1
|
Palazzo A, Caizzi R, Moschetti R, Marsano RM. What Have We Learned in 30 Years of Investigations on Bari Transposons? Cells 2022; 11:583. [PMID: 35159391 PMCID: PMC8834629 DOI: 10.3390/cells11030583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/03/2022] [Accepted: 02/07/2022] [Indexed: 12/17/2022] Open
Abstract
Transposable elements (TEs) have been historically depicted as detrimental genetic entities that selfishly aim at perpetuating themselves, invading genomes, and destroying genes. Scientists often co-opt "special" TEs to develop new and powerful genetic tools, that will hopefully aid in changing the future of the human being. However, many TEs are gentle, rarely unleash themselves to harm the genome, and bashfully contribute to generating diversity and novelty in the genomes they have colonized, yet they offer the opportunity to develop new molecular tools. In this review we summarize 30 years of research focused on the Bari transposons. Bari is a "normal" transposon family that has colonized the genomes of several Drosophila species and introduced genomic novelties in the melanogaster species. We discuss how these results have contributed to advance the field of TE research and what future studies can still add to the current knowledge.
Collapse
|
2
|
Gao B, Zong W, Miskey C, Ullah N, Diaby M, Chen C, Wang X, Ivics Z, Song C. Intruder (DD38E), a recently evolved sibling family of DD34E/Tc1 transposons in animals. Mob DNA 2020; 11:32. [PMID: 33303022 PMCID: PMC7731502 DOI: 10.1186/s13100-020-00227-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/30/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND A family of Tc1/mariner transposons with a characteristic DD38E triad of catalytic amino acid residues, named Intruder (IT), was previously discovered in sturgeon genomes, but their evolutionary landscapes remain largely unknown. RESULTS Here, we comprehensively investigated the evolutionary profiles of ITs, and evaluated their cut-and-paste activities in cells. ITs exhibited a narrow taxonomic distribution pattern in the animal kingdom, with invasions into two invertebrate phyla (Arthropoda and Cnidaria) and three vertebrate lineages (Actinopterygii, Agnatha, and Anura): very similar to that of the DD36E/IC family. Some animal orders and species seem to be more hospitable to Tc1/mariner transposons, one order of Amphibia and seven Actinopterygian orders are the most common orders with horizontal transfer events and have been invaded by all four families (DD38E/IT, DD35E/TR, DD36E/IC and DD37E/TRT) of Tc1/mariner transposons, and eight Actinopterygii species were identified as the major hosts of these families. Intact ITs have a total length of 1.5-1.7 kb containing a transposase gene flanked by terminal inverted repeats (TIRs). The phylogenetic tree and sequence identity showed that IT transposases were most closely related to DD34E/Tc1. ITs have been involved in multiple events of horizontal transfer in vertebrates and have invaded most lineages recently (< 5 million years ago) based on insertion age analysis. Accordingly, ITs presented high average sequence identity (86-95%) across most vertebrate species, suggesting that some are putatively active. ITs can transpose in human HeLa cells, and the transposition efficiency of consensus TIRs was higher than that of the TIRs of natural isolates. CONCLUSIONS We conclude that DD38E/IT originated from DD34E/Tc1 and can be detected in two invertebrate phyla (Arthropoda and Cnidaria), and in three vertebrate lineages (Actinopterygii, Agnatha and Anura). IT has experienced multiple HT events in animals, dominated by recent amplifications in most species and has high identity among vertebrate taxa. Our reconstructed IT transposon vector designed according to the sequence from the "cat" genome showed high cut-and-paste activity. The data suggest that IT has been acquired recently and is active in many species. This study is meaningful for understanding the evolution of the Tc1/mariner superfamily members and their hosts.
Collapse
Affiliation(s)
- Bo Gao
- College of Animal Science & Technology, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009, Jiangsu, China.,Division of Medical Biotechnology, Paul Ehrlich Institute, 63225, Langen, Germany
| | - Wencheng Zong
- College of Animal Science & Technology, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009, Jiangsu, China
| | - Csaba Miskey
- Division of Medical Biotechnology, Paul Ehrlich Institute, 63225, Langen, Germany
| | - Numan Ullah
- College of Animal Science & Technology, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009, Jiangsu, China
| | - Mohamed Diaby
- College of Animal Science & Technology, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009, Jiangsu, China
| | - Cai Chen
- College of Animal Science & Technology, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009, Jiangsu, China
| | - Xiaoyan Wang
- College of Animal Science & Technology, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009, Jiangsu, China
| | - Zoltán Ivics
- Division of Medical Biotechnology, Paul Ehrlich Institute, 63225, Langen, Germany
| | - Chengyi Song
- College of Animal Science & Technology, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
3
|
Sang Y, Gao B, Diaby M, Zong W, Chen C, Shen D, Wang S, Wang Y, Ivics Z, Song C. Incomer, a DD36E family of Tc1/mariner transposons newly discovered in animals. Mob DNA 2019; 10:45. [PMID: 31788035 PMCID: PMC6875036 DOI: 10.1186/s13100-019-0188-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 11/11/2019] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The Tc1/mariner superfamily might represent the most diverse and widely distributed group of DNA transposons. Several families have been identified; however, exploring the diversity of this superfamily and updating its classification is still ongoing in the life sciences. RESULTS Here we identified a new family of Tc1/mariner transposons, named Incomer (IC), which is close to, but distinct from the known family DD34E/Tc1. ICs have a total length of about 1.2 kb, and harbor a single open reading frame encoding a ~ 346 amino acid transposase with a DD36E motif and flanked by short terminal inverted repeats (TIRs) (22-32 base pairs, bp). This family is absent from prokaryotes, and is mainly distributed among vertebrates (141 species of four classes), including Agnatha (one species of jawless fish), Actinopterygii (132 species of ray-finned fish), Amphibia (four species of frogs), and Mammalia (four species of bats), but have a restricted distribution in invertebrates (four species in Insecta and nine in Arachnida). All ICs in bats (Myotis lucifugus, Eptesicus fuscus, Myotis davidii, and Myotis brandtii) are present as truncated copies in these genomes, and most of them are flanked by relatively long TIRs (51-126 bp). High copy numbers of miniature inverted-repeat transposable elements (MITEs) derived from ICs were also identified in bat genomes. Phylogenetic analysis revealed that ICs are more closely related to DD34E/Tc1 than to other families of Tc1/mariner (e.g., DD34D/mariner and DD × D/pogo), and can be classified into four distinct clusters. The host and IC phylogenies and pairwise distance comparisons between RAG1 genes and all consensus sequences of ICs support the idea that multiple episodes of horizontal transfer (HT) of ICs have occurred in vertebrates. In addition, the discovery of intact transposases, perfect TIRs and target site duplications of ICs suggests that this family may still be active in Insecta, Arachnida, frogs, and fish. CONCLUSIONS Exploring the diversity of Tc1/mariner transposons and revealing their evolutionary profiles will help provide a better understanding of the evolution of DNA transposons and their impact on genomic evolution. Here, a newly discovered family (DD36E/Incomer) of Tc1/mariner transposons is described in animals. It displays a similar structural organization and close relationship with the known DD34E/Tc1 elements, but has a relatively narrow distribution, indicating that DD36E/IC might have originated from the DD34E/Tc1 family. Our data also support the hypothesis of horizontal transfer of IC in vertebrates, even invading one lineage of mammals (bats). This study expands our understanding of the diversity of Tc1/mariner transposons and updates the classification of this superfamily.
Collapse
Affiliation(s)
- Yatong Sang
- Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Bo Gao
- Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, 225009 Jiangsu China
- Division of Medical Biotechnology, Paul Ehrlich Institute, 63225 Langen, Germany
| | - Mohamed Diaby
- Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Wencheng Zong
- Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Cai Chen
- Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Dan Shen
- Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Saisai Wang
- Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Yali Wang
- Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Zoltán Ivics
- Division of Medical Biotechnology, Paul Ehrlich Institute, 63225 Langen, Germany
| | - Chengyi Song
- Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, 225009 Jiangsu China
| |
Collapse
|
4
|
Palazzo A, Lovero D, D’Addabbo P, Caizzi R, Marsano RM. Identification of Bari Transposons in 23 Sequenced Drosophila Genomes Reveals Novel Structural Variants, MITEs and Horizontal Transfer. PLoS One 2016; 11:e0156014. [PMID: 27213270 PMCID: PMC4877112 DOI: 10.1371/journal.pone.0156014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 05/09/2016] [Indexed: 11/18/2022] Open
Abstract
Bari elements are members of the Tc1-mariner superfamily of DNA transposons, originally discovered in Drosophila melanogaster, and subsequently identified in silico in 11 sequenced Drosophila genomes and as experimentally isolated in four non-sequenced Drosophila species. Bari-like elements have been also studied for their mobility both in vivo and in vitro. We analyzed 23 Drosophila genomes and carried out a detailed characterization of the Bari elements identified, including those from the heterochromatic Bari1 cluster in D. melanogaster. We have annotated 401 copies of Bari elements classified either as putatively autonomous or inactive according to the structure of the terminal sequences and the presence of a complete transposase-coding region. Analyses of the integration sites revealed that Bari transposase prefers AT-rich sequences in which the TA target is cleaved and duplicated. Furthermore evaluation of transposon’s co-occurrence near the integration sites of Bari elements showed a non-random distribution of other transposable elements. We also unveil the existence of a putatively autonomous Bari1 variant characterized by two identical long Terminal Inverted Repeats, in D. rhopaloa. In addition, we detected MITEs related to Bari transposons in 9 species. Phylogenetic analyses based on transposase gene and the terminal sequences confirmed that Bari-like elements are distributed into three subfamilies. A few inconsistencies in Bari phylogenetic tree with respect to the Drosophila species tree could be explained by the occurrence of horizontal transfer events as also suggested by the results of dS analyses. This study further clarifies the Bari transposon’s evolutionary dynamics and increases our understanding on the Tc1-mariner elements’ biology.
Collapse
Affiliation(s)
- Antonio Palazzo
- Dipartimento di Biologia, Università degli Studi di Bari “Aldo Moro” via Orabona 4 70125, Bari, Italy
| | - Domenica Lovero
- Istituto di Biomembrane e Bioenergetica, Consiglio Nazionale delle Ricerche, Via Amendola 165/A, 70126, Bari, Italy
| | - Pietro D’Addabbo
- Dipartimento di Biologia, Università degli Studi di Bari “Aldo Moro” via Orabona 4 70125, Bari, Italy
| | - Ruggiero Caizzi
- Dipartimento di Biologia, Università degli Studi di Bari “Aldo Moro” via Orabona 4 70125, Bari, Italy
| | - René Massimiliano Marsano
- Dipartimento di Biologia, Università degli Studi di Bari “Aldo Moro” via Orabona 4 70125, Bari, Italy
- * E-mail:
| |
Collapse
|
5
|
Abstract
Sleeping Beauty (SB) is a synthetic transposon that was constructed based on sequences of transpositionally inactive elements isolated from fish genomes. SB is a Tc1/mariner superfamily transposon following a cut-and-paste transpositional reaction, during which the element-encoded transposase interacts with its binding sites in the terminal inverted repeats of the transposon, promotes the assembly of a synaptic complex, catalyzes excision of the element out of its donor site, and integrates the excised transposon into a new location in target DNA. SB transposition is dependent on cellular host factors. Transcriptional control of transposase expression is regulated by the HMG2L1 transcription factor. Synaptic complex assembly is promoted by the HMGB1 protein and regulated by chromatin structure. SB transposition is highly dependent on the nonhomologous end joining (NHEJ) pathway of double-strand DNA break repair that generates a transposon footprint at the excision site. Through its association with the Miz-1 transcription factor, the SB transposase downregulates cyclin D1 expression that results in a slowdown of the cell-cycle in the G1 phase, where NHEJ is preferentially active. Transposon integration occurs at TA dinucleotides in the target DNA, which are duplicated at the flanks of the integrated transposon. SB shows a random genome-wide insertion profile in mammalian cells when launched from episomal vectors and "local hopping" when launched from chromosomal donor sites. Some of the excised transposons undergo a self-destructive autointegration reaction, which can partially explain why longer elements transpose less efficiently. SB became an important molecular tool for transgenesis, insertional mutagenesis, and gene therapy.
Collapse
|
6
|
Palazzo A, Moschetti R, Caizzi R, Marsano RM. The Drosophila mojavensis Bari3 transposon: distribution and functional characterization. Mob DNA 2014; 5:21. [PMID: 25093043 PMCID: PMC4120734 DOI: 10.1186/1759-8753-5-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 06/13/2014] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Bari-like transposons belong to the Tc1-mariner superfamily, and they have been identified in several genomes of the Drosophila genus. This transposon's family has been used as paradigm to investigate the complex dynamics underlying the persistence and structural evolution of transposable elements (TEs) within a genome. Three structural Bari variants have been identified so far and can be distinguished based on the organization of their terminal inverted repeats. Bari3 is the last discovered member of this family identified in Drosophila mojavensis, a recently emerged species of the Repleta group of the genus Drosophila. RESULTS We studied the insertion pattern of Bari3 in different D. mojavensis populations and found evidence of recent transposition activity. Analysis of the transposase domains unveiled the presence of a functional nuclear localization signal, as well as a functional binding domain. Using luciferase-based assays, we investigated the promoter activity of Bari3 as well as the interaction of its transposase with its left terminus. The results suggest that Bari3 is transposition-competent. Finally we demonstrated transposase transcript processing when the transposase gene is overexpressed in vivo and in vitro. CONCLUSIONS Bari3 displays very similar structural and functional features with its close relative, Bari1. Our results strongly suggest that Bari3 is an independent element that has generated genomic diversity in D. mojavensis. It can autonomously transcribe its transposase gene, which in turn can localize in the nucleus and bind the terminal inverted repeats of the transposon. Nevertheless, the identification of an unpredicted spliced form of the Bari3 transposase transcript allows us to hypothesize a control mechanism of its mobility based on mRNA processing. These results will aid the studies on the Bari family of transposons, which is intriguing for its widespread diffusion in Drosophilids coupled with a structural diversity generated during the evolution of Bari-like elements in their host genomes.
Collapse
Affiliation(s)
- Antonio Palazzo
- Dipartimento di Biologia, Università degli Studi di Bari "Aldo Moro", Via Orabona 4, 70125 Bari, Italy
| | - Roberta Moschetti
- Dipartimento di Biologia, Università degli Studi di Bari "Aldo Moro", Via Orabona 4, 70125 Bari, Italy
| | - Ruggiero Caizzi
- Dipartimento di Biologia, Università degli Studi di Bari "Aldo Moro", Via Orabona 4, 70125 Bari, Italy
| | - René Massimiliano Marsano
- Dipartimento di Biologia, Università degli Studi di Bari "Aldo Moro", Via Orabona 4, 70125 Bari, Italy
| |
Collapse
|
7
|
Blumenstiel JP. Whole genome sequencing in Drosophila virilis identifies Polyphemus, a recently activated Tc1-like transposon with a possible role in hybrid dysgenesis. Mob DNA 2014; 5:6. [PMID: 24555450 PMCID: PMC3941972 DOI: 10.1186/1759-8753-5-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Accepted: 01/28/2014] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Hybrid dysgenic syndromes in Drosophila have been critical for characterizing host mechanisms of transposable element (TE) regulation. This is because a common feature of hybrid dysgenesis is germline TE mobilization that occurs when paternally inherited TEs are not matched with a maternal pool of silencing RNAs that maintain transgenerational TE control. In the face of this imbalance TEs become activated in the germline and can cause F1 sterility. The syndrome of hybrid dysgenesis in Drosophila virilis was the first to show that the mobilization of one dominant TE, the Penelope retrotransposon, may lead to the mobilization of other unrelated elements. However, it is not known how many different elements contribute and no exhaustive search has been performed to identify additional ones. To identify additional TEs that may contribute to hybrid dysgenesis in Drosophila virilis, I analyzed repeat content in genome sequences of inducer and non-inducer lines. RESULTS Here I describe Polyphemus, a novel Tc1-like DNA transposon, which is abundant in the inducer strain of D. virilis but highly degraded in the non-inducer strain. Polyphemus expression is also increased in the germline of progeny of the dysgenic cross relative to reciprocal progeny. Interestingly, like the Penelope element, it has experienced recent re-activation within the D. virilis lineage. CONCLUSIONS Here I present the results of a comprehensive search to identify additional factors that may cause hybrid dysgenesis in D. virilis. Polyphemus, a novel Tc1-like DNA transposon, has recently become re-activated in Drosophila virilis and likely contributes to the hybrid dysgenesis syndrome. It has been previously shown that the Penelope element has also been re-activated in the inducer strain. This suggests that TE co-reactivation within species may synergistically contribute to syndromes of hybrid dysgenesis.
Collapse
Affiliation(s)
- Justin P Blumenstiel
- Department of Ecology and Evolutionary Biology, University of Kansas, 1200 Sunnyside Avenue, Lawrence KS 66049, USA.
| |
Collapse
|
8
|
Palazzo A, Marconi S, Specchia V, Bozzetti MP, Ivics Z, Caizzi R, Marsano RM. Functional characterization of the Bari1 transposition system. PLoS One 2013; 8:e79385. [PMID: 24244492 PMCID: PMC3828361 DOI: 10.1371/journal.pone.0079385] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 09/20/2013] [Indexed: 01/12/2023] Open
Abstract
The transposons of the Bari family are mobile genetic elements widespread in the Drosophila genus. However, despite a broad diffusion, virtually no information is available on the mechanisms underlying their mobility. In this paper we report the functional characterization of the Bari elements transposition system. Using the Bari1 element as a model, we investigated the subcellular localization of the transposase, its physical interaction with the transposon, and its catalytic activity. The Bari1 transposase localized in the nucleus and interacted with the terminal sequences of the transposon both in vitro and in vivo, however, no transposition activity was detected in transposition assays. Profiling of mRNAs expressed by the transposase gene revealed the expression of abnormal, internally processed transposase transcripts encoding truncated, catalytically inactive transposase polypeptides. We hypothesize that a post-transcriptional control mechanism produces transposase-derived polypeptides that effectively repress transposition. Our findings suggest further clues towards understanding the mechanisms that control transposition of an important class of mobile elements, which are both an endogenous source of genomic variability and widely used as transformation vectors/biotechnological tools.
Collapse
Affiliation(s)
| | - Simona Marconi
- Dipartimento di Biologia, Università di Bari, Bari, Italy
| | - Valeria Specchia
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali (DiSTeBA), Università del Salento, Lecce, Italy
| | - Maria Pia Bozzetti
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali (DiSTeBA), Università del Salento, Lecce, Italy
| | - Zoltán Ivics
- Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany
| | | | | |
Collapse
|
9
|
Wallau GL, Kaminski VL, Loreto ELS. The role of vertical and horizontal transfer in the evolution of Paris-like elements in drosophilid species. Genetica 2012; 139:1487-97. [PMID: 22527689 DOI: 10.1007/s10709-012-9648-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 04/05/2012] [Indexed: 10/28/2022]
Abstract
The transposable element (TE) Paris was described in a Drosophila virilis strain (virilis species group) as causing a hybrid dysgenesis with other mobile genetic elements. Since then, the element Paris has only been found in D. buzzatii, a species from the repleta group. In this study, we performed a search for Paris-like elements in 56 species of drosophilids to improve the knowledge about the distribution and evolution of this element. Paris-like elements were found in 30 species from the Drosophila genus, 15 species from the Drosophila subgenus and 15 species from the Sophophora subgenus. Analysis of the complete sequences obtained from the complete available Drosophila genomes has shown that there are putative active elements in five species (D. elegans, D. kikkawai, D. ananassae, D. pseudoobscura and D. mojavensis). The Paris-like elements showed an approximately 242-bp-long terminal inverted repeats in the 5' and 3' boundaries (called LIR: long inverted repeat), with two 28-bp-long direct repeats in each LIR. All potentially active elements presented degeneration in the internal region of terminal inverted repeat. Despite the degeneration of the LIR, the distance of 185 bp between the direct repeats was always maintained. This conservation suggests that the spacing between direct repeats is important for transposase binding. The distribution analysis showed that these elements are widely distributed in other Drosophila groups beyond the virilis and repleta groups. The evolutionary analysis of Paris-like elements suggests that they were present as two subfamilies with the common ancestor of the Drosophila genus. Since then, these TEs have been primarily maintained by vertical transmission with some events of stochastic loss and horizontal transfer.
Collapse
Affiliation(s)
- Gabriel Luz Wallau
- Pós Graduação em Biodiversidade Animal, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| | | | | |
Collapse
|
10
|
Linheiro RS, Bergman CM. Whole genome resequencing reveals natural target site preferences of transposable elements in Drosophila melanogaster. PLoS One 2012; 7:e30008. [PMID: 22347367 PMCID: PMC3276498 DOI: 10.1371/journal.pone.0030008] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 12/11/2011] [Indexed: 12/20/2022] Open
Abstract
Transposable elements are mobile DNA sequences that integrate into host genomes using diverse mechanisms with varying degrees of target site specificity. While the target site preferences of some engineered transposable elements are well studied, the natural target preferences of most transposable elements are poorly characterized. Using population genomic resequencing data from 166 strains of Drosophila melanogaster, we identified over 8,000 new insertion sites not present in the reference genome sequence that we used to decode the natural target preferences of 22 families of transposable element in this species. We found that terminal inverted repeat transposon and long terminal repeat retrotransposon families present clade-specific target site duplications and target site sequence motifs. Additionally, we found that the sequence motifs at transposable element target sites are always palindromes that extend beyond the target site duplication. Our results demonstrate the utility of population genomics data for high-throughput inference of transposable element targeting preferences in the wild and establish general rules for terminal inverted repeat transposon and long terminal repeat retrotransposon target site selection in eukaryotic genomes.
Collapse
Affiliation(s)
- Raquel S. Linheiro
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Casey M. Bergman
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
11
|
Ni J, Clark KJ, Fahrenkrug SC, Ekker SC. Transposon tools hopping in vertebrates. BRIEFINGS IN FUNCTIONAL GENOMICS AND PROTEOMICS 2009; 7:444-53. [PMID: 19109308 DOI: 10.1093/bfgp/eln049] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In the past decade, tools derived from DNA transposons have made major contributions to vertebrate genetic studies from gene delivery to gene discovery. Multiple, highly complementary systems have been developed, and many more are in the pipeline. Judging which DNA transposon element will work the best in diverse uses from zebrafish genetic manipulation to human gene therapy is currently a complex task. We have summarized the major transposon vector systems active in vertebrates, comparing and contrasting known critical biochemical and in vivo properties, for future tool design and new genetic applications.
Collapse
Affiliation(s)
- Jun Ni
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|
12
|
Conserved motifs and dynamic aspects of the terminal inverted repeat organization within Bari-like transposons. Mol Genet Genomics 2008; 279:451-61. [PMID: 18247055 DOI: 10.1007/s00438-008-0324-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2007] [Accepted: 01/15/2008] [Indexed: 10/22/2022]
Abstract
In this work the structural variations of Terminal Inverted Repeats (TIR) of Bari like transposons in Drosophila species has been studied. The aim is to try and assess the relevance of different variants in the evolutionary distribution of Bari elements. Bari is a member of the widespread Tc1 superfamily of transposable elements that has colonized most species of the Drosophila genus. We previously reported the structure of two related elements that differ in their TIR organization: Bari1 harbouring 26-bp TIR (short TIRs) and Bari2 with about 250-bp TIR (long TIIR). While elements with short TIRs are complete and potentially autonomous, long ones are invariably composed of defective copies. The results show that in D. pseudobscura, D. persimilis and D. mojavensis, there is a third class of Bari elements, Bari3, that exhibit a long TIR structure and are not defective. Phylogenetic relationships among reconstructed transposases are consistent with the three subfamilies sharing a common origin. However, the final TIR organization into long or short structure is not related by descent but appears to be lineage-specific. Furthermore, we show that, independently of origin and organization, within the 250-bp terminal sequences there are three regions that are conserved in both sequence and position suggesting they are under functional constraint.
Collapse
|
13
|
Nefedova LN, Kim AI. HB mobile element in the Drosophila melanogaster genome: Structural and functional analyses. RUSS J GENET+ 2007. [DOI: 10.1134/s1022795407050043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Tsutsumi M, Imai S, Kyono-Hamaguchi Y, Hamaguchi S, Koga A, Hori H. Color reversion of the albino medaka fish associated with spontaneous somatic excision of the Tol-1 transposable element from the tyrosinase gene. ACTA ACUST UNITED AC 2006; 19:243-7. [PMID: 16704459 DOI: 10.1111/j.1600-0749.2006.00300.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The medaka fish albino mutant, i(1) is one of the Tomita collection of medaka pigmentation mutants which exhibits a complete albino phenotype, because of inactivation of the tyrosinase gene due to insertion of a transposable element, Tol-1. Recently, mosaic black-pigmented i(1) medaka fish have arisen in one of our laboratory breeding populations. Their pigmented cells have been observed in all of the tissues, including the eye and skin, in which melanin is detectable in the wild type. In this study, we analyzed the tyrosinase gene of revertants and showed Tol-1 to have been precisely excised from the gene, suggesting a causal relationship. Mosaic patterns of pigmentation indicate spontaneous somatic excision of the element from the tyrosinase gene. To our knowledge, this is the first transposable element with somatic excision activity demonstrated phenotypically in vertebrates. The pattern of pigmentation in mosaic revertants indicates frequencies of melanin pigments to be consistent with the numbers of melanophores per unit area of body sites, such as the eyes, head and dorsal trunk.
Collapse
Affiliation(s)
- Makiko Tsutsumi
- Division of Biological Sciences, Graduate School of Science, Nagoya University, Japan
| | | | | | | | | | | |
Collapse
|
15
|
Leroy H, Castagnone-Sereno P, Renault S, Augé-Gouillou C, Bigot Y, Abad P. Characterization of Mcmar1, a mariner-like element with large inverted terminal repeats (ITRs) from the phytoparasitic nematode Meloidogyne chitwoodi. Gene 2003; 304:35-41. [PMID: 12568713 DOI: 10.1016/s0378-1119(02)01144-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Two copies of a new mariner-like element (MLE) presenting unusual inverted terminal repeats (ITRs), Mcmar1-1 and Mcmar1-2, were cloned and sequenced in the genome of the phytoparasitic nematode Meloidogyne chitwoodi. Although the sequence features of these Mcmar1 transposons are commonplace and link them to the mariner family, at their extremities they have large 355-pb long inverted terminal repeats that are perfectly conserved. This characteristic distinguishes them from all the other MLEs so far described that have imperfectly conserved ITRs of about 26-30 bp. In consequence, the sequenced full-length Mcmar1-1 element is 2000 bp long, and comprises an uninterrupted open reading frame (ORF) that encodes a putatively active transposase with 340 amino acid residues. The Mcmar1-2 element is a deleted form of Mcmar1-1 that contains a deletion overlapping most of the internal region of the 5'ITR and the 5' region of the transposase ORF. The presence of large ITRs in different transposons related to the Tc1-mariner super-family is discussed.
Collapse
Affiliation(s)
- Hélène Leroy
- Unité Interactions Plantes-Microorganismes et Santé Végétale, I.N.R.A., 123 Bd Francis Meilland, BP2078, 06606, Antibes Cedex, France
| | | | | | | | | | | |
Collapse
|
16
|
Maside X, Bartolomé C, Charlesworth B. S-element insertions are associated with the evolution of the Hsp70 genes in Drosophila melanogaster. Curr Biol 2002; 12:1686-91. [PMID: 12361573 DOI: 10.1016/s0960-9822(02)01181-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The "selfish DNA" theory postulates that transposable elements (TEs) are intragenomic parasites, and that natural selection against deleterious effects associated with their presence is the main force preventing their genomic spread in natural populations. In agreement with this model, TEs in Drosophila melanogaster populations are usually found at low frequencies in most genomic locations. Only a few cases of fixation of TE insertions have been reported, usually in regions of low recombination, where selection is expected to be less effective. Here, we report a population genetics study on the apparent fixation of an S-element in a highly recombining region in two natural populations of D. melanogaster. Three similar fragments of an S-element are inserted into the 5' regions of three members of a heat shock gene family, Hsp70 (Hsp70Aa and Hsp70Ab in polytene chromosome band 87A, and Hsp70Bb in 87C). A PCR-based analysis suggests that the insertions are fixed or at high frequencies in the entire species. A population survey of the levels of nucleotide sequence variation at the insertion site in 87C in two natural populations of D. melanogaster provided evidence for reduced levels of variation in the region, normal levels of recombination, and selection, reflected in a significant departure from neutrality of the variant frequency spectrum. This was particularly strong for the S-element inverted repeats (IRs) and suggests that these are of functional significance for the host.
Collapse
Affiliation(s)
- Xulio Maside
- Institute of Cell, Animal and Population Biology, University of Edinburgh, EH9 3JT, Edinburgh, United Kingdom.
| | | | | |
Collapse
|
17
|
Wang W, Brunet FG, Nevo E, Long M. Origin of sphinx, a young chimeric RNA gene in Drosophila melanogaster. Proc Natl Acad Sci U S A 2002; 99:4448-53. [PMID: 11904380 PMCID: PMC123668 DOI: 10.1073/pnas.072066399] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Non-protein-coding RNA genes play an important role in various biological processes. How new RNA genes originated and whether this process is controlled by similar evolutionary mechanisms for the origin of protein-coding genes remains unclear. A young chimeric RNA gene that we term sphinx (spx) provides the first insight into the early stage of evolution of RNA genes. spx originated as an insertion of a retroposed sequence of the ATP synthase chain F gene at the cytological region 60DB since the divergence of Drosophila melanogaster from its sibling species 2-3 million years ago. This retrosequence, which is located at 102F on the fourth chromosome, recruited a nearby exon and intron, thereby evolving a chimeric gene structure. This molecular process suggests that the mechanism of exon shuffling, which can generate protein-coding genes, also plays a role in the origin of RNA genes. The subsequent evolutionary process of spx has been associated with a high nucleotide substitution rate, possibly driven by a continuous positive Darwinian selection for a novel function, as is shown in its sex- and development-specific alternative splicing. To test whether spx has adapted to different environments, we investigated its population genetic structure in the unique "Evolution Canyon" in Israel, revealing a similar haplotype structure in spx, and thus similar evolutionary forces operating on spx between environments.
Collapse
Affiliation(s)
- Wen Wang
- Department of Ecology and Evolution, University of Chicago, 1101 East 57th Street, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
18
|
Leaver MJ. A family of Tc1-like transposons from the genomes of fishes and frogs: evidence for horizontal transmission. Gene 2001; 271:203-14. [PMID: 11418241 DOI: 10.1016/s0378-1119(01)00530-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Tc1-like transposons are very widely distributed within the genomes of animal species. They consist of an inverted repeat sequence flanking a transposase gene with homology to the mobile DNA element, Tc1 of the nematode Caenorhabditis elegans. These elements seem particularly to infest the genomes of fish and amphibian species where they can account for 1% of the total genome. However, all vertebrate Tc1-like elements isolated so far are non-functional in that they contain multiple frameshifts within their transposase coding regions. Here I describe a Tc1-like transposon (PPTN) from the genome of a marine flatfish species (Pleuronectes platessa) which bears conserved inverted repeats flanking an apparently intact transposase gene. Closely related, although degenerate, Tc1-like transposons were also isolated from the genomes of Atlantic salmon (SSTN, Salmo salar) and frog (RTTN, Rana temporaria). Consensual nucleic acid sequences were derived by comparing several individual isolates from each species and conceptual amino acid sequences were thence derived for their transposases. Phylogenetic analysis of these sequences with previously isolated Tc1-like transposases shows that the elements from plaice, salmon and frog comprise a new subfamily of Tc1-like transposons. Each member is distinct in that it is not found in the genomes of the other species tested. Plaice genomes contain about 300 copies of PPTN, salmon 1200 copies of SSTN and frog genomes about 500 copies of RTTN. The presence of these closely related elements in the genomes of fish and frog species, representing evolutionary lines, which diverged more than 400 million years ago, is not consistent with a vertical transmission model for their distributions.
Collapse
Affiliation(s)
- M J Leaver
- Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, UK.
| |
Collapse
|
19
|
Izsvák Z, Ivics Z, Plasterk RH. Sleeping Beauty, a wide host-range transposon vector for genetic transformation in vertebrates. J Mol Biol 2000; 302:93-102. [PMID: 10964563 DOI: 10.1006/jmbi.2000.4047] [Citation(s) in RCA: 242] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Sleeping Beauty (SB), a member of the Tc1/mariner superfamily of transposable elements, is the only active DNA-based transposon system of vertebrate origin that is available for experimental manipulation. We have been using the SB element as a research tool to investigate some of the cis and trans-requirements of element mobilization, and mechanisms that regulate transposition in vertebrate species. In contrast to mariner transposons, which are regulated by overexpression inhibition, the frequency of SB transposition was found to be roughly proportional to the amount of transposase present in cells. Unlike Tc1 and mariner elements, SB contains two binding sites within each of its terminal inverted repeats, and we found that the presence of both of these sites is a strict requirement for mobilization. In addition to the size of the transposon itself, the length as well as sequence of the DNA outside the transposon have significant effects on transposition. As a general rule, the closer the transposon ends are, the more efficient transposition is from a donor molecule. We have found that SB can transform a wide range of vertebrate cells from fish to human. However, the efficiency and precision of transposition varied significantly among cell lines, suggesting potential involvement of host factors in SB transposition. A positive-negative selection assay was devised to enrich populations of cells harboring inserted transposons in their chromosomes. Using this assay, of the order of 10,000 independent transposon insertions can be generated in human cells in a single transfection experiment. Sleeping Beauty can be a powerful alternative to other vectors that are currently used for the production of transgenic animals and for human gene therapy.
Collapse
Affiliation(s)
- Z Izsvák
- Division of Molecular Biology Centre for Biomedical Genetics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | |
Collapse
|
20
|
Abstract
Transgenic technology is currently applied to several animal species of agricultural or medical importance, such as fish, cattle, mosquitos and parasitic worms. However, the repertoire of genetic tools used for molecular analyses of mice and Drosophila is not always applicable to other species. For example, while retroviral enhancer-trap experiments in mice can be based on embryonic stem (ES) cell technology, this is not currently an option with other animals. Similarly, the germline transformation of Drosophila depends on the use of the P-element transposon, which does not jump in other genera. This article analyses the main characteristics of Tc1/mariner transposable elements, examines some of the factors that have contributed to their evolutionary success, and describes their potential, as well as their limitations, for transgenesis and insertional mutagenesis in diverse animals.
Collapse
Affiliation(s)
- R H Plasterk
- Division of Molecular Biology, Netherlands Cancer Institute and Center for Biomedical Genetics, Division of Molecular Biology, Plesmanlaan 121, Amsterdam 1066CX, The Netherlands.
| | | | | |
Collapse
|
21
|
Ivics Z, Izsvák Z, Hackett PB. Genetic applications of transposons and other repetitive elements in zebrafish. Methods Cell Biol 1999; 60:99-131. [PMID: 9891333 DOI: 10.1016/s0091-679x(08)61896-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Z Ivics
- Division of Molecular Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | |
Collapse
|
22
|
Moschetti R, Caggese C, Barsanti P, Caizzi R. Intra- and interspecies variation among Bari-1 elements of the melanogaster species group. Genetics 1998; 150:239-50. [PMID: 9725843 PMCID: PMC1460315 DOI: 10.1093/genetics/150.1.239] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have investigated the distribution of sequences homologous to Bari-1, a Tc1-like transposable element first identified in Drosophila melanogaster, in 87 species of the Drosophila genus. We have also isolated and sequenced Bari-1 homologues from D. simulans, D. mauritiana, and D. sechellia, the species constituting with D. melanogaster the melanogaster complex, and from D. diplacantha and D. erecta, two phylogenetically more distant species of the melanogaster group. Within the melanogaster complex the Bari-1 elements are extremely similar to each other, showing nucleotide identity values of at least 99.3%. In contrast, Bari-1-like elements from D. diplacantha and D. erecta are on average only 70% similar to D. melanogaster Bari-1 and are usually defective due to nucleotide deletions and/or insertions in the ORFs encoding their transposases. In D. erecta the defective copies are all located in the chromocenter and on chromosome 4. Surprisingly, while D. melanogaster Bari-1 elements possess 26-bp inverted terminal repeats, their D. diplacantha and D. erecta homologues possess long inverted terminal repeats similar to the terminal structures observed in the S elements of D. melanogaster and in several other Tc1-like elements of different organisms. This finding, together with the nucleotide and amino acid identity level between D. diplacantha and D. erecta elements and Bari-1 of D. melanogaster, suggests a common evolutionary origin and a rapid diversification of the termini of these Drosophila Tc1-like elements.
Collapse
Affiliation(s)
- R Moschetti
- Istituto di Genetica, Università di Bari, 70126 Bari, Italy
| | | | | | | |
Collapse
|
23
|
Izsvák Z, Ivics Z, Hackett PB. Repetitive elements and their genetic applications in zebrafish. Biochem Cell Biol 1997. [DOI: 10.1139/o97-045] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Repetitive elements provide important clues about chromosome dynamics, evolutionary forces, and mechanisms for exchange of genetic information between organisms. Repetitive sequences, especially the mobile elements, have many potential applications in genetic research. DNA transposons and retroposons are routinely used for insertional mutagenesis, gene mapping, gene tagging, and gene transfer in several model systems. Once they are developed for the zebrafish, they will greatly facilitate the identification, mapping, and isolation of genes involved in development as well as the investigation of the evolutionary processes that have been shaping eukaryotic genomes. In this review repetitive elements are characterized in terms of their lengths and other physical properties, copy numbers, modes of amplification, and mobilities within a single genome and between genomes. Examples of how they can be used to screen genomes for species and individual strain differences are presented. This review does not cover repetitive gene families that encode well-studied products such as rRNAs, tRNAs, and the like.
Collapse
|
24
|
Arcà B, Zabalou S, Loukeris TG, Savakis C. Mobilization of a Minos transposon in Drosophila melanogaster chromosomes and chromatid repair by heteroduplex formation. Genetics 1997; 145:267-79. [PMID: 9071583 PMCID: PMC1207794 DOI: 10.1093/genetics/145.2.267] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Transposase-mediated mobilization of the element Minos has been studied in the Drosophila melanogaster genome. Excision and transposition of a nonautonomous Minos transposon in the presence of a Minos transposase gene was detected with a dominant eye color marker carried by the transposon. Frequencies of excision in somatic tissues and in the germ line were higher in flies heterozygous for the transposon than in homozygotes or hemizygotes. Transposition of a X chromosome-linked insertion of Minos into new autosomal sites occurred in 1-12% of males expressing transposase, suggesting that this system is usable for gene tagging and enhancer trapping in Drosophila. Sequence analysis of PCR-amplified donor sites after excision showed precise restoration of the original target sequence in approximately 75% of events in heterozygotes and the presence of footprints or partially deleted elements in the remaining events. Most footprints consisted of the four terminal bases of the transposon, flanked by the TA target duplication. Sequencing of a chromosomal donor site that was directly cloned after excision showed a characteristic two-base mismatch heteroduplex in the center of the 6-bp footprint. Circular extrachromosomal forms of the transposon, presumably representing excised Minos elements, could be detected only in the presence of transposase. A model for chromatid repair after Minos excision is discussed in which staggered cuts are first produced at the ends of the inverted repeats, the broken chromatid ends are joined, and the resulting heteroduplex is subsequently repaired. The model also suggests a simple mechanism for the production of the target site duplication and for regeneration of the transposon ends during reintegration.
Collapse
Affiliation(s)
- B Arcà
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Greece
| | | | | | | |
Collapse
|
25
|
Avancini RM, Walden KK, Robertson HM. The genomes of most animals have multiple members of the Tc1 family of transposable elements. Genetica 1996; 98:131-40. [PMID: 8976061 DOI: 10.1007/bf00121361] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A PCR assay was employed to detect sequence homologous to the transposase gene of the Tc1 family of transposable elements in a wide variety of animals. Amplification products of the appropriate size were obtained from most insects (92 of 108 examined; 85%), most other invertebrates (33 of 43; 77%), and many vertebrates (18 of 36; 50%). Sequencing a sample of cloned PCR products from eight insects, one hydra, and two frogs revealed that each had multiple distinct members of the family in their genomes. In the most extreme case, the horn fly Haematobia irritans yielded evidence of seventeen distinct types of Tc1 family elements. Most of the sequences obtained indicate that the elements are within the range of variation already known from fungi, nematodes, flies, fish and frogs. Some, however, had novel length variants or divergent sequences, indicating that they represent new subfamilies of these transposons. These results indicate that this family of transposons is extremely common in animal genomes, with multiple representatives in most genomes.
Collapse
Affiliation(s)
- R M Avancini
- Department of Entomology, University of Illinois, Urbana 61801, USA
| | | | | |
Collapse
|
26
|
Ke Z, Grossman GL, Cornel AJ, Collins FH. Quetzal: a transposon of the Tc1 family in the mosquito Anopheles albimanus. Genetica 1996; 98:141-7. [PMID: 8976062 DOI: 10.1007/bf00121362] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A member of the Tc1 family of transposable elements has been identified in the Central and South American mosquito Anopheles albimanus. The full-length Quetzal element is 1680 base pairs (bp) in length, possesses 236 bp inverted terminal repeats (ITRs), and has a single open reading frame (ORF) with the potential of encoding a 341-amino-acid (aa) protein that is similar to the transposases of other members of the Tc1 family, particularly elements described from three different Drosophila species. The approximately 10-12 copies per genome of Quetzal are found in the euchromatin of all three chromosomes of A. albimanus. One full-length clone, Que27, appears capable of encoding a complete transposase and may represent a functional copy of this element.
Collapse
Affiliation(s)
- Z Ke
- Division of Parasitic Diseases, Centers for Disease Control and Prevention, Chamblee, GA 30341, USA
| | | | | | | |
Collapse
|
27
|
Besansky NJ, Mukabayire O, Bedell JA, Lusz H. Pegasus, a small terminal inverted repeat transposable element found in the white gene of Anopheles gambiae. Genetica 1996; 98:119-29. [PMID: 8976060 DOI: 10.1007/bf00121360] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Pegasus, a novel transposable element, was discovered as a length polymorphism in the white gene of Anopheles gambiae. Sequence analysis revealed that this 535 bp element was flanked by 8 bp target site duplications and 8 bp perfect terminal inverted repeats similar to those found in many members of the Tc1 family. Its small size and lack of long open reading frames preclude protein coding capacity. Southern analysis and in situ hybridization to polytene chromosomes demonstrated that Pegasus occurs in approximately 30 copies in the genomes of An. gambiae and its sibling species and is homogenous in structure but polymorphic in chromosomal location. Characterization of five additional elements by sequencing revealed nucleotide identities of 95% to 99%. Of 30 Pegasus-containing phage clones examined by PCR, only one contained an element exceeding 535 bp in length, due to the insertion of another transposable element-like sequence. Thus, the majority, if not all, extant Pegasus elements may be defective copies of a complete element whose contemporary existence in An. gambiae is uncertain. No Pegasus-hybridizing sequences were detected in nine other anophelines and three culicines examined, suggesting a very limited taxonomic distribution.
Collapse
Affiliation(s)
- N J Besansky
- Division of Parasitic Diseases, Centers for Disease Control and Prevention, Chamblee, GA 30341, USA
| | | | | | | |
Collapse
|
28
|
Robertson HM, Asplund ML. Bmmar1: a basal lineage of the mariner family of transposable elements in the silkworm moth, Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 1996; 26:945-954. [PMID: 9014339 DOI: 10.1016/s0965-1748(96)00061-6] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We describe a transposable element, called Bmmar1, from the genome of the silkworm moth, Bombyx mori. This element has features of the Tc1-mariner superfamily of transposable elements. Bmmar1 was first detected as a fragment in the 5' region of the larval serum protein (BmLSP) gene. Six genomic clones characterized each differed from a consensus sequence by 3-5 insertions and deletions, as well as an average of 2.3% in nucleotide sequence. The genome contains approximately 2400 copies of Bmmar1. Maximum parsimony phylogenetic analysis of the relationship of Bmmar1 and other members of the Tc1-mariner superfamily, based on their encoded transposase amino acid sequences, indicates that it represents a basal lineage of the mariner family. In particular Bmmar1 encodes a D,D37D motif thought to be the catalytic domain of mariner transposases. Bmmar1 considerably increases the known diversity of this widespread family of transposons. A new naming system is proposed for members of the family.
Collapse
Affiliation(s)
- H M Robertson
- Department of Entomology, University of Illinos, Urbana 61801, USA.
| | | |
Collapse
|