1
|
Miller DE. The Interchromosomal Effect: Different Meanings for Different Organisms. Genetics 2020; 216:621-631. [PMID: 33158985 PMCID: PMC7648586 DOI: 10.1534/genetics.120.303656] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 09/15/2020] [Indexed: 11/18/2022] Open
Abstract
The term interchromosomal effect was originally used to describe a change in the distribution of exchange in the presence of an inversion. First characterized in the 1920s by early Drosophila researchers, it has been observed in multiple organisms. Nearly half a century later, the term began to appear in the human genetics literature to describe the hypothesis that parental chromosome differences, such as translocations or inversions, may increase the frequency of meiotic chromosome nondisjunction. Although it remains unclear if chromosome aberrations truly affect the segregation of structurally normal chromosomes in humans, the use of the term interchromosomal effect in this context persists. This article explores the history of the use of the term interchromosomal effect and discusses how chromosomes with structural aberrations are segregated during meiosis.
Collapse
Affiliation(s)
- Danny E Miller
- Department of Pediatrics, Division of Genetic Medicine, University of Washington and Seattle Children's Hospital, Seattle, WA 98105
| |
Collapse
|
2
|
Heterochromatin-Associated Proteins HP1a and Piwi Collaborate to Maintain the Association of Achiasmate Homologs in Drosophila Oocytes. Genetics 2016; 203:173-89. [PMID: 26984058 DOI: 10.1534/genetics.115.186460] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 03/11/2016] [Indexed: 12/21/2022] Open
Abstract
Accurate segregation of homologous chromosomes during meiosis depends on their ability to remain physically connected throughout prophase I. For homologs that achieve a crossover, sister chromatid cohesion distal to the chiasma keeps them attached until anaphase I. However, in Drosophila melanogaster wild-type oocytes, chromosome 4 never recombines, and the X chromosome fails to cross over in 6-10% of oocytes. Proper segregation of these achiasmate homologs relies on their pericentric heterochromatin-mediated association, but the mechanism(s) underlying this attachment remains poorly understood. Using an inducible RNA interference (RNAi) strategy combined with fluorescence in situ hybridization (FISH) to monitor centromere proximal association of the achiasmate FM7a/X homolog pair, we asked whether specific heterochromatin-associated proteins are required for the association and proper segregation of achiasmate homologs in Drosophila oocytes. When we knock down HP1a, H3K9 methytransferases, or the HP1a binding partner Piwi during mid-prophase, we observe significant disruption of pericentric heterochromatin-mediated association of FM7a/X homologs. Furthermore, for both HP1a and Piwi knockdown oocytes, transgenic coexpression of the corresponding wild-type protein is able to rescue RNAi-induced defects, but expression of a mutant protein with a single amino acid change that disrupts the HP1a-Piwi interaction is unable to do so. We show that Piwi is stably bound to numerous sites along the meiotic chromosomes, including centromere proximal regions. In addition, reduction of HP1a or Piwi during meiotic prophase induces a significant increase in FM7a/X segregation errors. We present a speculative model outlining how HP1a and Piwi could collaborate to keep achiasmate chromosomes associated in a homology-dependent manner.
Collapse
|
3
|
Subramanian VV, Bickel SE. Aging predisposes oocytes to meiotic nondisjunction when the cohesin subunit SMC1 is reduced. PLoS Genet 2008; 4:e1000263. [PMID: 19008956 PMCID: PMC2577922 DOI: 10.1371/journal.pgen.1000263] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Accepted: 10/16/2008] [Indexed: 11/18/2022] Open
Abstract
In humans, meiotic chromosome segregation errors increase dramatically as women age, but the molecular defects responsible are largely unknown. Cohesion along the arms of meiotic sister chromatids provides an evolutionarily conserved mechanism to keep recombinant chromosomes associated until anaphase I. One attractive hypothesis to explain age-dependent nondisjunction (NDJ) is that loss of cohesion over time causes recombinant homologues to dissociate prematurely and segregate randomly during the first meiotic division. Using Drosophila as a model system, we have tested this hypothesis and observe a significant increase in meiosis I NDJ in experimentally aged Drosophila oocytes when the cohesin protein SMC1 is reduced. Our finding that missegregation of recombinant homologues increases with age supports the model that chiasmata are destabilized by gradual loss of cohesion over time. Moreover, the stage at which Drosophila oocytes are most vulnerable to age-related defects is analogous to that at which human oocytes remain arrested for decades. Our data provide the first demonstration in any organism that, when meiotic cohesion begins intact, the aging process can weaken it sufficiently and cause missegregation of recombinant chromosomes. One major advantage of these studies is that we have reduced but not eliminated the SMC1 subunit. Therefore, we have been able to investigate how aging affects normal meiotic cohesion. Our findings that recombinant chromosomes are at highest risk for loss of chiasmata during diplotene argue that human oocytes are most vulnerable to age-induced loss of meiotic cohesion at the stage at which they remain arrested for several years.
Collapse
Affiliation(s)
| | - Sharon E. Bickel
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, United States of America
| |
Collapse
|
4
|
Abstract
Meiotic chromosome segregation occurs in Drosophila oocytes on an acentrosomal spindle, which raises interesting questions regarding spindle assembly and function. One is how to organize a bipolar spindle without microtubule organizing centers at the poles. Another question is how to orient the chromosomes without kinetochore capture of microtubules that grow from the poles. We have characterized the mei-38 gene in Drosophila and found it may be required for chromosome organization within the karyosome. Nondisjunction of homologous chromosomes occurs in mei-38 mutants primarily at the first meiotic division in females but not in males where centrosomes are present. Most meiotic spindles in mei-38 oocytes are bipolar but poorly organized, and the chromosomes appear disorganized at metaphase. mei-38 encodes a novel protein that is conserved in the Diptera and may be a member of a multigene family. Mei-38 was previously identified (as ssp1) due to a role in mitotic spindle assembly in a Drosophila cell line. MEI-38 protein localizes to a specific population of spindle microtubules, appearing to be excluded from the overlap of interpolar microtubules in the central spindle. We suggest MEI-38 is required for the stability of parallel microtubules, including the kinetochore microtubules.
Collapse
|
5
|
Johansen KM, Johansen J. Cell and Molecular Biology of the Spindle Matrix. INTERNATIONAL REVIEW OF CYTOLOGY 2007; 263:155-206. [PMID: 17725967 DOI: 10.1016/s0074-7696(07)63004-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The concept of a spindle matrix has long been proposed to account for incompletely understood features of microtubule spindle dynamics and force production during mitosis. In its simplest formulation, the spindle matrix is hypothesized to provide a stationary or elastic molecular matrix that can provide a substrate for motor molecules to interact with during microtubule sliding and which can stabilize the spindle during force production. Although this is an attractive concept with the potential to greatly simplify current models of microtubule spindle behavior, definitive evidence for the molecular nature of a spindle matrix or for its direct role in microtubule spindle function has been lagging. However, as reviewed here multiple studies spanning the evolutionary spectrum from lower eukaryotes to vertebrates have provided new and intriguing evidence that a spindle matrix may be a general feature of mitosis.
Collapse
Affiliation(s)
- Kristen M Johansen
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA
| | | |
Collapse
|
6
|
Xiang Y, Hawley RS. The mechanism of secondary nondisjunction in Drosophila melanogaster females. Genetics 2006; 174:67-78. [PMID: 16816415 PMCID: PMC1569801 DOI: 10.1534/genetics.106.061424] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Accepted: 06/20/2006] [Indexed: 11/18/2022] Open
Abstract
Bridges (1916) observed that X chromosome nondisjunction was much more frequent in XXY females than it was in genetically normal XX females. In addition, virtually all cases of X nondisjunction in XXY females were due to XX <--> Y segregational events in oocytes in which the two X chromosomes had failed to undergo crossing over. He referred to these XX <--> Y segregation events as "secondary nondisjunction." Cooper (1948) proposed that secondary nondisjunction results from the formation of an X-Y-X trivalent, such that the Y chromosome directs the segregation of two achiasmate X chromosomes to opposite poles on the first meiotic spindle. Using in situ hybridization to X and YL chromosomal satellite sequences, we demonstrate that XX <--> Y segregations are indeed presaged by physical associations of the X and Y chromosomal heterochromatin. The physical colocalization of the three sex chromosomes is observed in virtually all oocytes in early prophase and maintained at high frequency until midprophase in all genotypes examined. Although these XXY associations are usually dissolved by late prophase in oocytes that undergo X chromosomal crossing over, they are maintained throughout prophase in oocytes with nonexchange X chromosomes. The persistence of such XXY associations in the absence of exchange presumably facilitates the segregation of the two X chromosomes and the Y chromosome to opposite poles on the developing meiotic spindle. Moreover, the observation that XXY pairings are dissolved at the end of pachytene in oocytes that do undergo X chromosomal crossing over demonstrates that exchanges can alter heterochromatic (and thus presumably centromeric) associations during meiotic prophase.
Collapse
Affiliation(s)
- Youbin Xiang
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | | |
Collapse
|
7
|
Abstract
Most organisms use crossovers (chiasmata) to maintain physical connections between homologous chromosomes that ensure their proper segregation at the first meiotic division. The fission yeast Schizosaccharomyces pombe has a residual ability to segregate homologous chromosomes in the absence of meiotic recombination (achiasmate segregation). Using cytologically tagged chromosomes, we established a role for the microtubule motor dynein in meiotic chromosome segregation. Dhc1, the motor subunit of dynein, is required for chromosome segregation in both the presence and the absence of recombination. Dlc1, a member of the Tctex-1 dynein light-chain family, preferentially affects the segregation of achiasmate chromosomes. Dlc1 is the first identified protein, outside of Drosophila, that preferentially affects achiasmate chromosome segregation. We discuss possible roles of the dynein motor in this process.
Collapse
Affiliation(s)
- Luther Davis
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109-1024, USA
| | | |
Collapse
|
8
|
Harris D, Orme C, Kramer J, Namba L, Champion M, Palladino MJ, Natzle J, Hawley RS. A Deficiency Screen of the Major Autosomes Identifies a Gene (matrimony) That Is Haplo-insufficient for Achiasmate Segregation in Drosophila Oocytes. Genetics 2003; 165:637-52. [PMID: 14573476 PMCID: PMC1462769 DOI: 10.1093/genetics/165.2.637] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
In Drosophila oocytes, euchromatic homolog-homolog associations are released at the end of pachytene, while heterochromatic pairings persist until metaphase I. A screen of 123 autosomal deficiencies for dominant effects on achiasmate chromosome segregation has identified a single gene that is haploinsufficient for homologous achiasmate segregation and whose product may be required for the maintenance of such heterochromatic pairings. Of the deficiencies tested, only one exhibited a strong dominant effect on achiasmate segregation, inducing both X and fourth chromosome nondisjunction in FM7/X females. Five overlapping deficiencies showed a similar dominant effect on achiasmate chromosome disjunction and mapped the haplo-insufficient meiotic gene to a small interval within 66C7-12. A P-element insertion mutation in this interval exhibits a similar dominant effect on achiasmate segregation, inducing both high levels of X and fourth chromosome nondisjunction in FM7/X females and high levels of fourth chromosome nondisjunction in X/X females. The insertion site for this P element lies immediately up-stream of CG18543, and germline expression of a UAS-CG18543 cDNA construct driven by nanos-GAL4 fully rescues the dominant meiotic defect. We conclude that CG18543 is the haplo-insufficient gene and have renamed this gene matrimony (mtrm). Cytological studies of prometaphase and metaphase I in mtrm hemizygotes demonstrate that achiasmate chromosomes are not properly positioned with respect to their homolog on the meiotic spindle. One possible, albeit speculative, interpretation of these data is that the presence of only a single copy of mtrm disrupts the function of whatever “glue” holds heterochromatically paired homologs together from the end of pachytene until metaphase I.
Collapse
Affiliation(s)
- David Harris
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
In this review, we describe the pathway for generating meiotic crossovers in Drosophila melanogaster females and how these events ensure the segregation of homologous chromosomes. As appears to be common to meiosis in most organisms, recombination is initiated with a double-strand break (DSB). The interesting differences between organisms appear to be associated with what chromosomal events are required for DSBs to form. In Drosophila females, the synaptonemal complex is required for most DSB formation. The repair of these breaks requires several DSB repair genes, some of which are meiosis-specific, and defects at this stage can have effects downstream on oocyte development. This has been suggested to result from a checkpoint-like signaling between the oocyte nucleus and gene products regulating oogenesis. Crossovers result from genetically controlled modifications to the DSB repair pathway. Finally, segregation of chromosomes joined by a chiasma requires a bipolar spindle. At least two kinesin motor proteins are required for the assembly of this bipolar spindle, and while the meiotic spindle lacks traditional centrosomes, some centrosome components are found at the spindle poles.
Collapse
Affiliation(s)
- Kim S McKim
- Waksman Institute and Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854-8020, USA.
| | | | | |
Collapse
|
10
|
Kramer J, Hawley RS. The spindle-associated transmembrane protein Axs identifies a membranous structure ensheathing the meiotic spindle. Nat Cell Biol 2003; 5:261-3. [PMID: 12646877 DOI: 10.1038/ncb944] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2002] [Revised: 10/30/2002] [Accepted: 01/14/2003] [Indexed: 01/04/2023]
Abstract
Mutations in the aberrant X segragation (Axs) gene disrupt the segregation of achiasmate chromosomes during female meiosis in Drosophila melanogaster. We show that Axs encodes the founding member of an eukaryotic family of transmembrane proteins. Axs protein colocalizes with components of the endoplasmic reticulum and is present within a structure ensheathing the meiotic spindle. In both meiotic and mitotic cells, Axs is recruited to the microtubules of assembling spindles. We propose that Axs and the sheath represent novel mediators of meiotic spindle assembly and chromosome segregation.
Collapse
Affiliation(s)
- Joseph Kramer
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | |
Collapse
|
11
|
Apionishev S, Malhotra D, Raghavachari S, Tanda S, Rasooly RS. The Drosophila UBC9 homologue lesswright mediates the disjunction of homologues in meiosis I. Genes Cells 2001; 6:215-24. [PMID: 11260265 DOI: 10.1046/j.1365-2443.2001.00413.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND In Saccharomyces cerevisiae and other organisms, the UBC9 (ubiquitin-conjugating 9) protein modifies the function of many different target proteins through covalent attachment of the ubiquitin-like protein SMT-3/SUMO. RESULTS Using a second-site suppression screen of a mutation in the nod locus with a variable meiotic phenotype, we have identified mutations in the Drosophila melanogaster UBC9 homologue, encoded by the gene lesswright (lwr). lwr mutations dominantly suppress the nondisjunction and cytological defects of female meiotic mutations that affect spindle formation. The lwr lethal phenotype is rescued by a Drosophila UBC9/lwr transgene. CONCLUSIONS We suggest that LWR mediates the dissociation of heterochromatic regions of homologues at the end of meiotic prophase I. Our model proposes that when there is less LWR protein, homologues remain together longer, allowing for more normal spindle formation in mutant backgrounds and therefore more accurate meiotic chromosome segregation.
Collapse
Affiliation(s)
- S Apionishev
- Department of Biological Sciences, St. John's University, Jamaica, NY 11439, USA
| | | | | | | | | |
Collapse
|
12
|
Vernì F, Gandhi R, Goldberg ML, Gatti M. Genetic and molecular analysis of wings apart-like (wapl), a gene controlling heterochromatin organization in Drosophila melanogaster. Genetics 2000; 154:1693-710. [PMID: 10747063 PMCID: PMC1461031 DOI: 10.1093/genetics/154.4.1693] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mutations in the X-linked gene wings apart-like (wapl) result in late larval lethality associated with an unusual chromosome morphology. In brain cell metaphases of wapl mutants, sister chromatids of all chromosomes are aligned parallel to each other instead of assuming the typical morphology observed in wild type. This effect is due to a loosening of the adhesion between sister chromatids in the heterochromatic regions of the chromosomes. Despite this aberrant chromosome morphology, mutant brains exhibit normal mitotic parameters, suggesting that heterochromatin cohesion is not essential for proper centromere function. On the basis of these observations, we examined the role of wapl in meiotic chromosome segregation in females. wapl exhibits a clear dominant effect on achiasmate segregation, giving further support to the hypothesis that proximal heterochromatin is involved in chromosome pairing during female meiosis. We also examined whether wapl modulates position-effect variegation (PEV). Our analyses showed that wapl is a dominant suppressor of both white and Stubble variegation, while it is a weak enhancer of brown variegation. wapl maps to region 2D of the X chromosome between Pgd and pn. We identified the wapl gene within a previously conducted chromosomal walk in this region. The wapl transcriptional unit gives rise to two alternatively spliced transcripts 6.5- and 5-kb long. The protein encoded by the larger of these transcripts appears to be conserved among higher eukaryotes and contains a tract of acidic amino acids reminiscent of many chromatin-associated proteins, including two [HP1 and SU(VAR)3-7] encoded by other genes that act as suppressors of PEV.
Collapse
Affiliation(s)
- F Vernì
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Genetica e Biologia Molecolare, Universitá di Roma La Sapienza, 00185 Rome, Italy
| | | | | | | |
Collapse
|
13
|
Zwick ME, Cutler DJ, Langley CH. Classic Weinstein: tetrad analysis, genetic variation and achiasmate segregation in Drosophila and humans. Genetics 1999; 152:1615-29. [PMID: 10430587 PMCID: PMC1460678 DOI: 10.1093/genetics/152.4.1615] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A maximum-likelihood method for the estimation of tetrad frequencies from single-spore data is presented. The multilocus exchange with interference and viability (MEIV) model incorporates a clearly defined model of exchange, interference, and viability whose parameters define a multinomial distribution for single-spore data. Maximum-likelihood analysis of the MEIV model (MEIVLA) allows point estimation of tetrad frequencies and determination of confidence intervals. We employ MEIVLA to determine tetrad frequencies among 15 X chromosomes sampled at random from Drosophila melanogaster natural populations in Africa and North America. Significant variation in the frequency of nonexchange, or E(0) tetrads, is observed within both natural populations. Because most nondisjunction arises from E(0) tetrads, this observation is quite unexpected given both the prevalence and the deleterious consequences of nondisjunction in D. melanogaster. Use of MEIVLA is also demonstrated by reanalyzing a recently published human chromosome 21 dataset. Analysis of simulated datasets demonstrates that MEIVLA is superior to previous methods of tetrad frequency estimation and is particularly well suited to analyze samples where the E(0) tetrad frequency is low and sample sizes are small, conditions likely to be met in most samples from human populations. We discuss the implications of our analysis for determining whether an achiasmate system exists in humans to ensure the proper segregation of E(0) tetrads.
Collapse
Affiliation(s)
- M E Zwick
- Center for Population Biology, University of California, Davis, California 95616, USA.
| | | | | |
Collapse
|
14
|
Dernburg AF, Sedat JW, Hawley RS. Direct evidence of a role for heterochromatin in meiotic chromosome segregation. Cell 1996; 86:135-46. [PMID: 8689681 DOI: 10.1016/s0092-8674(00)80084-7] [Citation(s) in RCA: 294] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We have investigated the mechanism that enables achiasmate chromosomes to segregate from each other at meiosis I in D. melanogaster oocytes. Using novel cytological methods, we asked whether nonexchange chromosomes are paired prior to disjunction. Our results show that the heterochromatin of homologous chromosomes remains associated throughout prophase until metaphase I regardless of whether they undergo exchange, suggesting that homologous recognition can lead to segregation even in the absence of chiasmata. However, partner chromosomes lacking homology do not pair prior to disjunction. Furthermore, euchromatic synapsis is not maintained throughout prophase. These observations provide a physical demonstration that homologous and heterologous achiasmate segregations occur by different mechanisms and establish a role for heterochromatin in maintaining the alignment of chromosomes during meiosis.
Collapse
Affiliation(s)
- A F Dernburg
- Department of Biochemistry and Biophysics, University of California, San Francisco 94143-0554, USA
| | | | | |
Collapse
|
15
|
Moore DP, Miyazaki WY, Tomkiel JE, Orr-Weaver TL. Double or nothing: a Drosophila mutation affecting meiotic chromosome segregation in both females and males. Genetics 1994; 136:953-64. [PMID: 8005447 PMCID: PMC1205899 DOI: 10.1093/genetics/136.3.953] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We describe a Drosophila mutation, Double or nothing (Dub), that causes meiotic nondisjunction in a conditional, dominant manner. Previously isolated mutations in Drosophila specifically affect meiosis either in females or males, with the exception of the mei-S332 and ord genes which are required for proper sister-chromatid cohesion. Dub is unusual in that it causes aberrant chromosome segregation almost exclusively in meiosis I in both sexes. In Dub mutant females both nonexchange and exchange chromosomes undergo nondisjunction, but the effect of Dub on nonexchange chromosomes is more pronounced. Dub reduces recombination levels slightly. Multiple nondisjoined chromosomes frequently cosegregate to the same pole. Dub results in nondisjunction of all chromosomes in meiosis I of males, although the levels are lower than in females. When homozygous, Dub is a conditional lethal allele and exhibits phenotypes consistent with cell death.
Collapse
Affiliation(s)
- D P Moore
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02142
| | | | | | | |
Collapse
|