesting that these traits may promote diversification. We examined the evolution of diverse floral morphologies in a species-rich tropical radiation of Rhododendron. We used restriction-site associated DNA sequencing on 114 taxa from Rhododendron sect. Schistanthe to reconstruct phylogenetic relationships and examine hybridisation. We then captured and quantified floral variation using geometric morphometric analyses, which we interpreted in a phylogenetic context. We uncovered phylogenetic conflict and uncertainty caused by introgression within and between clades. Morphometric analyses revealed flower symmetry to be a morphological continuum without clear transitions between radial and bilateral symmetry. Tropical Rhododendron species that began diversifying into New Guinea c. 6 million years ago expanded into novel floral morphological space. Our results showed that the evolution of tropical Rhododendron is characterised by recent speciation, recurrent hybridisation and the origin of floral novelty. Floral variation evolved via changes to multiple components of the corolla that are only recognised in geometric morphometrics with both front and side views of flowers.
Collapse
Affiliation(s)
- Valerie L. Soza
- Department of BiologyUniversity of WashingtonSeattleWA98115USA
| | - Ricardo Kriebel
- Department of BotanyUniversity of Wisconsin‐MadisonMadisonWI53706USA
| | | | | | - Alex D. Twyford
- Institute of Evolutionary BiologySchool of Biological SciencesUniversity of EdinburghCharlotte Auerbach RoadEdinburghEH9 3FLUK
- Royal Botanic Garden Edinburgh20A Inverleith RowEdinburghEH3 5LRUK
| |
Collapse
|
17
|
Kawash J, Colt K, Hartwick NT, Abramson BW, Vorsa N, Polashock JJ, Michael TP. Contrasting a reference cranberry genome to a crop wild relative provides insights into adaptation, domestication, and breeding. PLoS One 2022; 17:e0264966. [PMID: 35255111 PMCID: PMC8901128 DOI: 10.1371/journal.pone.0264966] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 02/19/2022] [Indexed: 11/24/2022] Open
Abstract
Cranberry (Vaccinium macrocarpon) is a member of the Heath family (Ericaceae) and is a temperate low-growing woody perennial native to North America that is both economically important and has significant health benefits. While some native varieties are still grown today, breeding programs over the past 50 years have made significant contributions to improving disease resistance, fruit quality and yield. An initial genome sequence of an inbred line of the wild selection ‘Ben Lear,’ which is parent to multiple breeding programs, provided insight into the gene repertoire as well as a platform for molecular breeding. Recent breeding efforts have focused on leveraging the circumboreal V. oxycoccos, which forms interspecific hybrids with V. macrocarpon, offering to bring in novel fruit chemistry and other desirable traits. Here we present an updated, chromosome-resolved V. macrocarpon reference genome, and compare it to a high-quality draft genome of V. oxycoccos. Leveraging the chromosome resolved cranberry reference genome, we confirmed that the Ericaceae has undergone two whole genome duplications that are shared with blueberry and rhododendron. Leveraging resequencing data for ‘Ben Lear’ inbred lines, as well as several wild and elite selections, we identified common regions that are targets of improvement. These same syntenic regions in V. oxycoccos, were identified and represent environmental response and plant architecture genes. These data provide insight into early genomic selection in the domestication of a native North American berry crop.
Collapse
Affiliation(s)
- Joseph Kawash
- USDA, Agricultural Research Service, Genetic Improvement of Fruits and Vegetables Lab, Chatsworth, New Jersey, United States of America
| | - Kelly Colt
- Plant Molecular and Cellular Biology, Salk Institute of Biological Sciences, La Jolla, California, United States of America
| | - Nolan T. Hartwick
- Plant Molecular and Cellular Biology, Salk Institute of Biological Sciences, La Jolla, California, United States of America
| | - Bradley W. Abramson
- Plant Molecular and Cellular Biology, Salk Institute of Biological Sciences, La Jolla, California, United States of America
| | - Nicholi Vorsa
- P.E. Marucci Center for Blueberry and Cranberry Research, Chatsworth, New Jersey, United States of America
- Department of Plant Biology and Pathology, Rutgers University, New Brunswick, New Jersey, United States of America
| | - James J. Polashock
- USDA, Agricultural Research Service, Genetic Improvement of Fruits and Vegetables Lab, Chatsworth, New Jersey, United States of America
- * E-mail: (JJP); (TPM)
| | - Todd P. Michael
- Plant Molecular and Cellular Biology, Salk Institute of Biological Sciences, La Jolla, California, United States of America
- * E-mail: (JJP); (TPM)
| |
Collapse
|
18
|
Yang Z, Liu Z, Xu H, Chen Y, Du P, Li P, Lai W, Hu H, Luo J, Ding Y. The Chromosome-Level Genome of Miracle Fruit ( Synsepalum dulcificum) Provides New Insights Into the Evolution and Function of Miraculin. FRONTIERS IN PLANT SCIENCE 2022; 12:804662. [PMID: 35046985 PMCID: PMC8763355 DOI: 10.3389/fpls.2021.804662] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/29/2021] [Indexed: 05/25/2023]
Abstract
Miracle fruit (Synsepalum dulcificum) is a rare valuable tropical plant famous for a miraculous sweetening glycoprotein, miraculin, which can modify sour flavors to sweet flavors tasted by humans. Here, we present a chromosome-level high-quality genome of S. dulcificum with an assembly genome size of ∼550 Mb, contig N50 of ∼14.14 Mb, and 37,911 annotated protein-coding genes. Phylogenetic analysis revealed that S. dulcificum was most closely related to Camellia sinensis and Diospyros oleifera, and that S. dulcificum diverged from the Diospyros genus ∼75.8 million years ago (MYA), and that C. sinensis diverged from Synsepalum ∼63.5 MYA. Ks assessment and collinearity analysis with S. dulcificum and other species suggested that a whole-genome duplication (WGD) event occurred in S. dulcificum and that there was good collinearity between S. dulcificum and Vitis vinifera. On the other hand, transcriptome and metabolism analysis with six tissues containing three developmental stages of fleshes and seeds of miracle fruit revealed that Gene Ontology (GO) terms and metabolic pathways of "cellular response to chitin," "plant-pathogen interaction," and "plant hormone signal transduction" were significantly enriched during fruit development. Interestingly, the expression of miraculin (Chr10G0299340) progressively increased from vegetative organs to reproductive organs and reached an incredible level in mature fruit flesh, with an fragments per kilobase of transcript per million (FPKM) value of ∼113,515, which was the most highly expressed gene among all detected genes. Combining the unique signal peptide and the presence of the histidine-30 residue together composed the main potential factors impacting miraculin's unique properties in S. dulcificum. Furthermore, integrated analysis of weighted gene coexpression network analysis (WGCNA), enrichment and metabolite correlation suggested that miraculin plays potential roles in regulating plant growth, seed germination and maturation, resisting pathogen infection, and environmental pressure. In summary, valuable genomic, transcriptomic, and metabolic resources provided in this study will promote the utilization of S. dulcificum and in-depth research on species in the Sapotaceae family.
Collapse
Affiliation(s)
- Zhuang Yang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, China
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Zhenhuan Liu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, China
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Hang Xu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, China
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Yayu Chen
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, China
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Pengmeng Du
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, China
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Ping Li
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, China
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Wenjie Lai
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, China
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Haiyan Hu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, China
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Jie Luo
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, China
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Yuanhao Ding
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, China
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
| |
Collapse
|
19
|
Wang X, Gao Y, Wu X, Wen X, Li D, Zhou H, Li Z, Liu B, Wei J, Chen F, Chen F, Zhang C, Zhang L, Xia Y. High-quality evergreen azalea genome reveals tandem duplication-facilitated low-altitude adaptability and floral scent evolution. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:2544-2560. [PMID: 34375461 PMCID: PMC8633516 DOI: 10.1111/pbi.13680] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 07/27/2021] [Indexed: 05/17/2023]
Abstract
Azalea belongs to Rhododendron, which is one of the largest genera of flowering plants and is well known for the diversity and beauty in its more than 1000 woody species. Rhododendron contains two distinct groups: the most high-altitude and a few low-altitude species; however, the former group is difficult to be domesticated for urban landscaping, and their evolution and adaptation are little known. Rhododendron ovatum has broad adaptation in low-altitude regions but possesses evergreen characteristics like high-altitude species, and it has floral fragrance that is deficient in most cultivars. Here we report the chromosome-level genome assembly of R. ovatum, which has a total length of 549 Mb with scaffold N50 of 41 Mb and contains 41 264 predicted genes. Genomic micro-evolutionary analysis of R. ovatum in comparison with two high-altitude Rhododendron species indicated that the expansion genes in R. ovatum were significantly enriched in defence responses, which may account for its adaptability in low altitudes. The R. ovatum genome contains much more terpene synthase genes (TPSs) compared with the species that lost floral fragrance. The subfamily b members of TPS are involved in the synthesis of sesquiterpenes as well as monoterpenes and play a major role in flora scent biosynthesis and defence responses. Tandem duplication is the primary force driving expansion of defence-responsive genes for extensive adaptability to the low-altitude environments. The R. ovatum genome provides insights into low-altitude adaptation and gain or loss of floral fragrance for Rhododendron species, which are valuable for alpine plant domestication and floral scent breeding.
Collapse
Affiliation(s)
- Xiuyun Wang
- Genomics and Genetic Engineering Laboratory of Ornamental PlantsCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Yuan Gao
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems BiologyKey Laboratory of Ministry of Education for Genetics & Breeding and Multiple Utilization of CropsCollege of life scienceFujian Agriculture and Forestry UniversityFuzhouChina
| | - Xiaopei Wu
- The Southwest China of Germplasm Bank of Wild SpeciesKunming Institute of BotanyChinese Academy of SciencesKunmingChina
| | - Xiaohui Wen
- Genomics and Genetic Engineering Laboratory of Ornamental PlantsCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Danqing Li
- Genomics and Genetic Engineering Laboratory of Ornamental PlantsCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Hong Zhou
- Genomics and Genetic Engineering Laboratory of Ornamental PlantsCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Zheng Li
- Genomics and Genetic Engineering Laboratory of Ornamental PlantsCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Bing Liu
- Genomics and Genetic Engineering Laboratory of Ornamental PlantsCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Jianfen Wei
- Research & Development CenterHangzhou Landscaping IncorporatedHangzhouChina
| | - Fei Chen
- College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Feng Chen
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTNUSA
| | - Chengjun Zhang
- The Southwest China of Germplasm Bank of Wild SpeciesKunming Institute of BotanyChinese Academy of SciencesKunmingChina
| | - Liangsheng Zhang
- Genomics and Genetic Engineering Laboratory of Ornamental PlantsCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Yiping Xia
- Genomics and Genetic Engineering Laboratory of Ornamental PlantsCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| |
Collapse
|
20
|
Zheng W, Yan LJ, Burgess KS, Luo YH, Zou JY, Qin HT, Wang JH, Gao LM. Natural hybridization among three Rhododendron species (Ericaceae) revealed by morphological and genomic evidence. BMC PLANT BIOLOGY 2021; 21:529. [PMID: 34763662 PMCID: PMC8582147 DOI: 10.1186/s12870-021-03312-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 11/02/2021] [Indexed: 06/08/2023]
Abstract
BACKGROUND Natural hybridization can influence the adaptive response to selection and accelerate species diversification. Understanding the composition and structure of hybrid zones may elucidate patterns of hybridization processes that are important to the formation and maintenance of species, especially for taxa that have experienced rapidly adaptive radiation. Here, we used morphological traits, ddRAD-seq and plastid DNA sequence data to investigate the structure of a Rhododendron hybrid zone and uncover the hybridization patterns among three sympatric and closely related species. RESULTS Our results show that the hybrid zone is complex, where bi-directional hybridization takes place among the three sympatric parental species: R. spinuliferum, R. scabrifolium, and R. spiciferum. Hybrids between R. spinuliferum and R. spiciferum (R. ×duclouxii) comprise multiple hybrid classes and a high proportion of F1 generation hybrids, while a novel hybrid taxon between R. spinuliferum and R. scabrifolium dominated the F2 generation, but no backcross individuals were detected. The hybrid zone showed basically coincident patterns of population structure between genomic and morphological data. CONCLUSIONS Natural hybridization exists among the three Rhododendron species in the hybrid zone, although patterns of hybrid formation vary between hybrid taxa, which may result in different evolutionary outcomes. This study represents a unique opportunity to dissect the ecological and evolutionary mechanisms associated with adaptive radiation of Rhododendron species in a biodiversity hotspot.
Collapse
Affiliation(s)
- Wei Zheng
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, Yunnan, China
- University of Chinese Academy of Sciences, 10049, Beijing, China
| | - Li-Jun Yan
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, Yunnan, China
- University of Chinese Academy of Sciences, 10049, Beijing, China
- College of Vocational and Technical Education, Yunnan Normal University, 650092, Kunming, Yunnan, China
| | - Kevin S Burgess
- Department of Biology, Columbus State University, University System of Georgia, 31907-5645, Columbus, GA, USA
| | - Ya-Huang Luo
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, Yunnan, China
| | - Jia-Yun Zou
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, Yunnan, China
- University of Chinese Academy of Sciences, 10049, Beijing, China
| | - Han-Tao Qin
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, Yunnan, China
- University of Chinese Academy of Sciences, 10049, Beijing, China
| | - Ji-Hua Wang
- The Flower Research Institute, Yunnan Academy of Agricultural Sciences, 650205, Kunming, China.
| | - Lian-Ming Gao
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, Yunnan, China.
- Lijiang Forest Biodiversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, 674100, Lijiang, Yunnan, China.
| |
Collapse
|
21
|
Zhou XJ, Li JT, Wang HL, Han JW, Zhang K, Dong SW, Zhang YZ, Ya HY, Cheng YW, Sun SS. The chromosome-scale genome assembly, annotation and evolution of Rhododendron henanense subsp. lingbaoense. Mol Ecol Resour 2021; 22:988-1001. [PMID: 34652864 DOI: 10.1111/1755-0998.13529] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 10/10/2021] [Accepted: 10/11/2021] [Indexed: 01/21/2023]
Abstract
Rhododendron henanense subsp. lingbaoense (hereafter referred to as R. henanense) is an endemic species naturally distributed in the Henan province, China, with high horticultural, ornamental and medicinal value. Herein, we report a de novo genome assembly for R. henanense using a combination of PacBio long read and Illumina short read sequencing technologies. In total, we assembled 634.07 Mb with a contig N50 of 2.5 Mb, representing ~96.93% of the estimated genome size. By applying Hi-C data, 13 pseudochromosomes of R. henanense genome were assembled, covering ~98.21% of the genome assembly. The genome was composed of ~65.76% repetitive sequences and 31,098 protein-coding genes, 88.77% of which could be functionally annotated. Rhododendron henanense displayed a high level of synteny with other Rhododendron species from the Hymenanthes subgenus. Our data also suggests that R. henanense genes related to stress responses have undergone expansion, which may underly the unique abiotic and biotic stress resistance of the species. This alpine Rhododendron chromosome-scale genome assembly provides fundamental molecular resources for germplasm conservation, breeding efforts, evolutionary studies, and elucidating the unique biological characteristics of R. henanense.
Collapse
Affiliation(s)
- Xiao-Jun Zhou
- Life Science College, Luoyang Normal University, Luoyang, China
| | - Jian-Tao Li
- Wuhan Frasergen Bioinformatics Co., Ltd., Wuhan, China
| | - Hai-Liang Wang
- Henan Xiaoqinling National Nature Reserve Management Bureau, Sanmenxia, China
| | - Jun-Wang Han
- Henan Xiaoqinling National Nature Reserve Management Bureau, Sanmenxia, China
| | - Kai Zhang
- Henan Xiaoqinling National Nature Reserve Management Bureau, Sanmenxia, China
| | - Shuai-Wei Dong
- Henan Xiaoqinling National Nature Reserve Management Bureau, Sanmenxia, China
| | - Yan-Zhao Zhang
- Life Science College, Luoyang Normal University, Luoyang, China
| | - Hui-Yuan Ya
- Life Science College, Luoyang Normal University, Luoyang, China
| | - Yan-Wei Cheng
- Life Science College, Luoyang Normal University, Luoyang, China
| | - Shan-Shan Sun
- Life Science College, Luoyang Normal University, Luoyang, China
| |
Collapse
|
22
|
Ramage E, Soza VL, Yi J, Deal H, Chudgar V, Hall BD, Di Stilio VS. Gene Duplication and Differential Expression of Flower Symmetry Genes in Rhododendron (Ericaceae). PLANTS (BASEL, SWITZERLAND) 2021; 10:1994. [PMID: 34685803 PMCID: PMC8541606 DOI: 10.3390/plants10101994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/20/2021] [Accepted: 09/20/2021] [Indexed: 01/11/2023]
Abstract
Bilaterally symmetric flowers have evolved over a hundred times in angiosperms, yet orthologs of the transcription factors CYCLOIDEA (CYC), RADIALIS (RAD), and DIVARICATA (DIV) are repeatedly implicated in floral symmetry changes. We examined these candidate genes to elucidate the genetic underpinnings of floral symmetry changes in florally diverse Rhododendron, reconstructing gene trees and comparing gene expression across floral organs in representative species with radial and bilateral flower symmetries. Radially symmetric R. taxifolium Merr. and bilaterally symmetric R. beyerinckianum Koord. had four and five CYC orthologs, respectively, from shared tandem duplications. CYC orthologs were expressed in the longer dorsal petals and stamens and highly expressed in R. beyerinckianum pistils, whereas they were either ubiquitously expressed, lost from the genome, or weakly expressed in R. taxifolium. Both species had two RAD and DIV orthologs uniformly expressed across all floral organs. Differences in gene structure and expression of Rhododendron RAD compared to other asterids suggest that these genes may not be regulated by CYC orthologs. Our evidence supports CYC orthologs as the primary regulators of differential organ growth in Rhododendron flowers, while also suggesting certain deviations from the typical asterid gene regulatory network for flower symmetry.
Collapse
Affiliation(s)
- Elizabeth Ramage
- Department of Biology, University of Washington, Seattle, WA 98195, USA; (E.R.); (H.D.); (V.C.); (B.D.H.); (V.S.D.S.)
| | - Valerie L. Soza
- Department of Biology, University of Washington, Seattle, WA 98195, USA; (E.R.); (H.D.); (V.C.); (B.D.H.); (V.S.D.S.)
| | - Jing Yi
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, School of Life Science, South China Normal University, Guangzhou 510631, China;
| | - Haley Deal
- Department of Biology, University of Washington, Seattle, WA 98195, USA; (E.R.); (H.D.); (V.C.); (B.D.H.); (V.S.D.S.)
| | - Vaidehi Chudgar
- Department of Biology, University of Washington, Seattle, WA 98195, USA; (E.R.); (H.D.); (V.C.); (B.D.H.); (V.S.D.S.)
| | - Benjamin D. Hall
- Department of Biology, University of Washington, Seattle, WA 98195, USA; (E.R.); (H.D.); (V.C.); (B.D.H.); (V.S.D.S.)
| | - Verónica S. Di Stilio
- Department of Biology, University of Washington, Seattle, WA 98195, USA; (E.R.); (H.D.); (V.C.); (B.D.H.); (V.S.D.S.)
| |
Collapse
|
23
|
Ma H, Liu Y, Liu D, Sun W, Liu X, Wan Y, Zhang X, Zhang R, Yun Q, Wang J, Li Z, Ma Y. Chromosome-level genome assembly and population genetic analysis of a critically endangered rhododendron provide insights into its conservation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:1533-1545. [PMID: 34189793 DOI: 10.1111/tpj.15399] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 06/23/2021] [Indexed: 05/25/2023]
Abstract
Rhododendrons are woody plants, famous throughout the world as having high horticultural value. However, many wild species are currently threatened with extinction. Here, we report for the first time a high-quality, chromosome-level genome of Rhododendron griersonianum, which has contributed to approximately 10% of all horticultural rhododendron varieties but which in its wild form has been evaluated as critically endangered. The final genome assembly, which has a contig N50 size of approximately 34 M and a total length of 677 M, is the highest-quality genome sequenced within the genus to date, in part due to its low heterozygosity (0.18%). Identified repeats constitute approximately 57% of the genome, and 38 280 protein-coding genes were predicted with high support. We further resequenced 31 individuals of R. griersonianum as well as 30 individuals of its widespread relative R. delavayi, and performed additional conservation genomic analysis. The results showed that R. griersonianum had lower genetic diversity (θ = 2.58e-3; π = 1.94e-3) when compared not only to R. delavayi (θ = 11.61e-3, π = 12.97e-3), but also to most other woody plants. Furthermore, three severe genetic bottlenecks were detected using both the Stairway plot and fastsimcoal2 analysis, which are thought to have occurred in the late Middle Pleistocene and the Last Glacial Maximum (LGM) period. After these bottlenecks, R. griersonianum recovered and maintained a constant effective population size (>25 000) until now. Intriguingly, R. griersonianum has accumulated significantly more deleterious mutations in the homozygous state than R. delavayi, and several deleterious mutations (e.g., in genes involved in the response to heat stress) are likely to have harmed the adaptation of this plant to its surroundings. This high-quality, chromosome-level genome and the population genomic analysis of the critically endangered R. griersonianum will provide an invaluable resource as well as insights for future study in this species to facilitate conservation and in the genus Rhododendron in general.
Collapse
Affiliation(s)
- Hong Ma
- Research Institute of Resources Insects, Chinese Academy of Forestry, Kunming, 650233, China
| | - Yongbo Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Detuan Liu
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Weibang Sun
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Xiongfang Liu
- Research Institute of Resources Insects, Chinese Academy of Forestry, Kunming, 650233, China
| | - Youming Wan
- Research Institute of Resources Insects, Chinese Academy of Forestry, Kunming, 650233, China
| | - Xiujiao Zhang
- Research Institute of Resources Insects, Chinese Academy of Forestry, Kunming, 650233, China
| | - Rengang Zhang
- Beijing Ori-Gene Science and Technology Co. Ltd, Beijing, 102206, China
| | - Quanzheng Yun
- Beijing Ori-Gene Science and Technology Co. Ltd, Beijing, 102206, China
| | - Jihua Wang
- The Flower Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205, China
- National Engineering Research Center for Ornamental Horticulture, Kunming, 650205, China
| | - Zhenghong Li
- Research Institute of Resources Insects, Chinese Academy of Forestry, Kunming, 650233, China
| | - Yongpeng Ma
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| |
Collapse
|
24
|
Wang Y, Chen F, Ma Y, Zhang T, Sun P, Lan M, Li F, Fang W. An ancient whole-genome duplication event and its contribution to flavor compounds in the tea plant (Camellia sinensis). HORTICULTURE RESEARCH 2021; 8:176. [PMID: 34333548 PMCID: PMC8325681 DOI: 10.1038/s41438-021-00613-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/12/2021] [Accepted: 05/20/2021] [Indexed: 05/14/2023]
Abstract
Tea, coffee, and cocoa are the three most popular nonalcoholic beverages in the world and have extremely high economic and cultural value. The genomes of four tea plant varieties have recently been sequenced, but there is some debate regarding the characterization of a whole-genome duplication (WGD) event in tea plants. Whether the WGD in the tea plant is shared with other plants in order Ericales and how it contributed to tea plant evolution remained unanswered. Here we re-analyzed the tea plant genome and provided evidence that tea experienced only WGD event after the core-eudicot whole-genome triplication (WGT) event. This WGD was shared by the Polemonioids-Primuloids-Core Ericales (PPC) sections, encompassing at least 17 families in the order Ericales. In addition, our study identified eight pairs of duplicated genes in the catechins biosynthesis pathway, four pairs of duplicated genes in the theanine biosynthesis pathway, and one pair of genes in the caffeine biosynthesis pathway, which were expanded and retained following this WGD. Nearly all these gene pairs were expressed in tea plants, implying the contribution of the WGD. This study shows that in addition to the role of the recent tandem gene duplication in the accumulation of tea flavor-related genes, the WGD may have been another main factor driving the evolution of tea flavor.
Collapse
Affiliation(s)
- Ya Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fei Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Yuanchun Ma
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Taikui Zhang
- College of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Pengchuan Sun
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Meifang Lan
- College of Life Sciences, North China University of Science and Technology, Tangshan, 063099, China
| | - Fang Li
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wanping Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
25
|
Fu CN, Mo ZQ, Yang JB, Cai J, Ye LJ, Zou JY, Qin HT, Zheng W, Hollingsworth PM, Li DZ, Gao LM. Testing genome skimming for species discrimination in the large and taxonomically difficult genus Rhododendron. Mol Ecol Resour 2021; 22:404-414. [PMID: 34310851 DOI: 10.1111/1755-0998.13479] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/22/2021] [Accepted: 07/05/2021] [Indexed: 12/01/2022]
Abstract
Standard plant DNA barcodes based on 2-3 plastid regions, and nrDNA ITS show variable levels of resolution, and fail to discriminate among species in many plant groups. Genome skimming to recover complete plastid genome sequences and nrDNA arrays has been proposed as a solution to address these resolution limitations. However, few studies have empirically tested what gains are achieved in practice. Of particular interest is whether adding substantially more plastid and nrDNA characters will lead to an increase in discriminatory power, or whether the resolution limitations of standard plant barcodes are fundamentally due to plastid genomes and nrDNA not tracking species boundaries. To address this, we used genome skimming to recover near-complete plastid genomes and nuclear ribosomal DNA from Rhododendron species and compared discrimination success with standard plant barcodes. We sampled 218 individuals representing 145 species of this species-rich and taxonomically difficult genus, focusing on the global biodiversity hotspots of the Himalaya-Hengduan Mountains. Only 33% of species were distinguished using ITS+matK+rbcL+trnH-psbA. In contrast, 55% of species were distinguished using plastid genome and nrDNA sequences. The vast majority of this increase is due to the additional plastid characters. Thus, despite previous studies showing an asymptote in discrimination success beyond 3-4 plastid regions, these results show that a demonstrable increase in discriminatory power is possible with extensive plastid genome data. However, despite these gains, many species remain unresolved, and these results also reinforce the need to access multiple unlinked nuclear loci to obtain transformative gains in species discrimination in plants.
Collapse
Affiliation(s)
- Chao-Nan Fu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China.,Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Zhi-Qiong Mo
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Jun-Bo Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Jie Cai
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Lin-Jiang Ye
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Jia-Yun Zou
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Han-Tao Qin
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Wei Zheng
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China.,University of the Chinese Academy of Sciences, Beijing, China
| | | | - De-Zhu Li
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China.,Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Lian-Ming Gao
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China.,Lijiang Forest Ecosystem National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Lijiang, Yunnan, China
| |
Collapse
|
26
|
Isolation and Characterization of Endomycorrhizal Fungi Associated with Growth Promotion of Blueberry Plants. J Fungi (Basel) 2021; 7:jof7080584. [PMID: 34436123 PMCID: PMC8396871 DOI: 10.3390/jof7080584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/11/2021] [Accepted: 07/19/2021] [Indexed: 01/01/2023] Open
Abstract
Despite their notable root mutualism with blueberries (Vaccinium spp.), studies related to Ericoid mycorrhizal (ERM) are relatively limited. In this study, we report the isolation of 14 endomycorrhizal fungi and their identification by fungal colony morphology characterization combined with PCR-amplified fungal internal transcribed spacer (ITS) sequence analyses. Six of the isolated strains were confirmed as beneficial mycorrhizal fungi for blueberry plants following inoculation. We observed the formation of typical ERM hyphae coil structures—which promote and nutritionally support growth—in blueberry seedlings and significant nitrogen and phosphorous content increases in diverse tissues. QRT-PCRs confirmed changes in VcPHT1s expression patterns. After the formation of ERM, PHT1-1 transcription in roots was upregulated by 1.4- to threefold, whilst expression of PHT1-3 and PHT1-4 in roots were downregulated 72% and 60%, respectively. Amino acid sequence analysis of all four VcPHT1s genes from the blueberry variety “Sharpblue” revealed an overall structural similarity of 67% and predicted transmembrane domains. Cloning and overexpression of PHT1-1 and PHT1-3 genes in transgenic Arabidopsis thaliana plants significantly enriched total phosphorus and chlorophyll content, confirming that PHT1-1 and PHT1-3 gene functions are associated with the transport and absorption of phosphorus.
Collapse
|
27
|
Shirasawa K, Kobayashi N, Nakatsuka A, Ohta H, Isobe S. Whole-genome sequencing and analysis of two azaleas, Rhododendron ripense and Rhododendron kiyosumense. DNA Res 2021; 28:6325020. [PMID: 34289022 PMCID: PMC8435550 DOI: 10.1093/dnares/dsab010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 07/19/2021] [Indexed: 11/26/2022] Open
Abstract
To enhance the genomics and genetics of azalea, the whole-genome sequences of two species of Rhododendron were determined and analysed in this study: Rhododendron ripense, the cytoplasmic donor and ancestral species of large-flowered and evergreen azalea cultivars; and Rhododendron kiyosumense, a native of Chiba prefecture (Japan) seldomly bred and cultivated. A chromosome-level genome sequence assembly of R. ripense was constructed by single-molecule real-time sequencing and genetic mapping, while the genome sequence of R. kiyosumense was assembled using the single-tube long fragment read sequencing technology. The R. ripense genome assembly contained 319 contigs (506.7 Mb; N50 length: 2.5 Mb) and was assigned to the genetic map to establish 13 pseudomolecule sequences. On the other hand, the genome of R. kiyosumense was assembled into 32,308 contigs (601.9 Mb; N50 length: 245.7 kb). A total of 34,606 genes were predicted in the R. ripense genome, while 35,785 flower and 48,041 leaf transcript isoforms were identified in R. kiyosumense through Iso-Seq analysis. Overall, the genome sequence information generated in this study enhances our understanding of genome evolution in the Ericales and reveals the phylogenetic relationship of closely related species. This information will also facilitate the development of phenotypically attractive azalea cultivars.
Collapse
Affiliation(s)
- Kenta Shirasawa
- Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Nobuo Kobayashi
- Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane 690-8504, Japan
| | - Akira Nakatsuka
- Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane 690-8504, Japan
| | - Hideya Ohta
- Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane 690-8504, Japan
| | - Sachiko Isobe
- Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| |
Collapse
|
28
|
Thomas SK, Liu X, Du Z, Dong Y, Cummings A, Pokorny L, Xiang Q(J, Leebens‐Mack JH. Comprehending Cornales: phylogenetic reconstruction of the order using the Angiosperms353 probe set. AMERICAN JOURNAL OF BOTANY 2021; 108:1112-1121. [PMID: 34263456 PMCID: PMC8361741 DOI: 10.1002/ajb2.1696] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 05/12/2021] [Indexed: 05/08/2023]
Abstract
PREMISE Cornales is an order of flowering plants containing ecologically and horticulturally important families, including Cornaceae (dogwoods) and Hydrangeaceae (hydrangeas), among others. While many relationships in Cornales are strongly supported by previous studies, some uncertainty remains with regards to the placement of Hydrostachyaceae and to relationships among families in Cornales and within Cornaceae. Here we analyzed hundreds of nuclear loci to test published phylogenetic hypotheses and estimated a robust species tree for Cornales. METHODS Using the Angiosperms353 probe set and existing data sets, we generated phylogenomic data for 158 samples, representing all families in the Cornales, with intensive sampling in the Cornaceae. RESULTS We curated an average of 312 genes per sample, constructed maximum likelihood gene trees, and inferred a species tree using the summary approach implemented in ASTRAL-III, a method statistically consistent with the multispecies coalescent model. CONCLUSIONS The species tree we constructed generally shows high support values and a high degree of concordance among individual nuclear gene trees. Relationships among families are largely congruent with previous molecular studies, except for the placement of the nyssoids and the Grubbiaceae-Curtisiaceae clades. Furthermore, we were able to place Hydrostachyaceae within Cornales, and within Cornaceae, the monophyly of known morphogroups was well supported. However, patterns of gene tree discordance suggest potential ancient reticulation, gene flow, and/or ILS in the Hydrostachyaceae lineage and the early diversification of Cornus. Our findings reveal new insights into the diversification process across Cornales and demonstrate the utility of the Angiosperms353 probe set.
Collapse
Affiliation(s)
- Shawn K. Thomas
- Department of Plant BiologyUniversity of GeorgiaAthensGA30602USA
- Division of Biological SciencesUniversity of MissouriColumbiaMO65203USA
| | - Xiang Liu
- Department of Plant and Microbial BiologyNorth Carolina State UniversityRaleighNC27695USA
- SyngentaResearch Triangle ParkNC27709USA
| | - Zhi‐Yuan Du
- Wuhan Botanical GardenThe Chinese Academy of SciencesWuhanHubei430074China
| | - Yibo Dong
- Department of Plant and Microbial BiologyNorth Carolina State UniversityRaleighNC27695USA
- Global Health Infectious Disease ResearchCollege of Public HealthUniversity of South FloridaTampaFL33612USA
| | - Amanda Cummings
- Department of Plant BiologyUniversity of GeorgiaAthensGA30602USA
| | - Lisa Pokorny
- Royal Botanic Gardens, KewRichmondLondonTW9 3AEUK
- Computational/Systems Biology and Genomics ProgramCentre for Plant Biotechnology and GenomicsUPM‐INIA‐CSICPozuelo de Alarcón (Madrid)28223Spain
| | - Qui‐Yun (Jenny) Xiang
- Department of Plant and Microbial BiologyNorth Carolina State UniversityRaleighNC27695USA
| | | |
Collapse
|
29
|
The Rhododendron Plant Genome Database (RPGD): a comprehensive online omics database for Rhododendron. BMC Genomics 2021; 22:376. [PMID: 34022814 PMCID: PMC8141123 DOI: 10.1186/s12864-021-07704-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/11/2021] [Indexed: 11/10/2022] Open
Abstract
Background The genus Rhododendron L. has been widely cultivated for hundreds of years around the world. Members of this genus are known for great ornamental and medicinal value. Owing to advances in sequencing technology, genomes and transcriptomes of members of the Rhododendron genus have been sequenced and published by various laboratories. With increasing amounts of omics data available, a centralized platform is necessary for effective storage, analysis, and integration of these large-scale datasets to ensure consistency, independence, and maintainability. Results Here, we report our development of the Rhododendron Plant Genome Database (RPGD; http://bioinfor.kib.ac.cn/RPGD/), which represents the first comprehensive database of Rhododendron genomics information. It includes large amounts of omics data, including genome sequence assemblies for R. delavayi, R. williamsianum, and R. simsii, gene expression profiles derived from public RNA-Seq data, functional annotations, gene families, transcription factor identification, gene homology, simple sequence repeats, and chloroplast genome. Additionally, many useful tools, including BLAST, JBrowse, Orthologous Groups, Genome Synteny Browser, Flanking Sequence Finder, Expression Heatmap, and Batch Download were integrated into the platform. Conclusions RPGD is designed to be a comprehensive and helpful platform for all Rhododendron researchers. Believe that RPGD will be an indispensable hub for Rhododendron studies.
Collapse
|
30
|
Zheng T, Li P, Li L, Zhang Q. Research advances in and prospects of ornamental plant genomics. HORTICULTURE RESEARCH 2021; 8:65. [PMID: 33790259 PMCID: PMC8012582 DOI: 10.1038/s41438-021-00499-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/04/2021] [Accepted: 01/11/2021] [Indexed: 05/14/2023]
Abstract
The term 'ornamental plant' refers to all plants with ornamental value, which generally have beautiful flowers or special plant architectures. China is rich in ornamental plant resources and known as the "mother of gardens". Genomics is the science of studying genomes and is useful for carrying out research on genome evolution, genomic variations, gene regulation, and important biological mechanisms based on detailed genome sequence information. Due to the diversity of ornamental plants and high sequencing costs, the progress of genome research on ornamental plants has been slow for a long time. With the emergence of new sequencing technologies and a reduction in costs since the whole-genome sequencing of the first ornamental plant (Prunus mume) was completed in 2012, whole-genome sequencing of more than 69 ornamental plants has been completed in <10 years. In this review, whole-genome sequencing and resequencing of ornamental plants will be discussed. We provide analysis with regard to basic data from whole-genome studies of important ornamental plants, the regulation of important ornamental traits, and application prospects.
Collapse
Affiliation(s)
- Tangchun Zheng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Ping Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Lulu Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Qixiang Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
31
|
Liu Q, Liaquat F, He Y, Munis MFH, Zhang C. Functional Annotation of a Full-Length Transcriptome and Identification of Genes Associated with Flower Development in Rhododendronsimsii (Ericaceae). PLANTS (BASEL, SWITZERLAND) 2021; 10:649. [PMID: 33805478 PMCID: PMC8065783 DOI: 10.3390/plants10040649] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/21/2021] [Accepted: 03/24/2021] [Indexed: 11/16/2022]
Abstract
Rhododendronsimsii is one of the top ten famous flowers in China. Due to its historical value and high aesthetic, it is widely popular among Chinese people. Various colors are important breeding objectives in Rhododendron L. The understanding of the molecular mechanism of flower color formation can provide a theoretical basis for the improvement of flower color in Rhododendron L. To generate the R.simsii transcriptome, PacBio sequencing technology has been used. A total of 833,137 full-length non-chimeric reads were obtained and 726,846 high-quality full-length transcripts were found. Moreover, 40,556 total open reading frames were obtained; of which 36,018 were complete. In gene annotation analyses, 39,411, 18,565, 16,102 and 17,450 transcriptions were allocated to GO, Nr, KEGG and COG databases, correspondingly. To identify long non-coding RNAs (lncRNAs), we utilized four computational methods associated with Protein families (Pfam), Cooperative Data Classification (CPC), Coding Assessing Potential Tool (CPAT) and Coding Non Coding Index (CNCI) databases and observed 6170, 2265, 4084 and 1240 lncRNAs, respectively. Based on the results, most genes were enriched in the flavonoid biosynthetic pathway. The eight key genes on the anthocyanin biosynthetic pathway were further selected and analyzed by qRT-PCR. The F3'H and ANS showed an upward trend in the developmental stages of R. simsii. The highest expression of F3'5'H and FLS in the petal color formation of R. simsii was observed. This research provided a huge number of full-length transcripts, which will help to proceed genetic analyses of R.simsii. native, which is a semi-deciduous shrub.
Collapse
Affiliation(s)
- Qunlu Liu
- Department of Landscape Architecture, School of Design, Shanghai Jiao Tong University, Shanghai 200240, China; (Q.L.); (Y.H.)
| | - Fiza Liaquat
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Yefeng He
- Department of Landscape Architecture, School of Design, Shanghai Jiao Tong University, Shanghai 200240, China; (Q.L.); (Y.H.)
| | | | - Chunying Zhang
- Shanghai Engineering Research Center of Sustainable Plant Innovation, Shanghai Botanical Garden, Shanghai 200231, China
| |
Collapse
|
32
|
Diaz-Garcia L, Garcia-Ortega LF, González-Rodríguez M, Delaye L, Iorizzo M, Zalapa J. Chromosome-Level Genome Assembly of the American Cranberry ( Vaccinium macrocarpon Ait.) and Its Wild Relative Vaccinium microcarpum. FRONTIERS IN PLANT SCIENCE 2021; 12:633310. [PMID: 33643360 PMCID: PMC7902871 DOI: 10.3389/fpls.2021.633310] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/19/2021] [Indexed: 05/25/2023]
Abstract
The American cranberry (Vaccinium macrocarpon Ait.) is an iconic North American fruit crop of great cultural and economic importance. Cranberry can be considered a fruit crop model due to its unique fruit nutrient composition, overlapping generations, recent domestication, both sexual and asexual reproduction modes, and the existence of cross-compatible wild species. Development of cranberry molecular resources started very recently; however, further genetic studies are now being limited by the lack of a high-quality genome assembly. Here, we report the first chromosome-scale genome assembly of cranberry, cultivar Stevens, and a draft genome of its close wild relative species Vaccinium microcarpum. More than 92% of the estimated cranberry genome size (492 Mb) was assembled into 12 chromosomes, which enabled gene model prediction and chromosome-level comparative genomics. Our analysis revealed two polyploidization events, the ancient γ-triplication, and a more recent whole genome duplication shared with other members of the Ericaeae, Theaceae and Actinidiaceae families approximately 61 Mya. Furthermore, comparative genomics within the Vaccinium genus suggested cranberry-V. microcarpum divergence occurred 4.5 Mya, following their divergence from blueberry 10.4 Mya, which agrees with morphological differences between these species and previously identified duplication events. Finally, we identified a cluster of subgroup-6 R2R3 MYB transcription factors within a genomic region spanning a large QTL for anthocyanin variation in cranberry fruit. Phylogenetic analysis suggested these genes likely act as anthocyanin biosynthesis regulators in cranberry. Undoubtedly, these new cranberry genomic resources will facilitate the dissection of the genetic mechanisms governing agronomic traits and further breeding efforts at the molecular level.
Collapse
Affiliation(s)
- Luis Diaz-Garcia
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Campo Experimental Pabellón, Aguascalientes, Mexico
| | | | | | - Luis Delaye
- Department of Genetic Engineering, Cinvestav Unidad Irapuato, Irapuato, Guanajuato, Mexico
| | - Massimo Iorizzo
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
| | - Juan Zalapa
- Department of Horticulture, University of Wisconsin, Madison, WI, United States
- USDA-ARS, Vegetable Crops Research Unit, University of Wisconsin, Madison, WI, United States
| |
Collapse
|
33
|
Liu Y, Wang Y, Pei J, Li Y, Sun H. Genome-wide identification and characterization of COMT gene family during the development of blueberry fruit. BMC PLANT BIOLOGY 2021; 21:5. [PMID: 33407129 PMCID: PMC7789564 DOI: 10.1186/s12870-020-02767-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 12/01/2020] [Indexed: 05/28/2023]
Abstract
BACKGROUND Caffeic acid O-methyltransferases (COMTs) play an important role in the diversification of natural products, especially in the phenylalanine metabolic pathway of plant. The content of COMT genes in blueberry and relationship between their expression patterns and the lignin content during fruit development have not clearly investigated by now. RESULTS Ninety-two VcCOMTs were identified in Vaccinium corymbosum. According to phylogenetic analyses, the 92 VcCOMTs were divided into 2 groups. The gene structure and conserved motifs within groups were similar which supported the reliability of the phylogenetic structure groupings. Dispersed duplication (DSD) and whole-genome duplication (WGD) were determined to be the major forces in VcCOMTs evolution. The results showed that the results of qRT-PCR and lignin content for 22 VcCOMTs, VcCOMT40 and VcCOMT92 were related to lignin content at different stages of fruit development of blueberry. CONCLUSION We identified COMT gene family in blueberry, and performed comparative analyses of the phylogenetic relationships in the 15 species of land plant, and gene duplication patterns of COMT genes in 5 of the 15 species. We found 2 VcCOMTs were highly expressed and their relative contents were similar to the variation trend of lignin content during the development of blueberry fruit. These results provide a clue for further study on the roles of VcCOMTs in the development of blueberry fruit and could promisingly be foundations for breeding blueberry clutivals with higher fruit firmness and longer shelf life.
Collapse
Affiliation(s)
- Yushan Liu
- Engineering Center of Genetic Breeding and Innovative Utilization of Small Fruits of Jilin Province, College of Horticulture, Jilin Agricultural University, Changchun, 130118 China
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118 China
| | - Yizhou Wang
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Jiabo Pei
- Engineering Center of Genetic Breeding and Innovative Utilization of Small Fruits of Jilin Province, College of Horticulture, Jilin Agricultural University, Changchun, 130118 China
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118 China
- Institute of Horticulture, Hangzhou Academy of Agricultural Sciences, Hangzhou, 310000 China
| | - Yadong Li
- Engineering Center of Genetic Breeding and Innovative Utilization of Small Fruits of Jilin Province, College of Horticulture, Jilin Agricultural University, Changchun, 130118 China
| | - Haiyue Sun
- Engineering Center of Genetic Breeding and Innovative Utilization of Small Fruits of Jilin Province, College of Horticulture, Jilin Agricultural University, Changchun, 130118 China
| |
Collapse
|
34
|
Chromosome-level genome assembly of a parent species of widely cultivated azaleas. Nat Commun 2020; 11:5269. [PMID: 33077749 PMCID: PMC7572368 DOI: 10.1038/s41467-020-18771-4] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 09/11/2020] [Indexed: 11/15/2022] Open
Abstract
Azaleas (Ericaceae) comprise one of the most diverse ornamental plants, renowned for their cultural and economic importance. We present a chromosome-scale genome assembly for Rhododendron simsii, the primary ancestor of azalea cultivars. Genome analyses unveil the remnants of an ancient whole-genome duplication preceding the radiation of most Ericaceae, likely contributing to the genomic architecture of flowering time. Small-scale gene duplications contribute to the expansion of gene families involved in azalea pigment biosynthesis. We reconstruct entire metabolic pathways for anthocyanins and carotenoids and their potential regulatory networks by detailed analysis of time-ordered gene co-expression networks. MYB, bHLH, and WD40 transcription factors may collectively regulate anthocyanin accumulation in R. simsii, particularly at the initial stages of flower coloration, and with WRKY transcription factors controlling progressive flower coloring at later stages. This work provides a cornerstone for understanding the underlying genetics governing flower timing and coloration and could accelerate selective breeding in azalea. Azaleas are one of the most diverse ornamental plants and have cultural and economic importance. Here, the authors report a chromosome-scale genome assembly for the primary ancestor of the azalea cultivar Rhododendro simsi and identify transcription factors that may function in flower coloration at different stages.
Collapse
|
35
|
Zhou XJ, Liu MX, Lu XY, Sun SS, Cheng YW, Ya HY. Genome survey sequencing and identification of genomic SSR markers for Rhododendron micranthum. Biosci Rep 2020; 40:BSR20200988. [PMID: 32495827 PMCID: PMC7303352 DOI: 10.1042/bsr20200988] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/18/2020] [Accepted: 06/03/2020] [Indexed: 01/15/2023] Open
Abstract
Rhododendron micranthum is an evergreen shrub species widely distributed in China that has high ornamental and medicinal value. However, there is a lack of molecular and genomic data for this plant, which severely restricts the development of its relevant research. The objective of the present study was to conduct a first genomic survey of R. micranthum and determine its whole-genome sequencing scheme. Next-generation sequencing (Illumina Hi-Seq Xten) was used to measure the genome size of R. micranthum, K-mer analysis were employed to investigate its genomic profile. Finally, we conducted bioinformatics methods to performed SSR (simple sequence repeat) prediction based on the genomic data. The genome size of R. micranthum was estimated to be 554.22 Mb. The heterozygosity ratio was 0.93%, and the sequence repeat ratio was calculated to be 49.17%. The clean reads of R. micranthum were assembled into 2281551 scaffolds with a N50 value of 916 bp. A total of 479724 SSR molecular markers were identified in the R. micranthum genome, and 871656 pairs of primers designed for application. Among of them, 100 primer pairs were validated, and 71 primer pairs were successfully amplified. In summary, the R. micranthum genome is complex with high heterozygosity and low repeated sequences. In future whole-genome research in R. micranthum, higher-depth '2+3' (Illumina+PacBio) sequencing may yield better assembly results.
Collapse
Affiliation(s)
- Xiao-jun Zhou
- College of Life Science, Luoyang Normal University, 6 Jiqing Road, Luoyang 471934, China
| | - Meng-xue Liu
- College of Life Science, Luoyang Normal University, 6 Jiqing Road, Luoyang 471934, China
| | - Xiao-yu Lu
- College of Life Science, Luoyang Normal University, 6 Jiqing Road, Luoyang 471934, China
| | - Shan-shan Sun
- College of Life Science, Luoyang Normal University, 6 Jiqing Road, Luoyang 471934, China
| | - Yan-wei Cheng
- College of Life Science, Luoyang Normal University, 6 Jiqing Road, Luoyang 471934, China
| | - Hui-yuan Ya
- College of Life Science, Luoyang Normal University, 6 Jiqing Road, Luoyang 471934, China
| |
Collapse
|
36
|
Larson DA, Walker JF, Vargas OM, Smith SA. A consensus phylogenomic approach highlights paleopolyploid and rapid radiation in the history of Ericales. AMERICAN JOURNAL OF BOTANY 2020; 107:773-789. [PMID: 32350864 DOI: 10.1002/ajb2.1469] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 02/12/2020] [Indexed: 05/27/2023]
Abstract
PREMISE Large genomic data sets offer the promise of resolving historically recalcitrant species relationships. However, different methodologies can yield conflicting results, especially when clades have experienced ancient, rapid diversification. Here, we analyzed the ancient radiation of Ericales and explored sources of uncertainty related to species tree inference, conflicting gene tree signal, and the inferred placement of gene and genome duplications. METHODS We used a hierarchical clustering approach, with tree-based homology and orthology detection, to generate six filtered phylogenomic matrices consisting of data from 97 transcriptomes and genomes. Support for species relationships was inferred from multiple lines of evidence including shared gene duplications, gene tree conflict, gene-wise edge-based analyses, concatenation, and coalescent-based methods, and is summarized in a consensus framework. RESULTS Our consensus approach supported a topology largely concordant with previous studies, but suggests that the data are not capable of resolving several ancient relationships because of lack of informative characters, sensitivity to methodology, and extensive gene tree conflict correlated with paleopolyploidy. We found evidence of a whole-genome duplication before the radiation of all or most ericalean families, and demonstrate that tree topology and heterogeneous evolutionary rates affect the inferred placement of genome duplications. CONCLUSIONS We provide several hypotheses regarding the history of Ericales, and confidently resolve most nodes, but demonstrate that a series of ancient divergences are unresolvable with these data. Whether paleopolyploidy is a major source of the observed phylogenetic conflict warrants further investigation.
Collapse
Affiliation(s)
- Drew A Larson
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Joseph F Walker
- Sainsbury Laboratory (SLCU), University of Cambridge, Cambridge, CB2 1LR, UK
| | - Oscar M Vargas
- Department of Ecology & Evolutionary Biology, University of California, Santa Cruz, CA, 95060, USA
| | - Stephen A Smith
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
37
|
Jia X, Tang L, Mei X, Liu H, Luo H, Deng Y, Su J. Single-molecule long-read sequencing of the full-length transcriptome of Rhododendron lapponicum L. Sci Rep 2020; 10:6755. [PMID: 32317724 PMCID: PMC7174332 DOI: 10.1038/s41598-020-63814-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 04/06/2020] [Indexed: 12/17/2022] Open
Abstract
Rhododendron lapponicum L. is a familiar ornamental plant worldwide with important ornamental and economic value. However, a full-length R. lapponicum transcriptome is still lacking. In the present study, we used the Pacific Biosciences single-molecule real-time sequencing technology to generate the R. lapponicum transcriptome. A total of 346,270 full-length non-chimeric reads were generated, from which we obtained 75,002 high-quality full-length transcripts. We identified 55,255 complete open reading frames, 7,140 alternative splicing events and 2,011 long non-coding RNAs. In gene annotation analyses, 71,155, 33,653, 30,359 and 31,749 transcripts were assigned to the Nr, GO, COG and KEGG databases, respectively. Additionally, 3,150 transcription factors were detected. KEGG pathway analysis showed that 96 transcripts were identified coding for the enzymes associated with anthocyanin synthesis. Furthermore, we identified 64,327 simple sequence repeats from 45,319 sequences, and 150 pairs of primers were randomly selected to develop SSR markers. This study provides a large number of full-length transcripts, which will facilitate the further study of the genetics of R. lapponicum.
Collapse
Affiliation(s)
- Xinping Jia
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, 210014, China.
| | - Ling Tang
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, 210014, China
| | - Xueying Mei
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, 210014, China
| | - Huazhou Liu
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, 210014, China
| | - Hairong Luo
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, 210014, China
| | - Yanming Deng
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, 210014, China
| | - Jiale Su
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, 210014, China
| |
Collapse
|