1
|
Peckenpaugh B, Yew JY, Moyle LC. Long-sperm precedence and other cryptic female choices in Drosophila melanogaster. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.25.591180. [PMID: 38712086 PMCID: PMC11071617 DOI: 10.1101/2024.04.25.591180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Females that mate multiply make postmating choices about which sperm fertilize their eggs (cryptic female choice); however, the male characteristics they use to make such choices remain unclear. In this study, we sought to understand female sperm use patterns by evaluating whether Drosophila melanogaster females adjust sperm use (second male paternity) in response to four main factors: male genotype, male courtship effort, male pheromone alteration, and male postmating reproductive morphology. Our experiment was replicated across four different D. melanogaster lines, in a full factorial design, including a pheromone manipulation in which second males were perfumed to resemble heterospecific (D. yakuba) males. We found that females prefer longer sperm-regardless of mating order-in almost all contexts; this observed pattern of 'long-sperm precedence' is consistent with female postmating choice of high-fitness male traits. Nonetheless, we also found that this general preference can be plastically altered by females in response to effects including perfuming treatment; this differential female sperm use is between otherwise identical males, and therefore solely female-mediated. Furthermore, our finding that females exercise choice using diverse criteria suggests a possible mechanism for the maintenance of variation in sexually selected male traits.
Collapse
Affiliation(s)
| | - Joanne Y. Yew
- Pacific Biosciences Research Center, University of Hawai i at Mānoa, Honolulu, Hawai i 96822
| | - Leonie C. Moyle
- Department of Biology, Indiana University, Bloomington, Indiana 47405
| |
Collapse
|
2
|
Gordon K, Gonzales P, Lee C, Marcin J, Takashima Y, Lazzaro B, Wolfner M. Drosophila Arc1 is not required for male fertility or sperm competition success. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.001053. [PMID: 38089935 PMCID: PMC10714220 DOI: 10.17912/micropub.biology.001053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 02/01/2024]
Abstract
Activity-regulated cytoskeleton associated protein (Arc1), which is required for synaptic plasticity and metabolism in Drosophila , self-assembles into capsid-like structures that transport mRNAs in extracellular vesicles. In addition to expression in the brain and nervous system, Arc1 is expressed in the male accessory glands, an endothelial tissue that produces male seminal proteins and exosomes that impact male fertility. We thus hypothesized that Arc1 might impact male fertility. We measured the fertility, mating latency, mating duration, and sperm competition performance of Arc1 males relative to controls and found no evidence that Arc1 is required for any of these measures of male fertility.
Collapse
Affiliation(s)
- Kathleen Gordon
- Department of Entomology, Cornell University, Ithaca, New York, United States
| | - Patrick Gonzales
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States
| | - Caroline Lee
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States
| | - Jeremy Marcin
- Department of Entomology, Cornell University, Ithaca, New York, United States
| | - Yoko Takashima
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States
| | - Brian Lazzaro
- Department of Entomology, Cornell University, Ithaca, New York, United States
| | - Mariana Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States
| |
Collapse
|
3
|
Cridland JM, Begun DJ. Male-derived transcripts isolated from the mated female reproductive tract in Drosophila melanogaster. G3 (BETHESDA, MD.) 2023; 13:jkad202. [PMID: 37725947 PMCID: PMC10627254 DOI: 10.1093/g3journal/jkad202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/26/2023] [Indexed: 09/21/2023]
Abstract
In species with internal fertilization, sperm, and seminal fluid are transferred from male to female during mating. While both sperm and seminal fluid contain various types of molecules, including RNA, the role of most of these molecules in the coordination of fertilization or in other possible functions is poorly understood. In Drosophila, exosomes from the accessory gland, which produces seminal fluid, are transferred to females, but their potential cargoes have not been described. Moreover, while the RNA composition of sperm has been described in several mammalian species, little work on this problem has occurred in Drosophila. Here we use single nucleotide polymorphism differences between males and females from a set of highly inbred lines of D. melanogaster, and transcriptome data from the female reproductive tract, sperm, testis, and accessory gland, to investigate the potential origin, male vs female, RNA molecules isolated from 3 female reproductive tract organs, the seminal receptacle and spermatheca, which store sperm, and the parovaria, which does not. We find that mated females carry male-derived transcripts from many genes, including those that are markers of the accessory gland and known seminal fluid proteins. Our observations also support the idea that intact sperm transcripts can be isolated from the female sperm storage organs.
Collapse
Affiliation(s)
- Julie M Cridland
- Department of Evolution and Ecology, University of California, Davis, Davis, CA 95616, USA
| | - David J Begun
- Department of Evolution and Ecology, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
4
|
Takashima YA, Majane AC, Begun DJ. Evolution of secondary cell number and position in the Drosophila accessory gland. PLoS One 2023; 18:e0278811. [PMID: 37878630 PMCID: PMC10599531 DOI: 10.1371/journal.pone.0278811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/25/2023] [Indexed: 10/27/2023] Open
Abstract
In animals with internal fertilization, males transfer gametes and seminal fluid during copulation, both of which are required for successful reproduction. In Drosophila and other insects, seminal fluid is produced in the paired accessory gland (AG), the ejaculatory duct, and the ejaculatory bulb. The D. melanogaster AG has emerged as an important model system for this component of male reproductive biology. Seminal fluid proteins produced in the Drosophila AG are required for proper storage and use of sperm by the females, and are also critical for establishing and maintaining a suite of short- and long-term postcopulatory female physiological responses that promote reproductive success. The Drosophila AG is composed of two main cell types. The majority of AG cells, which are referred to as main cells, are responsible for production of many seminal fluid proteins. A minority of cells, about 4%, are referred to as secondary cells. These cells, which are restricted to the distal tip of the D. melanogaster AG, may play an especially important role in the maintenance of the long-term female post-mating response. Many studies of Drosophila AG evolution have suggested that the proteins produced in the gland evolve quickly, as does the transcriptome. Here, we investigate the evolution of secondary cell number and position in the AG in a collection of eight species spanning the entire history of the Drosophila genus. We document a heretofore underappreciated rapid evolutionary rate for both number and position of these specialized AG cells, raising several questions about the developmental, functional, and evolutionary significance of this variation.
Collapse
Affiliation(s)
- Yoko A. Takashima
- Department of Evolution and Ecology, University of California, Davis, California, United States of America
| | - Alex C. Majane
- Department of Evolution and Ecology, University of California, Davis, California, United States of America
| | - David J. Begun
- Department of Evolution and Ecology, University of California, Davis, California, United States of America
| |
Collapse
|
5
|
Chen DS, Clark AG, Wolfner MF. Octopaminergic/tyraminergic Tdc2 neurons regulate biased sperm usage in female Drosophila melanogaster. Genetics 2022; 221:6637517. [PMID: 35809068 PMCID: PMC9339280 DOI: 10.1093/genetics/iyac096] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/07/2022] [Indexed: 02/07/2023] Open
Abstract
In polyandrous internally fertilizing species, a multiply-mated female can use stored sperm from different males in a biased manner to fertilize her eggs. The female's ability to assess sperm quality and compatibility is essential for her reproductive success, and represents an important aspect of postcopulatory sexual selection. In Drosophila melanogaster, previous studies demonstrated that the female nervous system plays an active role in influencing progeny paternity proportion, and suggested a role for octopaminergic/tyraminergic Tdc2 neurons in this process. Here, we report that inhibiting Tdc2 neuronal activity causes females to produce a higher-than-normal proportion of first-male progeny. This difference is not due to differences in sperm storage or release, but instead is attributable to the suppression of second-male sperm usage bias that normally occurs in control females. We further show that a subset of Tdc2 neurons innervating the female reproductive tract is largely responsible for the progeny proportion phenotype that is observed when Tdc2 neurons are inhibited globally. On the contrary, overactivation of Tdc2 neurons does not further affect sperm storage, release or progeny proportion. These results suggest that octopaminergic/tyraminergic signaling allows a multiply-mated female to bias sperm usage, and identify a new role for the female nervous system in postcopulatory sexual selection.
Collapse
Affiliation(s)
- Dawn S Chen
- Department of Molecular Biology and Genetics, Cornell University, Ithaca NY 14853, USA
| | - Andrew G Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca NY 14853, USA
| | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca NY 14853, USA
| |
Collapse
|
6
|
Patlar B, Civetta A. Seminal fluid gene expression and reproductive fitness in Drosophila melanogaster. BMC Ecol Evol 2022; 22:20. [PMID: 35196983 PMCID: PMC8867848 DOI: 10.1186/s12862-022-01975-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/15/2022] [Indexed: 11/24/2022] Open
Abstract
Background The rapid evolution of seminal fluid proteins (SFPs) has been suggested to be driven by adaptations to postcopulatory sexual selection (e.g. sperm competition). However, we have recently shown that most SFPs evolve rapidly under relaxed selective pressures. Given the role of SFPs in competition for fertilization phenotypes, like the ability to transfer and store sperm and the modulation of female receptivity and ovulation, the prevalence of selectively relaxed SFPs appears as a conundrum. One possible explanation is that selection on SFPs might be relaxed in terms of protein amino acid content, but adjustments of expression are essential for post-mating function. Interestingly, there is a general lack of systematic implementation of gene expression perturbation assays to monitor their effect on phenotypes related to sperm competition. Results We successfully manipulated the expression of 16 SFP encoding genes using tissue-specific knockdowns (KDs) and determined the effect of these genes’ perturbation on three important post-mating phenotypes: female refractoriness to remating, defensive (P1), and offensive (P2) sperm competitive abilities in Drosophila melanogaster. Our analyses show that KDs of tested SFP genes do not affect female refractoriness to remating and P2, however, most gene KDs significantly decreased P1. Moreover, KDs of SFP genes that are selectively constrained in terms of protein-coding sequence evolution have lower P1 than KDs of genes evolving under relaxed selection. Conclusions Our results suggest a more predominant role, than previously acknowledged, of variation in gene expression than coding sequence changes on sperm competitive ability in D. melanogaster. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-022-01975-1.
Collapse
Affiliation(s)
- Bahar Patlar
- Department of Biology, University of Winnipeg, Winnipeg, MB, R3B 2E9, Canada
| | - Alberto Civetta
- Department of Biology, University of Winnipeg, Winnipeg, MB, R3B 2E9, Canada.
| |
Collapse
|
7
|
Filice DCS, Bhargava R, Dukas R. Female mating experience and genetic background independently influence male mating success in fruit flies. J Evol Biol 2020; 34:309-318. [PMID: 33128417 DOI: 10.1111/jeb.13729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 10/12/2020] [Accepted: 10/25/2020] [Indexed: 11/29/2022]
Abstract
When the reproductive interests of males and females conflict, males can evolve traits that are harmful to females, and females can coevolve traits to resist this harm. In the fruit fly, Drosophila melanogaster, there is genetic variation in female resistance traits, which can affect the pre- and post-mating success of males that try to mate with them. However, it is not clear to what extent the expression of these phenotypes can be modified by environmental factors such as sociosexual experience. Here, we tested how the genetic background of a female and her previous mating experience interact to affect the mating success of focal males. In the experience phase, we placed females from 28 distinct genetic backgrounds individually either with a single male (low conflict) or with three males (high conflict) for 48 hr. In the subsequent test phase, we measured the mating and post-mating fertilization success of focal males paired individually with each female. We found that focal males paired with females from the high-conflict treatment were less successful at mating, took longer to mate when they were successful, and had a lower proportion of paternity share. Furthermore, we identified significant female genetic variation associated with male mating success. These results indicate that female experience, along with intrinsic genetic factors, can independently influence different fitness components of her subsequent mates and has implications for our understanding of plastic female mating strategies and the evolution of sexually antagonistic traits in males and females.
Collapse
Affiliation(s)
- David C S Filice
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, ON, Canada
| | - Rajat Bhargava
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, ON, Canada
| | - Reuven Dukas
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
8
|
Lüpold S, Reil JB, Manier MK, Zeender V, Belote JM, Pitnick S. How female × male and male × male interactions influence competitive fertilization in Drosophila melanogaster. Evol Lett 2020; 4:416-429. [PMID: 33014418 PMCID: PMC7523561 DOI: 10.1002/evl3.193] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/02/2020] [Accepted: 08/13/2020] [Indexed: 01/01/2023] Open
Abstract
How males and females contribute to joint reproductive success has been a long‐standing question in sexual selection. Under postcopulatory sexual selection, paternity success is predicted to derive from complex interactions among females engaging in cryptic female choice and males engaging in sperm competition. Such interactions have been identified as potential sources of genetic variation in sexually selected traits but are also expected to inhibit trait diversification. To date, studies of interactions between females and competing males have focused almost exclusively on genotypes and not phenotypic variation in sexually selected traits. Here, we characterize within‐ and between‐sex interactions in Drosophila melanogaster using isogenic lines with heritable variation in both male and female traits known to influence competitive fertilization. We confirmed, and expanded on, previously reported genotypic interactions within and between the sexes, and showed that several reproductive events, including sperm transfer, female sperm ejection, and sperm storage, were explained by two‐ and three‐way interactions among sex‐specific phenotypes. We also documented complex interactions between the lengths of competing males’ sperm and the female seminal receptacle, which are known to have experienced rapid female‐male co‐diversification. Our results highlight the nonindependence of sperm competition and cryptic female choice and demonstrate that complex interactions between the sexes do not limit the ability of multivariate systems to respond to directional sexual selection.
Collapse
Affiliation(s)
- Stefan Lüpold
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich CH-8057 Switzerland.,Department of Biology Syracuse University Syracuse New York 13244
| | - Jonathan Bradley Reil
- Department of Entomology Cornell University Ithaca New York 14853.,Department of Plant and Environmental Protection Sciences University of Hawaii at Mānoa Honolulu Hawaii 96822
| | - Mollie K Manier
- Department of Biology Syracuse University Syracuse New York 13244.,Department of Biological Sciences George Washington University Washington DC 20052
| | - Valérian Zeender
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich CH-8057 Switzerland
| | - John M Belote
- Department of Biology Syracuse University Syracuse New York 13244
| | - Scott Pitnick
- Department of Biology Syracuse University Syracuse New York 13244
| |
Collapse
|
9
|
Weber M, Giannakara A, Ramm SA. Seminal fluid-mediated fitness effects in the simultaneously hermaphroditic flatworm Macrostomum lignano. Ecol Evol 2019; 9:13889-13901. [PMID: 31938489 PMCID: PMC6953679 DOI: 10.1002/ece3.5825] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 11/08/2022] Open
Abstract
As a class, seminal fluid proteins are expected to exert strong effects on mating partners due to the selection pressures of sperm competition and sexual conflict. But because of the complexity of this secretion, linking specific proteins to downstream effects on own fitness-via manipulating the reproductive behavior, physiology, and ultimately the sperm utilization of mating partners-is not straightforward. Here, we adopted a systematic gene knockdown approach to screen for seminal fluid-mediated fitness effects in the simultaneously hermaphroditic flatworm Macrostomum lignano. We focused on 18 transcripts in M. lignano seminal fluid, testing how their RNA interference-induced knockdown impacted on three aspects of donor (male) reproductive success: (a) fertility (offspring production of the partner); (b) defensive sperm competitive ability, P 1; and (c) offensive sperm competitive ability, P 2. In general, the knockdown of most individual transcripts appeared to have only a minor impact on male reproductive success, though we found evidence that the knockdown of up to five different transcripts impacted on fertility; the knockdown of two other transcripts resulted in reduced P 2; and knockdown of a further transcript actually increased P 2. We thus identify a number of candidate seminal fluid transcripts that appear to modulate offspring production and sperm competitiveness in M. lignano. That only a minority of transcripts exhibit such a pattern likely reflects both the difficulty of accurately estimating sperm competitiveness and the functional redundancy of seminal fluid.
Collapse
Affiliation(s)
- Michael Weber
- Department of Evolutionary BiologyBielefeld UniversityBielefeldGermany
| | - Athina Giannakara
- Department of Evolutionary BiologyBielefeld UniversityBielefeldGermany
| | - Steven A. Ramm
- Department of Evolutionary BiologyBielefeld UniversityBielefeldGermany
| |
Collapse
|
10
|
Civetta A, Ranz JM. Genetic Factors Influencing Sperm Competition. Front Genet 2019; 10:820. [PMID: 31572439 PMCID: PMC6753916 DOI: 10.3389/fgene.2019.00820] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/08/2019] [Indexed: 12/26/2022] Open
Abstract
Females of many different species often mate with multiple males, creating opportunities for competition among their sperm. Although originally unappreciated, sperm competition is now considered a central form of post-copulatory male–male competition that biases fertilization. Assays of differences in sperm competitive ability between males, and interactions between females and males, have made it possible to infer some of the main mechanisms of sperm competition. Nevertheless, classical genetic approaches have encountered difficulties in identifying loci influencing sperm competitiveness while functional and comparative genomic methodologies, as well as genetic variant association studies, have uncovered some interesting candidate genes. We highlight how the systematic implementation of approaches that incorporate gene perturbation assays in experimental competitive settings, together with the monitoring of progeny output or sperm features and behavior, has allowed the identification of genes unambiguously linked to sperm competitiveness. The emerging portrait from 45 genes (33 from fruit flies, 8 from rodents, 2 from nematodes, and 2 from ants) is their remarkable breadth of biological roles exerted through males and females, the non-preponderance of sperm genes, and their overall pleiotropic nature.
Collapse
Affiliation(s)
- Alberto Civetta
- Department of Biology, University of Winnipeg, Winnipeg, MB, Canada
| | - José M Ranz
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, United States
| |
Collapse
|
11
|
Nguyen TTX, Moehring AJ. A male's seminal fluid increases later competitors' productivity. J Evol Biol 2018; 31:1572-1581. [PMID: 30007107 DOI: 10.1111/jeb.13352] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 07/10/2018] [Accepted: 07/11/2018] [Indexed: 11/27/2022]
Abstract
Polyandrous females allow for sexual selection to persist after mating. In the event that females successfully mate with more than one male, sperm competition can occur. Seminal fluid proteins can indirectly affect a male's success in sperm competition through reducing the remating behaviour of females and can directly influence sperm competition through directly displacing competitor sperm or inducing females to eject it. These direct effects on competitor sperm are thought to contribute to the 'second male advantage', whereby the second male to mate sires the majority of offspring. Here, we show an additional mechanism where seminal proteins already present within a mated female appear to enhance offspring production of later competitor males, and contribute to second male advantage. Counter to expectation, increased offspring production was not due to a priming effect of greater early female productivity, nor was it through a general and consistent increase in offspring production. Instead, enhanced productivity was solely through lengthening the time that offspring are sired by the second male, indicating that seminal proteins from the first male to mate may enhance second male advantage through a presumably unintended protective effect on subsequent competitor sperm.
Collapse
|
12
|
Lymbery RA, Kennington WJ, Evans JP. Multivariate Sexual Selection on Ejaculate Traits under Sperm Competition. Am Nat 2018; 192:94-104. [DOI: 10.1086/697447] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
13
|
Delbare SYN, Chow CY, Wolfner MF, Clark AG. Roles of Female and Male Genotype in Post-Mating Responses in Drosophila melanogaster. J Hered 2018; 108:740-753. [PMID: 29036644 DOI: 10.1093/jhered/esx081] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 09/25/2017] [Indexed: 12/18/2022] Open
Abstract
Mating induces a multitude of changes in female behavior, physiology, and gene expression. Interactions between female and male genotype lead to variation in post-mating phenotypes and reproductive success. So far, few female molecules responsible for these interactions have been identified. Here, we used Drosophila melanogaster from 5 geographically dispersed populations to investigate such female × male genotypic interactions at the female transcriptomic and phenotypic levels. Females from each line were singly-mated to males from the same 5 lines, for a total of 25 combinations. Reproductive output and refractoriness to re-mating were assayed in females from the 25 mating combinations. Female × male genotypic interactions resulted in significant differences in these post-mating phenotypes. To assess whether female × male genotypic interactions affect the female post-mating transcriptome, next-generation RNA sequencing was performed on virgin and mated females at 5 to 6 h post-mating. Seventy-seven genes showed strong variation in mating-induced expression changes in a female × male genotype-dependent manner. These genes were enriched for immune response and odorant-binding functions, and for expression exclusively in the head. Strikingly, variation in post-mating transcript levels of a gene encoding a spermathecal endopeptidase was correlated with short-term egg production. The transcriptional variation found in specific functional classes of genes might be a read-out of female × male compatibility at a molecular level. Understanding the roles these genes play in the female post-mating response will be crucial to better understand the evolution of post-mating responses and related conflicts between the sexes.
Collapse
Affiliation(s)
- Sofie Y N Delbare
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853-2703
| | - Clement Y Chow
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853-2703.,Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853-2703
| | - Andrew G Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853-2703
| |
Collapse
|
14
|
Laturney M, van Eijk R, Billeter JC. Last male sperm precedence is modulated by female remating rate in Drosophila melanogaster. Evol Lett 2018; 2:180-189. [PMID: 30283675 PMCID: PMC6121866 DOI: 10.1002/evl3.50] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/26/2018] [Accepted: 03/11/2018] [Indexed: 11/09/2022] Open
Abstract
Following multiple matings, sperm from different males compete for fertilization within the female reproductive tract. In many species, this competition results in an unequal sharing of paternity that favors the most recent mate, termed last male sperm precedence (LMSP). Much of our understanding of LMSP comes from studies in Drosophila melanogaster that focus on twice‐mated females with standardized latencies between successive matings. Despite accumulating evidence indicating that females often mate with more than two males and exhibit variation in the latency between matings, the consequences of mating rate on LMSP are poorly understood. Here, we developed a paradigm utilizing D. melanogaster in which females remated at various time intervals with either two or three transgenic males that produce fluorescent sperm (green, red, or blue). This genetic manipulation enables paternity assessment of offspring and male‐specific sperm fate examination in female reproductive tracts. We found that remating latency had no relationship with LMSP in females that mated with two males. However, LMSP was significantly reduced in thrice‐mated females with short remating intervals; coinciding with reduced last‐male sperm storage. Thus, female remating rate influences the relative share of paternity, the overall clutch paternity diversity, and ultimately the acquisition of indirect genetic benefits to potentially maximize female reproductive success.
Collapse
Affiliation(s)
- Meghan Laturney
- Groningen Institute for Evolutionary Life Sciences University of Groningen PO Box 11103 Groningen 9700 CC The Netherlands
| | - Roel van Eijk
- Groningen Institute for Evolutionary Life Sciences University of Groningen PO Box 11103 Groningen 9700 CC The Netherlands
| | - Jean-Christophe Billeter
- Groningen Institute for Evolutionary Life Sciences University of Groningen PO Box 11103 Groningen 9700 CC The Netherlands
| |
Collapse
|
15
|
Horváth B, Kalinka AT. The genetics of egg retention and fertilization success in Drosophila: One step closer to understanding the transition from facultative to obligate viviparity. Evolution 2018; 72:318-336. [PMID: 29265369 DOI: 10.1111/evo.13411] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 10/16/2017] [Accepted: 11/14/2017] [Indexed: 12/17/2022]
Abstract
Oviparous, facultative egg retention enables Drosophila females to withhold fertilized eggs in their reproductive tracts until circumstances favor oviposition. The propensity to retain fertilized eggs varies greatly between species, and is correlated with other reproductive traits, such as egg size and ovariole number. While previous studies have described the phenomenon, no study to date has characterized within-species variation or the genetic basis of the trait. Here, we develop a novel microscope-based method for measuring egg retention in Drosophila females and determine the range of phenotypic variation in mated female egg retention in a subset of 91 Drosophila Genetic Reference Panel (DGRP) lines. We inferred the genetic basis of egg retention using a genome-wide association study (GWAS). Further, the scoring of more than 95,000 stained, staged eggs enabled estimates of fertilization success for each line. We found evidence that ovary- and spermathecae-related genes as well as genes affecting olfactory behavior, male mating behavior, male-female attraction and sperm motility may play a crucial role in post-mating physiology. Based on our findings we also propose potential evolutionary routes toward obligate viviparity. In particular, we propose that the loss of fecundity incurred by viviparity could be offset by benefits arising from enhanced mate discrimination, resource specialization, or modified egg morphology.
Collapse
Affiliation(s)
- Barbara Horváth
- Institut für Populationsgenetik, Veterinärmedizinische Universität Wien, Veterinärplatz 1, Vienna A-1210, Austria.,Vienna Graduate School of Population Genetics, Veterinärmedizinische Universität Wien, Veterinärplatz 1, Vienna A-1210, Austria.,Current Address: Barbara Ellis, Institutionen för ekologi och genetik, Evolutionsbiologiskt Centrum (EBC), Norbyvägen 18D, 752 36 Uppsala, Sweden
| | - Alex T Kalinka
- Institut für Populationsgenetik, Veterinärmedizinische Universität Wien, Veterinärplatz 1, Vienna A-1210, Austria
| |
Collapse
|
16
|
Arnqvist G, Danielsson I. COPULATORY BEHAVIOR, GENITAL MORPHOLOGY, AND MALE FERTILIZATION SUCCESS IN WATER STRIDERS. Evolution 2017; 53:147-156. [DOI: 10.1111/j.1558-5646.1999.tb05340.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/1998] [Accepted: 10/07/1998] [Indexed: 11/29/2022]
Affiliation(s)
- Göran Arnqvist
- Department of Animal Ecology; University of Umeå; SE-901 87 Umeå Sweden
| | - Ingela Danielsson
- Animal Ecology, Department of Zoology; Göteborg University; Box 463, SE-405 30 Göteborg Sweden
| |
Collapse
|
17
|
Harshman LG, Clark AG. INFERENCE OF SPERM COMPETITION FROM BROODS OF FIELD‐CAUGHT
DROSOPHILA. Evolution 2017; 52:1334-1341. [DOI: 10.1111/j.1558-5646.1998.tb02015.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/1997] [Accepted: 05/26/1998] [Indexed: 11/27/2022]
Affiliation(s)
| | - Andrew G. Clark
- Department of Biology Pennsylvania State University, University Park Pennsylvania 16802
| |
Collapse
|
18
|
Giardina TJ, Clark AG, Fiumera AC. Estimating mating rates in wild Drosophila melanogaster females by decay rates of male reproductive proteins in their reproductive tracts. Mol Ecol Resour 2017; 17:1202-1209. [PMID: 28213940 DOI: 10.1111/1755-0998.12661] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 02/01/2017] [Indexed: 11/29/2022]
Abstract
Female Drosophila melanogaster frequently mate with multiple males in nature as shown through parentage analysis. Although polyandry is well documented, we know little about the timing between mating events in wild Drosophila populations due to the challenge of following behaviours of individual females. In this study, we used the presence of a male reproductive protein that is transferred to the female during mating (Sex Peptide, SP) to determine whether she had recently mated. We sampled females throughout the day, conducted control matings to determine the decay rate of SP within the female reproductive tract and performed computer simulations to fit the observed proportion of mated females to a nonhomogenous Poisson process that defined the expected time between successive matings for a given female. In our control matings, 100% of mated females tested positive for SP 0.5 h after the start of mating (ASM), but only 24% tested positive 24 h ASM. Overall, 35% of wild-caught females tested positive for the presence of SP. Fitting our observed data to our simple nonhomogenous Poisson model provided the inference that females are mating, on average, approximately every 27 h (with 95% credibility interval 23-31 h). Thus, it appears that females are mating a bit less frequently that once per day in this natural population and that mating events tend to occur either early in the morning or late in the afternoon.
Collapse
Affiliation(s)
- Thomas J Giardina
- Department of Biological Sciences, Binghamton University, Binghamton, NY, 13902, USA
| | - Andrew G Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Anthony C Fiumera
- Department of Biological Sciences, Binghamton University, Binghamton, NY, 13902, USA
| |
Collapse
|
19
|
Travers LM, Simmons LW, Garcia‐Gonzalez F. Additive genetic variance in polyandry enables its evolution, but polyandry is unlikely to evolve through sexy or good sperm processes. J Evol Biol 2016; 29:916-28. [DOI: 10.1111/jeb.12834] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 01/15/2016] [Indexed: 02/03/2023]
Affiliation(s)
- L. M. Travers
- Centre for Evolutionary Biology School of Animal Biology (M092) The University of Western Australia Crawley WA Australia
| | - L. W. Simmons
- Centre for Evolutionary Biology School of Animal Biology (M092) The University of Western Australia Crawley WA Australia
| | - F. Garcia‐Gonzalez
- Centre for Evolutionary Biology School of Animal Biology (M092) The University of Western Australia Crawley WA Australia
- Doñana Biological Station Spanish Research Council CSIC Sevilla Spain
| |
Collapse
|
20
|
Ala-Honkola O, Manier MK. Multiple mechanisms of cryptic female choice act on intraspecific male variation in Drosophila simulans. Behav Ecol Sociobiol 2016. [DOI: 10.1007/s00265-016-2069-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
21
|
Hollis B, Houle D, Kawecki TJ. Evolution of reduced post-copulatory molecular interactions in Drosophila populations lacking sperm competition. J Evol Biol 2015; 29:77-85. [PMID: 26395588 DOI: 10.1111/jeb.12763] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 09/15/2015] [Indexed: 11/28/2022]
Abstract
In many species with internal fertilization, molecules transferred in the male ejaculate trigger and interact with physiological changes in females. It is controversial to what extent these interactions between the sexes act synergistically to mediate the female switch to a reproductive state or instead reflect sexual antagonism evolved as a by product of sexual selection on males. To address this question, we eliminated sexual selection by enforcing monogamy in populations of Drosophila melanogaster for 65 generations and then measured the expression of male seminal fluid protein genes and genes involved in the female response to mating. In the absence of sperm competition, male and female reproductive interests are perfectly aligned and any antagonism should be reduced by natural selection. Consistent with this idea, males from monogamous populations showed reduced expression of seminal fluid protein genes, 16% less on average than in polygamous males. Further, we identified 428 genes that responded to mating in females. After mating, females with an evolutionary history of monogamy exhibited lower relative expression of genes that were up regulated in response to mating and higher expression of genes that were down-regulated--in other words, their post-mating transcriptome appeared more virgin-like. Surprisingly, these genes showed a similar pattern even before mating, suggesting that monogamous females evolved to be less poised for mating and the accompanying receipt of male seminal fluid proteins. This reduced investment by both monogamous males and females in molecules involved in post-copulatory interactions points to a pervasive role of sexual conflict in shaping these interactions.
Collapse
Affiliation(s)
- B Hollis
- Department of Ecology and Evolution, University of Lausanne, Biophore, Lausanne, Switzerland.,Imperial College London, Silwood Park, Ascot, Berkshire SL5 7PY, UK
| | - D Houle
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - T J Kawecki
- Department of Ecology and Evolution, University of Lausanne, Biophore, Lausanne, Switzerland
| |
Collapse
|
22
|
Miller PB, Obrik-Uloho OT, Phan MH, Medrano CL, Renier JS, Thayer JL, Wiessner G, Bloch Qazi MC. The song of the old mother: reproductive senescence in female drosophila. Fly (Austin) 2015; 8:127-39. [PMID: 25523082 DOI: 10.4161/19336934.2014.969144] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Among animals with multiple reproductive episodes, changes in adult condition over time can have profound effects on lifetime reproductive fitness and offspring performance. The changes in condition associated with senescence can be particularly acute for females who support reproductive processes from oogenesis through fertilization. The pomace fly Drosophila melanogaster is a well-established model system for exploring the physiology of reproduction and senescence. In this review, we describe how increasing maternal age in Drosophila affects reproductive fitness and offspring performance as well as the genetic foundation of these effects. Describing the processes underlying female reproductive senescence helps us understand diverse phenomena including population demographics, condition-dependent selection, sexual conflict, and transgenerational effects of maternal condition on offspring fitness. Understanding the genetic basis of reproductive senescence clarifies the nature of life-history trade-offs as well as potential ways to augment and/or limit female fertility in a variety of organisms.
Collapse
Affiliation(s)
- Paige B Miller
- a Department of Biology ; Gustavus Adolphus College ; St Peter , MN USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Reinhart M, Carney T, Clark AG, Fiumera AC. Characterizing male-female interactions using natural genetic variation in Drosophila melanogaster. J Hered 2014; 106:67-79. [PMID: 25425680 DOI: 10.1093/jhered/esu076] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Drosophila melanogaster females commonly mate with multiple males establishing the opportunity for pre- and postcopulatory sexual selection. Traits impacting sexual selection can be affected by a complex interplay of the genotypes of the competing males, the genotype of the female, and compatibilities between the males and females. We scored males from 96 2nd and 94 3rd chromosome substitution lines for traits affecting reproductive success when mated with females from 3 different genetic backgrounds. The traits included male-induced female refractoriness, male remating ability, the proportion of offspring sired under competitive conditions and male-induced female fecundity. We observed significant effects of male line, female genetic background, and strong male by female interactions. Some males appeared to be "generalists" and performed consistently across the different females; other males appeared to be "specialists" and performed very well with a particular female and poorly with others. "Specialist" males did not, however, prefer to court those females with whom they had the highest reproductive fitness. Using 143 polymorphisms in male reproductive genes, we mapped several genes that had consistent effects across the different females including a derived, high fitness allele in Acp26Aa that may be the target of adaptive evolution. We also identified a polymorphism upstream of PebII that may interact with the female genetic background to affect male-induced refractoriness to remating. These results suggest that natural variation in PebII might contribute to the observed male-female interactions.
Collapse
Affiliation(s)
- Michael Reinhart
- From the Department of Biological Sciences, Binghamton University, Binghamton, NY (Reinhart, Carney, and Fiumera); and the Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY(Clark)
| | - Tara Carney
- From the Department of Biological Sciences, Binghamton University, Binghamton, NY (Reinhart, Carney, and Fiumera); and the Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY(Clark)
| | - Andrew G Clark
- From the Department of Biological Sciences, Binghamton University, Binghamton, NY (Reinhart, Carney, and Fiumera); and the Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY(Clark)
| | - Anthony C Fiumera
- From the Department of Biological Sciences, Binghamton University, Binghamton, NY (Reinhart, Carney, and Fiumera); and the Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY(Clark).
| |
Collapse
|
24
|
Schnakenberg SL, Siegal ML, Bloch Qazi MC. Oh, the places they'll go: Female sperm storage and sperm precedence in Drosophila melanogaster. SPERMATOGENESIS 2014; 2:224-235. [PMID: 23087839 PMCID: PMC3469444 DOI: 10.4161/spmg.21655] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Among most animals with internal fertilization, females store sperm in specific regions of their reproductive tract for later use. Sperm storage enables prolonged fertility, physical and temporal separation of mating from fertilization and, when females mate with multiple males, opportunities for differential use of the various males’ sperm. Thus, stored sperm move within the female reproductive tract as well as to several potential fates – fertilization, displacement by other sperm or ejection by the female. Drosophila melanogaster is a leading model system for elucidating both the mechanisms and evolutionary consequences of female sperm storage and differential male fertilization success. The prominence of Drosophila is due, in part, to the ability to examine processes influencing sperm movement and fate at several biological levels, from molecules to organ systems. In this review, we describe male and female factors, as well as their interactions, involved in female sperm storage and differential male fertilization success.
Collapse
Affiliation(s)
- Sandra L Schnakenberg
- Center for Genomics and Systems Biology; Department of Biology; New York University; New York, NY USA
| | | | | |
Collapse
|
25
|
Collet JM, Blows MW. Female mate choice predicts paternity success in the absence of additive genetic variance for other female paternity bias mechanisms in Drosophila serrata. J Evol Biol 2014; 27:2568-72. [PMID: 25290296 DOI: 10.1111/jeb.12511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 08/28/2014] [Accepted: 09/08/2014] [Indexed: 11/29/2022]
Abstract
After choosing a first mate, polyandrous females have access to a range of opportunities to bias paternity, such as repeating matings with the preferred male, facilitating fertilization from the best sperm or differentially investing in offspring according to their sire. Female ability to bias paternity after a first mating has been demonstrated in a few species, but unambiguous evidence remains limited by the access to complex behaviours, sperm storage organs and fertilization processes within females. Even when found at the phenotypic level, the potential evolution of any mechanism allowing females to bias paternity other than mate choice remains little explored. Using a large population of pedigreed females, we developed a simple test to determine whether there is additive genetic variation in female ability to bias paternity after a first, chosen, mating. We applied this method in the highly polyandrous Drosophila serrata, giving females the opportunity to successively mate with two males ad libitum. We found that despite high levels of polyandry (females mated more than once per day), the first mate choice was a significant predictor of male total reproductive success. Importantly, there was no detectable genetic variance in female ability to bias paternity beyond mate choice. Therefore, whether or not females can bias paternity before or after copulation, their role on the evolution of sexual male traits is likely to be limited to their first mate choice in D. serrata.
Collapse
Affiliation(s)
- J M Collet
- School of Biological Sciences, University of Queensland, St Lucia, Qld, Australia
| | | |
Collapse
|
26
|
Arbuthnott D, Agrawal AF, Rundle HD. Remating and sperm competition in replicate populations of Drosophila melanogaster adapted to alternative environments. PLoS One 2014; 9:e90207. [PMID: 24587283 PMCID: PMC3934985 DOI: 10.1371/journal.pone.0090207] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 01/27/2014] [Indexed: 11/19/2022] Open
Abstract
The prevalence of sexual conflict in nature, as well as the supposedly arbitrary direction of the resulting coevolutionary trajectories, suggests that it may be an important driver of phenotypic divergence even in a constant environment. However, natural selection has long been central to the operation of sexual conflict within populations and may therefore constrain or otherwise direct divergence among populations. Ecological context may therefore matter with respect to the diversification of traits involved in sexual conflict, and if natural selection is sufficiently strong, such traits may evolve in correlation with environment, generating a pattern of ecologically-dependent parallel evolution. In this study we assess among-population divergence both within and between environments for several traits involved in sexual conflict. Using eight replicate populations of Drosophila melanogaster from a long-term evolution experiment, we measured remating rates and subsequent offspring production of females when housed with two separate males in sequence. We found no evidence of any variation in male reproductive traits (offense or defense). However, the propensity of females to remate diverged significantly among the eight populations with no evidence of any environmental effect, consistent with sexual conflict promoting diversification even in the absence of ecological differences. On the other hand, females adapted to one environment (ethanol) tended to produce a higher proportion of offspring sired by their first mate as compared to those adapted to the other (cadmium) environment, suggesting ecologically-based divergence of this conflict phenotype. Because we find evidence for both stochastic population divergence operating outside of an ecological context and environment-dependent divergence of traits under sexual conflict, the interaction of these two processes is an important topic for future work.
Collapse
Affiliation(s)
- Devin Arbuthnott
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
- * E-mail:
| | - Aneil F. Agrawal
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Howard D. Rundle
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
27
|
Laturney M, Billeter JC. Neurogenetics of female reproductive behaviors in Drosophila melanogaster. ADVANCES IN GENETICS 2014; 85:1-108. [PMID: 24880733 DOI: 10.1016/b978-0-12-800271-1.00001-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We follow an adult Drosophila melanogaster female through the major reproductive decisions she makes during her lifetime, including habitat selection, precopulatory mate choice, postcopulatory physiological changes, polyandry, and egg-laying site selection. In the process, we review the molecular and neuronal mechanisms allowing females to integrate signals from both environmental and social sources to produce those behavioral outputs. We pay attention to how an understanding of D. melanogaster female reproductive behaviors contributes to a wider understanding of evolutionary processes such as pre- and postcopulatory sexual selection as well as sexual conflict. Within each section, we attempt to connect the theories that pertain to the evolution of female reproductive behaviors with the molecular and neurobiological data that support these theories. We draw attention to the fact that the evolutionary and mechanistic basis of female reproductive behaviors, even in a species as extensively studied as D. melanogaster, remains poorly understood.
Collapse
Affiliation(s)
- Meghan Laturney
- Behavioural Biology, Centre for Behaviour and Neurosciences, University of Groningen, Groningen, The Netherlands
| | - Jean-Christophe Billeter
- Behavioural Biology, Centre for Behaviour and Neurosciences, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
28
|
Yeh SD, Chan C, Ranz JM. Assessing differences in sperm competitive ability in Drosophila. J Vis Exp 2013:e50547. [PMID: 23995693 DOI: 10.3791/50547] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Competition among conspecific males for fertilizing the ova is one of the mechanisms of sexual selection, i.e. selection that operates on maximizing the number of successful mating events rather than on maximizing survival and viability. Sperm competition represents the competition between males after copulating with the same female, in which their sperm are coincidental in time and space. This phenomenon has been reported in multiple species of plants and animals. For example, wild-caught D. melanogaster females usually contain sperm from 2-3 males. The sperm are stored in specialized organs with limited storage capacity, which might lead to the direct competition of the sperm from different males. Comparing sperm competitive ability of different males of interest (experimental male types) has been performed through controlled double-mating experiments in the laboratory. Briefly, a single female is exposed to two different males consecutively, one experimental male and one cross-mating reference male. The same mating scheme is then followed using other experimental male types thus facilitating the indirect comparison of the competitive ability of their sperm through a common reference. The fraction of individuals fathered by the experimental and reference males is identified using markers, which allows one to estimate sperm competitive ability using simple mathematical expressions. In addition, sperm competitive ability can be estimated in two different scenarios depending on whether the experimental male is second or first to mate (offense and defense assay, respectively), which is assumed to be reflective of different competence attributes. Here, we describe an approach that helps to interrogate the role of different genetic factors that putatively underlie the phenomenon of sperm competitive ability in D. melanogaster.
Collapse
Affiliation(s)
- Shu-Dan Yeh
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA
| | | | | |
Collapse
|
29
|
Female mediation of competitive fertilization success in Drosophila melanogaster. Proc Natl Acad Sci U S A 2013; 110:10693-8. [PMID: 23757499 DOI: 10.1073/pnas.1300954110] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
How females store and use sperm after remating can generate postcopulatory sexual selection on male ejaculate traits. Variation in ejaculate performance traits generally is thought to be intrinsic to males but is likely to interact with the environment in which sperm compete (e.g., the female reproductive tract). Our understanding of female contributions to competitive fertilization success is limited, however, in part because of the challenges involved in observing events within the reproductive tract of internally fertilizing species while discriminating among sperm from competing males. Here, we used females from crosses among isogenic lines of Drosophila melanogaster, each mated to two genetically standardized males (the first with green- and the second with red-tagged sperm heads) to demonstrate heritable variation in female remating interval, progeny production rate, sperm-storage organ morphology, and a number of sperm performance, storage, and handling traits. We then used multivariate analyses to examine relationships between this female-mediated variation and competitive paternity. In particular, the timing of female ejection of excess second-male and displaced first-male sperm was genetically variable and, by terminating the process of sperm displacement, significantly influenced the relative numbers of sperm from each male competing for fertilization, and consequently biased paternity. Our results demonstrate that females do not simply provide a static arena for sperm competition but rather play an active and pivotal role in postcopulatory processes. Resolving the adaptive significance of genetic variation in female-mediated mechanisms of sperm handling is critical for understanding sexual selection, sexual conflict, and the coevolution of male and female reproductive traits.
Collapse
|
30
|
Ala-Honkola O, Hosken DJ, Manier MK, Lüpold S, Droge-Young EM, Berben KS, Collins WF, Belote JM, Pitnick S. Inbreeding reveals mode of past selection on male reproductive characters in Drosophila melanogaster. Ecol Evol 2013; 3:2089-102. [PMID: 23919154 PMCID: PMC3728949 DOI: 10.1002/ece3.625] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 05/03/2013] [Accepted: 05/06/2013] [Indexed: 01/22/2023] Open
Abstract
Directional dominance is a prerequisite of inbreeding depression. Directionality arises when selection drives alleles that increase fitness to fixation and eliminates dominant deleterious alleles, while deleterious recessives are hidden from it and maintained at low frequencies. Traits under directional selection (i.e., fitness traits) are expected to show directional dominance and therefore an increased susceptibility to inbreeding depression. In contrast, traits under stabilizing selection or weakly linked to fitness are predicted to exhibit little-to-no inbreeding depression. Here, we quantify the extent of inbreeding depression in a range of male reproductive characters and then infer the mode of past selection on them. The use of transgenic populations of Drosophila melanogaster with red or green fluorescent-tagged sperm heads permitted in vivo discrimination of sperm from competing males and quantification of characteristics of ejaculate composition, performance, and fate. We found that male attractiveness (mating latency) and competitive fertilization success (P2) both show some inbreeding depression, suggesting they may have been under directional selection, whereas sperm length showed no inbreeding depression suggesting a history of stabilizing selection. However, despite having measured several sperm quality and quantity traits, our data did not allow us to discern the mechanism underlying the lowered competitive fertilization success of inbred (f = 0.50) males.
Collapse
Affiliation(s)
- Outi Ala-Honkola
- Department of Biology, Syracuse University Syracuse, New York ; Department of Biological and Environmental Science, University of Jyväskylä PO Box 35, 40014, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Rittschof CC, Pattanaik S, Johnson L, Matos LF, Brusini J, Wayne ML. Sigma virus and male reproductive success in Drosophila melanogaster. Behav Ecol Sociobiol 2013; 67:529-540. [PMID: 27616808 DOI: 10.1007/s00265-012-1472-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The risk of disease transmission can affect female mating rate, and thus sexual conflict. Furthermore, the interests of a sexually transmitted organism may align or diverge with those of either sex, potentially making the disease agent a third participant in the sexual arms race. In Drosophila melanogaster, where sexual conflict over female mating rate is well established, we investigated how a common, non-lethal virus (sigma virus) might affect this conflict. We gave uninfected females the opportunity to copulate twice in no-choice trials: either with two uninfected males, or with one male infected with sigma virus followed by an uninfected male. We assessed whether females respond behaviorally to male infection, determined whether male infection affects either female or male reproductive success, and measured offspring infection rates. Male infection status did not influence time to copulation, or time to re-mating. However, male infection did affect male reproductive success: first males sired a significantly greater proportion of offspring, as well as more total offspring, when they were infected with sigma virus. Thus viral infection may provide males an advantage in sperm competition, or, possibly, females may preferentially use infected sperm. We found no clear costs of infection in terms of offspring survival. Viral reproductive success (the number of infected offspring) was strongly correlated with male reproductive success. Further studies are needed to demonstrate whether virus-induced changes in reproductive success affect male and female lifetime fitness, and whether virus-induced changes are under male, female, or viral control.
Collapse
Affiliation(s)
- Clare C Rittschof
- Department of Biology, University of Florida, P.O. Box 118525, Gainesville, FL 32611-8525, USA
| | - Swetapadma Pattanaik
- Department of Biology, University of Florida, P.O. Box 118525, Gainesville, FL 32611-8525, USA
| | - Laura Johnson
- Department of Biology, University of Florida, P.O. Box 118525, Gainesville, FL 32611-8525, USA
| | - Luis F Matos
- Department of Entomology and Nematology, University of Florida, P.O. Box 110620, Gainesville, FL 32611-0620, USA
| | - Jérémie Brusini
- Department of Biology, University of Florida, P.O. Box 118525, Gainesville, FL 32611-8525, USA
| | - Marta L Wayne
- Department of Biology, University of Florida, P.O. Box 118525, Gainesville, FL 32611-8525, USA
| |
Collapse
|
32
|
Singh A, Singh BN. Studies on remating behaviour in the Drosophila bipectinata species complex: intra- and interspecific variations. Behav Processes 2013; 96:79-87. [PMID: 23518298 DOI: 10.1016/j.beproc.2013.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 02/28/2013] [Accepted: 03/06/2013] [Indexed: 10/27/2022]
Abstract
Intra- and interspecific variations in female and male remating frequency, latency, and duration of copulation in first and second matings were analyzed in four species of the Drosophila bipectinata complex, employing four strains of each species i.e. D. bipectinata, D. parabipectinata, D. malerkotliana and D. pseudoananassae. Chi-square test revealed significant intraspecific variation in the number of remated females and males in D. malerkotliana and D. bipectinata, whereas D. parabipectinata showed insignificant intraspecific variations in number of remated females and males. D. pseudoananassae showed significant intraspecific variation in the number of remated females, but the frequency of remating was least. One way ANOVA depicted significant intraspecific variation in female and male remating time in D. bipectinata and D. parabipectinata. D. bipectinata took the shortest time to remate and the duration of copulation in first mating was longest. However, D. pseudoananassae exhibited the longest remating time and long duration of copulation in first mating. Results of t-test depicted that all four species exhibited shorter duration of copulation in second mating as compared to the first. Our study puts D. bipectinata and D. pseudoananassae at two extremes, and D. parabipectinata and D. malerkotliana at an intermediate position in a hierarchy of remating behaviours.
Collapse
Affiliation(s)
- Akanksha Singh
- Genetics Laboratory, Department of Zoology, Banaras Hindu University, Uttar Pradesh, India
| | | |
Collapse
|
33
|
Nandy B, Chakraborty P, Gupta V, Ali SZ, Prasad NG. Sperm competitive ability evolves in response to experimental alteration of operational sex ratio. Evolution 2013; 67:2133-41. [PMID: 23815666 DOI: 10.1111/evo.12076] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 01/29/2013] [Indexed: 11/29/2022]
Abstract
In naturally polygamous organisms such as Drosophila, sperm competitive ability is one of the most important components of male fitness and is expected to evolve in response to varying degrees of male-male competition. Several studies have documented the existence of ample genetic variation in sperm competitive ability of males. However, many experimental evolution studies have found sperm competitive ability to be unresponsive to selection. Even direct selection for increased sperm competitive ability has failed to yield any measurable changes. Here we report the evolution of sperm competitive ability (sperm defense-P1, offense-P2) in a set of replicate populations of Drosophila melanogaster subjected to altered levels of male-male competition (generated by varying the operational sex ratio) for 55-60 generations. Males from populations with female-biased operational sex ratio evolved reduced P1 and P2, without any measurable change in the male reproductive behavior. Males in the male-biased regime evolved increased P1, but there was no significant change in P2. Increase in P1 was associated with an increase in copulation duration, possibly indicating greater ejaculate investment by these males. This study is one of the few to provide empirical evidence for the evolution of sperm competitive ability of males under different levels of male-male competition.
Collapse
Affiliation(s)
- Bodhisatta Nandy
- Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India
| | | | | | | | | |
Collapse
|
34
|
Good JM, Wiebe V, Albert FW, Burbano HA, Kircher M, Green RE, Halbwax M, André C, Atencia R, Fischer A, Pääbo S. Comparative population genomics of the ejaculate in humans and the great apes. Mol Biol Evol 2013; 30:964-76. [PMID: 23329688 DOI: 10.1093/molbev/mst005] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The rapid molecular evolution of reproductive genes is nearly ubiquitous across animals, yet the selective forces and functional targets underlying this divergence remain poorly understood. Humans and closely related species of great apes show strongly divergent mating systems, providing a powerful system to investigate the influence of sperm competition on the evolution of reproductive genes. This is complemented by detailed information on male reproductive biology and unparalleled genomic resources in humans. Here, we have used custom microarrays to capture and sequence 285 genes encoding proteins present in the ejaculate as well as 101 randomly selected control genes in 21 gorillas, 20 chimpanzees, 20 bonobos, and 20 humans. In total, we have generated >25× average genomic coverage per individual for over 1 million target base pairs. Our analyses indicate high levels of evolutionary constraint across much of the ejaculate combined with more rapid evolution of genes involved in immune defense and proteolysis. We do not find evidence for appreciably more positive selection along the lineage leading to bonobos and chimpanzees, although this would be predicted given more intense sperm competition in these species. Rather, the extent of positive and negative selection depended more on the effective population sizes of the species. Thus, general patterns of male reproductive protein evolution among apes and humans depend strongly on gene function but not on inferred differences in the intensity of sperm competition among extant species.
Collapse
Affiliation(s)
- Jeffrey M Good
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Engqvist L. A GENERAL DESCRIPTION OF ADDITIVE AND NONADDITIVE ELEMENTS OF SPERM COMPETITIVENESS AND THEIR RELATION TO MALE FERTILIZATION SUCCESS. Evolution 2012; 67:1396-405. [DOI: 10.1111/evo.12024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 11/12/2012] [Indexed: 01/02/2023]
|
36
|
Zhang R, Clark AG, Fiumera AC. Natural genetic variation in male reproductive genes contributes to nontransitivity of sperm competitive ability inDrosophila melanogaster. Mol Ecol 2012; 22:1400-15. [DOI: 10.1111/mec.12113] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 09/26/2012] [Accepted: 09/27/2012] [Indexed: 12/13/2022]
Affiliation(s)
- Rui Zhang
- Department of Biological Sciences; SUNY-Binghamton; Binghamton; NY; 13902; USA
| | - Andrew G. Clark
- Department of Molecular Biology and Genetics; Cornell University; Ithaca; NY; 13853; USA
| | - Anthony C. Fiumera
- Department of Biological Sciences; SUNY-Binghamton; Binghamton; NY; 13902; USA
| |
Collapse
|
37
|
Large neurological component to genetic differences underlying biased sperm use in Drosophila. Genetics 2012; 193:177-85. [PMID: 23105014 DOI: 10.1534/genetics.112.146357] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Sperm competition arises as a result of complex interactions among male and female factors. While the roles of some male factors are known, little is known of the molecules or mechanisms that underlie the female contribution to sperm competition. The genetic tools available for Drosophila allow us to identify, in an unbiased manner, candidate female genes that are critical for mediating sperm competition outcomes. We first screened for differences in female sperm storage and use patterns by characterizing the natural variation in sperm competition in a set of 39 lines from the sequenced Drosophila Genetic Reference Panel (DGRP) of wild-derived inbred lines. We found extensive female variation in sperm competition outcomes. To generate a list of candidate female genes for functional studies, we performed a genome-wide association mapping, utilizing the common single-nucleotide polymorphisms (SNPs) segregating in the DGRP lines. Surprisingly, SNPs within ion channel genes and other genes with roles in the nervous system were among the top associated SNPs. Knockdown studies of three candidate genes (para, Rab2, and Rim) in sensory neurons innervating the female reproductive tract indicate that some of these candidate female genes may affect sperm competition by modulating the neural input of these sensory neurons to the female reproductive tract. More extensive functional studies are needed to elucidate the exact role of all these candidate female genes in sperm competition. Nevertheless, the female nervous system appears to have a previously unappreciated role in sperm competition. Our results indicate that the study of female control of sperm competition should not be limited to female reproductive tract-specific genes, but should focus also on diverse biological pathways.
Collapse
|
38
|
Relative effectiveness of mating success and sperm competition at eliminating deleterious mutations in Drosophila melanogaster. PLoS One 2012; 7:e37351. [PMID: 22662148 PMCID: PMC3360693 DOI: 10.1371/journal.pone.0037351] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 04/19/2012] [Indexed: 01/22/2023] Open
Abstract
Condition-dependence theory predicts that sexual selection will facilitate adaptation by selecting against deleterious mutations that affect the expression of sexually selected traits indirectly via condition. Recent empirical studies have provided support for this prediction; however, their results do not elucidate the relative effects of pre- and postcopulatory sexual selection on deleterious mutations. We used the Drosophila melanogaster model system to discern the relative contributions of pre- and postcopulatory processes to selection against deleterious mutations. To assess second-male ejaculate competition success (P2; measured as the proportion of offspring attributable to the experimental male) and mating success, mutant and wild-type male D. melanogaster were given the opportunity to mate with females that were previously mated to a standard competitor male. This process was repeated for males subjected to a diet quality manipulation to test for effects of environmentally-manipulated condition on P2 and mating success. While none of the tested mutations affected P2, there was a clear effect of condition. Conversely, several of the mutations affected mating success, while condition showed no effect. Our results suggest that precopulatory selection may be more effective than postcopulatory selection at removing deleterious mutations. The opposite result obtained for our diet manipulation points to an interesting discrepancy between environmental and genetic manipulations of condition, which may be explained by the multidimensionality of condition. Establishing whether the various stages of sexual selection affect deleterious mutations differently, and to what extent, remains an important issue to resolve.
Collapse
|
39
|
Gowaty PA. The evolution of multiple mating: Costs and benefits of polyandry to females and of polygyny to males. Fly (Austin) 2012; 6:3-11. [PMID: 22223093 PMCID: PMC3365835 DOI: 10.4161/fly.18330] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Polyandry is a paradox: why do females mate multiple times when a single ejaculate often provides enough sperm for lifetime egg production? Gowaty et al. addressed explanations for polyandry in Drosophila pseudoobscura from the perspective of hypotheses based on sex differences in costs of reproduction (CoR). Contrary to CoR, Gowaty et al. showed that (1) a single ejaculate was inadequate for lifetime egg production; (2) polyandry provided fitness benefits to females beyond provision of adequate sperm and (3) fitness benefits of polyandry were not offset by costs. Here, I discuss predictions of the ad hoc hypotheses of CoR and three alternative hypotheses to CoR to facilitate a discussion and further development of a strong inference approach to experiments on the adaptive significance of polyandry for females. Each of the hypotheses makes testable predictions; simultaneous tests of the predictions will provide a strong inference approach to understanding the adaptive significance of multiple mating. I describe a sex-symmetric experiment meant to evaluate variation in fitness among lifelong virgins (V); monogamous females and males with one copulation (MOC); monogamous females and males with multiple copulations (MMC); PAND, polyandrous females; and PGYN, polygynous males. Last, I recommend the study of many different species, while taking care in choice of study species and attention to the assumptions of specific hypotheses. I particularly urge the study of many more Drosophila species both in laboratory and the wild to understand the "nature of flies in nature," where opportunities and constraints mold evolutionary responses.
Collapse
Affiliation(s)
- Patricia Adair Gowaty
- Department of Ecology and Evolutionary Biology and Institute of Environment and Sustainability, Los Angeles, CA, USA.
| |
Collapse
|
40
|
Giardina TJ, Beavis A, Clark AG, Fiumera AC. Female influence on pre- and post-copulatory sexual selection and its genetic basis in Drosophila melanogaster. Mol Ecol 2011; 20:4098-108. [PMID: 21902747 DOI: 10.1111/j.1365-294x.2011.05253.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Genetic variation among females is likely to influence the outcome of both pre- and post-copulatory sexual selection in Drosophila melanogaster. Here we use association testing to survey natural variation in 10 candidate female genes for their effects on female reproduction. Females from 91 chromosome two substitution lines were scored for phenotypes affecting pre- and post-copulatory sexual selection such as mating and remating rate, propensity to use sperm from the second male to mate, and measures of fertility. There were significant genetic contributions to phenotypic variation for all the traits measured. Resequencing of the 10 candidate genes in the 91 lines yielded 68 non-synonymous polymorphisms which were tested for associations with the measured phenotypes. Twelve significant associations (markerwise P<0.01) were identified. Polymorphisms in the putative serine protease homolog CG9897 and the putative odorant binding protein CG11797 associated with female propensity to remate and met an experimentwise significance of P<0.05. Several other associations, including those impacting both fertility and female remating rate suggest that sperm storage might be an important factor mitigating female influence on sexual selection.
Collapse
Affiliation(s)
- Thomas J Giardina
- Department of Biological Sciences, Binghamton University, Binghamton, NY 13902, USA
| | | | | | | |
Collapse
|
41
|
Jiang PP, Bedhomme S, Prasad NG, Chippindale A. Sperm competition and mate harm unresponsive to male-limited selection in Drosophila: an evolving genetic architecture under domestication. Evolution 2011; 65:2448-60. [PMID: 21884048 DOI: 10.1111/j.1558-5646.2011.01328.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Earlier research by W.R. Rice showed that experimentally limiting gene expression to males in Drosophila melanogaster leads to the rapid evolution of higher fitness. Using a similar male-limited (ML) selection protocol, we confirmed that result and showed that eliminating intralocus sexual conflict results in a comprehensive remodeling of the sexually dimorphic phenotype. However, despite starting from laboratory-evolved descendants of the same founder population used in earlier work, we found no evidence for the increased performance in sperm competition or increased postmating harm to females previously demonstrated. We employed females with both ancestral population genotypes and those of the special "clone generator" females used in ML selection. Despite strong differences in sperm storage or usage patterns between these females, there was no detectable adaptation by males to the specific female stock used in the selection protocol. The lack of evolution of postcopulatory traits suggests either that requisite genetic variation was eliminated by long-term domestication of the base population, or that complex male-by-male-by-female interactions made these traits unavailable to selection. The different evolutionary outcomes produced by two very similar experiments done at different time points underscores the potential for cryptic adaptation in the laboratory to qualitatively affect inferences made using quantitative genetic methodologies.
Collapse
Affiliation(s)
- Pan-Pan Jiang
- Department of Biology, Queen's University, Kingston, ON, K7L 3N6 Canada
| | | | | | | |
Collapse
|
42
|
Lupold S, Manier MK, Ala-Honkola O, Belote JM, Pitnick S. Male Drosophila melanogaster adjust ejaculate size based on female mating status, fecundity, and age. Behav Ecol 2010. [DOI: 10.1093/beheco/arq193] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
43
|
Enders LS, Nunney L. Sex-specific effects of inbreeding in wild-caught Drosophila melanogaster under benign and stressful conditions. J Evol Biol 2010; 23:2309-23. [PMID: 20874846 DOI: 10.1111/j.1420-9101.2010.02085.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In animal populations, sib mating is often the primary source of inbreeding depression (ID). We used recently wild-caught Drosophila melanogaster to test whether such ID is amplified by environmental stress and, in males, by sexual selection. We also investigated whether increased ID because of stress (increased larval competition) persisted beyond the stressed stage and whether the effects of stress and sexual selection interacted. Sib mating resulted in substantial cumulative fitness losses (egg to adult reproduction) of 50% (benign) and 73% (stressed). Stress increased ID during the larval period (23% vs. 63%), but not during post-stress reproductive stages (36% vs. 31%), indicating larval stress may have purged some adult genetic load (although ID was uncorrelated across stages). Sexual selection exacerbated inbreeding depression, with inbred male offspring suffering a higher reproductive cost than females, independent of stress (57% vs. 14% benign, 49% vs. 11% stress).
Collapse
Affiliation(s)
- L S Enders
- Department of Ecology, Evolution and Organismal Biology, University of California, Riverside, CA 92507, USA.
| | | |
Collapse
|
44
|
The genetic basis for male x female interactions underlying variation in reproductive phenotypes of Drosophila. Genetics 2010; 186:1355-65. [PMID: 20876561 DOI: 10.1534/genetics.110.123174] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In Drosophila, where females mate multiply, sperm competition contributes strongly to fitness variability among males. Males transfer "Acp" seminal proteins to females during mating, and these proteins influence the outcome of sperm competition. Because Acps function within the female, male proteins can directly interact with female molecules in a manner that affects reproductive fitness. Here we begin to dissect the genetic architecture of male×female interactions underlying reproductive phenotypes important to sperm competition. By utilizing chromosome extraction lines, we demonstrate that the third and X chromosomes each have large effects on fertility phenotypes, female remating rate, and the sperm competition parameter, P1. Strikingly, the third and X chromosomes harbor genetic variation that gives rise to strong male×female interactions that modulate female remating rate and P1. Encoded on these chromosomes are, respectively, sex peptide (SP) and sex peptide receptor (SPR), the only pair of physically interacting male Acp and female receptor known. We identified several intriguing allelic interactions between SP and SPR. The results of this study begin to elucidate the complex genetic architecture of reproductive and sperm competition phenotypes and have significant implications for the evolution of male and female characters.
Collapse
|
45
|
Bloch Qazi MC, Hogdal L. Hold on: females modulate sperm depletion from storage sites in the fly Drosophila melanogaster. JOURNAL OF INSECT PHYSIOLOGY 2010; 56:1332-1340. [PMID: 20433844 DOI: 10.1016/j.jinsphys.2010.04.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 04/16/2010] [Accepted: 04/19/2010] [Indexed: 05/29/2023]
Abstract
Among many species of insects, females gain fitness benefits by producing numerous offspring. Yet actions related to producing numerous offspring such as mating with multiple males, producing oocytes and placing offspring in sub-optimal environments incur costs. Females can decrease the magnitude of these costs by retaining gametes when suitable oviposition sites are absent. We used the pomace fly, Drosophila melanogaster, to explore how the availability of fresh feeding/oviposition medium influenced female fitness via changes in offspring survivorship and the modulation of gamete release. Availability of fresh medium affected the absolute number and temporal production of offspring. This outcome was attributable to both decreased larval survival under crowded conditions and to female modulation of gamete release. Direct examination of the number of sperm retained among the different female storage organs revealed that females 'hold on' to sperm, retaining more sperm in storage, disproportionately within the spermathecae, when exposed infrequently to fresh medium. Despite this retention, females with lower rates of storage depletion exhibited decreased sperm use efficiency shortly after mating. This study provides direct evidence that females influence the rate of sperm depletion from specific storage sites in a way that can affect both female and male fitness. The possible adaptive significance of selective gamete utilization by female Drosophila includes lowering costs associated with frequent remating and larval overcrowding when oviposition sites are limiting, as well as potentially influencing paternity when females store sperm from multiple males.
Collapse
|
46
|
Sirot LK, LaFlamme BA, Sitnik JL, Rubinstein CD, Avila FW, Chow CY, Wolfner MF. Molecular social interactions: Drosophila melanogaster seminal fluid proteins as a case study. ADVANCES IN GENETICS 2010; 68:23-56. [PMID: 20109658 PMCID: PMC3925388 DOI: 10.1016/s0065-2660(09)68002-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Studies of social behavior generally focus on interactions between two or more individual animals. However, these interactions are not simply between whole animals, but also occur between molecules that were produced by the interacting individuals. Such "molecular social interactions" can both influence and be influenced by the organismal-level social interactions. We illustrate this by reviewing the roles played by seminal fluid proteins (Sfps) in molecular social interactions between males and females of the fruit fly Drosophila melanogaster. Sfps, which are produced by males and transferred to females during mating, are involved in inherently social interactions with female-derived molecules, and they influence social interactions between males and females and between a female's past and potential future mates. Here, we explore four examples of molecular social interactions involving D. melanogaster Sfps: processes that influence mating, sperm storage, ovulation, and ejaculate transfer. We consider the molecular and organismal players involved in each interaction and the consequences of their interplay for the reproductive success of both sexes. We conclude with a discussion of the ways in which Sfps can both shape and be shaped by (in an evolutionary sense) the molecular social interactions in which they are involved.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mariana F. Wolfner
- Corresponding author: Department of Molecular Biology & Genetics, 421 Biotechnology Building, Cornell University, Ithaca, NY 14853;
| |
Collapse
|
47
|
Dowling DK, Nystrand M, Simmons LW. Maternal effects, but no good or compatible genes for sperm competitiveness in Australian crickets. Evolution 2009; 64:1257-66. [PMID: 20002162 DOI: 10.1111/j.1558-5646.2009.00912.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Explanations for the evolution of polyandry often center on the idea that females garner genetic benefits for their offspring by mating multiply. Furthermore, postcopulatory processes are thought to be fundamental to enabling polyandrous females to screen for genetic quality. Much attention has focused on the potential for polyandrous females to accrue such benefits via a sexy- or good-sperm mechanism, whereby additive variation exists among males in sperm competitiveness. Likewise, attention has focused on an alternative model, in which offspring quality (in this context, the sperm competitiveness of sons) hinges on an interaction between parental haplotypes (genetic compatibility). Sperm competitiveness that is contingent on parental compatibility will exhibit nonadditive genetic variation. We tested these models in the Australian cricket, Teleogryllus oceanicus, using a design that allowed us to partition additive, nonadditive genetic, and parental variance for sperm competitiveness. We found an absence of additive and nonadditive genetic variance in this species, challenging the direct relevance of either model to the evolution of sperm competitiveness in particular, and polyandry in general. Instead, we found maternal effects that were possibly sex-linked or cytoplasmically linked. We also found effects of focal male age on sperm competitiveness, with small increments in age conferring more competitive sperm.
Collapse
Affiliation(s)
- Damian K Dowling
- School of Biological Sciences, Monash University, Clayton, 3800, Victoria, Australia.
| | | | | |
Collapse
|
48
|
Härdling R, Karlsson K. The dynamics of sexually antagonistic coevolution and the complex influences of mating system and genetic correlation. J Theor Biol 2009; 260:276-82. [PMID: 19500598 DOI: 10.1016/j.jtbi.2009.05.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 05/20/2009] [Accepted: 05/21/2009] [Indexed: 11/28/2022]
Abstract
Sexual conflict has been proposed to be a mediator of speciation but recent theoretical work, as well as empirical studies, suggests that sexual conflict may also be able to prevent speciation and to preserve genetic polymorphism within a species. Here, we develop a population genetic model and study the effects of sexual conflict in a polymorphic population. The morphs mate assortatively based on different sexually antagonistic traits and females are assumed to suffer a cost when the proportion of matching males is high. We consider the model in two different mating systems; promiscuity and polygyny. Our results show that genetic polymorphism may be maintained through negative frequency dependent selection established by assortative mating and female conflict costs. However, the outcome significantly differs between mating systems. Furthermore, we show that indirect selection may have profound effects on the evolutionary dynamics of a sexual conflict.
Collapse
Affiliation(s)
- Roger Härdling
- Section for Animal Ecology, Ecology Building, Lund University, SE-223 62 Lund, Sweden.
| | | |
Collapse
|
49
|
Strain-dependent differences in several reproductive traits are not accompanied by early postmating transcriptome changes in female Drosophila melanogaster. Genetics 2009; 181:1273-80. [PMID: 19237688 DOI: 10.1534/genetics.108.099622] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Upon mating, Drosophila melanogaster females undergo numerous alterations in their behavior and reproductive physiology that are accompanied by small-magnitude transcript-level changes in up to 1700 genes. Many of these postmating transcriptome changes are the direct result of the sperm and seminal fluid proteins (Acps) that females receive from their mates. To begin to determine if the genetic background of the female's mate contributes to the previously described gene expression changes, we assessed whether interactions between the genotypes of two commonly used laboratory strains of D. melanogaster (Canton-S and Oregon R) influence the female's postmating transcriptome as well as several pre- and postcopulatory phenotypes. We find negligible differences in the female's transcriptome at 1-3 hr postmating regardless of the strain of the male with whom she mated. However, a male x female genotype interaction significantly influenced mate selection, and, in some cases, fecundity, fertility, and hatchability. Our data support previous work suggesting that many of the early postmating changes observed in D. melanogaster females are not caused by large modifications of transcript levels. Instead, early postmating phenotypes result from preexisting receptors or pathways that are already in place upon sexual maturity.
Collapse
|
50
|
Abstract
Barriers to gene flow can arise at any stage in the reproductive sequence. Most studies of reproductive isolation focus on premating or postzygotic phenotypes, leaving the importance of differences in fertilization rate overlooked. Two closely related species of house mice, Mus domesticus and M. musculus, form a narrow hybrid zone in Europe, suggesting that one or more isolating factors operate in the face of ongoing gene flow. Here, we test for differences in fertilization rate using laboratory matings as well as in vitro sperm competition assays. In noncompetitive matings, we show that fertilization occurs significantly faster in conspecific versus heterospecific matings and that this difference arises after mating and before zygotes form. To further explore the mechanisms underlying this conspecific advantage, we used competitive in vitro assays to isolate gamete interactions. Surprisingly, we discovered that M. musculus sperm consistently outcompeted M. domesticus sperm regardless of which species donated ova. These results suggest that in vivo fertilization rate is mediated by interactions between sperm, the internal female environment, and/or contributions from male seminal fluid. We discuss the implications of faster conspecific fertilization in terms of reproductive isolation among these two naturally hybridizing species.
Collapse
Affiliation(s)
- Matthew D Dean
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA.
| | | |
Collapse
|