1
|
Sudbrack V, Mullon C. Fixation times of de novo and standing beneficial variants in subdivided populations. Genetics 2024; 227:iyae043. [PMID: 38527860 DOI: 10.1093/genetics/iyae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 01/17/2024] [Accepted: 03/11/2024] [Indexed: 03/27/2024] Open
Abstract
The rate at which beneficial alleles fix in a population depends on the probability of and time to fixation of such alleles. Both of these quantities can be significantly impacted by population subdivision and limited gene flow. Here, we investigate how limited dispersal influences the rate of fixation of beneficial de novo mutations, as well as fixation time from standing genetic variation. We investigate this for a population structured according to the island model of dispersal allowing us to use the diffusion approximation, which we complement with simulations. We find that fixation may take on average fewer generations under limited dispersal than under panmixia when selection is moderate. This is especially the case if adaptation occurs from de novo recessive mutations, and dispersal is not too limited (such that approximately FST<0.2). The reason is that mildly limited dispersal leads to only a moderate increase in effective population size (which slows down fixation), but is sufficient to cause a relative excess of homozygosity due to inbreeding, thereby exposing rare recessive alleles to selection (which accelerates fixation). We also explore the effect of metapopulation dynamics through local extinction followed by recolonization, finding that such dynamics always accelerate fixation from standing genetic variation, while de novo mutations show faster fixation interspersed with longer waiting times. Finally, we discuss the implications of our results for the detection of sweeps, suggesting that limited dispersal mitigates the expected differences between the genetic signatures of sweeps involving recessive and dominant alleles.
Collapse
Affiliation(s)
- Vitor Sudbrack
- Department of Ecology and Evolution, University of Lausanne, Lausanne 1015, Vaud, Switzerland
| | - Charles Mullon
- Department of Ecology and Evolution, University of Lausanne, Lausanne 1015, Vaud, Switzerland
| |
Collapse
|
2
|
Gwak WS, Roy A. Genetic Diversity and Variation in Mitochondrial COI Gene in Wild and Hatchery Populations of Saxidomus purpuratus. Biochem Genet 2021; 60:969-986. [PMID: 34611791 DOI: 10.1007/s10528-021-10137-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/23/2021] [Indexed: 11/25/2022]
Abstract
To investigate the genetic diversity and genetic variations of four wild (Geoje, Jinhae, Yeosu, and Boryeong) and two hatchery (Goheung and Geoje) populations of purplish Washington clam (Saxidomus purpuratus), 421 bp sequences of the mitochondrial cytochrome c oxidase subunit I (COI) gene were analyzed. A total of 149 haplotypes were identified from 358 individuals from the four wild and two hatchery populations with 109 substitutions. The genetic diversity of the wild populations and Geoje hatchery population were high, whereas the total number of haplotypes, population-specific haplotypes, and haplotype diversity were comparatively low in the Goheung hatchery population. The fixation index (FST) indicated that there was no significant genetic difference between the four wild populations. However, the Goheung hatchery population was significantly different from that of the Geoje hatchery, exhibiting the most pronounced difference, and two wild populations (Jinhae and Yeosu). The low genetic diversity indices exhibited by the Goheung hatchery population might have resulted from farm propagation using a limited parental stock. Therefore, to maintain genetic diversity, a proper breeding management program using more progenitors is required in hatcheries, in addition to regular monitoring of both hatchery and wild populations.
Collapse
Affiliation(s)
- Woo-Seok Gwak
- Marine Bio-Education and Research Center, Gyeongsang National University, Tongyeong, 53064, Korea.
- Marine Bio-Education and Research Center, Gyeongsang National University, Tongyeong, 53064, Korea.
| | - Animesh Roy
- Marine Bio-Education and Research Center, Gyeongsang National University, Tongyeong, 53064, Korea
| |
Collapse
|
3
|
Shahandeh MP, Brock C, Turner TL. Light dependent courtship behavior in Drosophila simulans and D. melanogaster. PeerJ 2020; 8:e9499. [PMID: 32742789 PMCID: PMC7369021 DOI: 10.7717/peerj.9499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 06/17/2020] [Indexed: 11/20/2022] Open
Abstract
Differences in courtship signals and perception are well-known among Drosophila species. One such described difference is the dependency on light, and thus presumably vision, for copulation success. Many studies have described a difference in light-dependent copulation success between D. melanogaster and D. simulans, identifying D. simulans as a light-dependent species, and D. melanogaster as a light-independent one. However, many of these studies use assays of varying design and few strains to represent the entire species. Here, we attempt to better characterize this purported difference using 11 strains of each species, paired by collection location, in behavioral assays conducted at two different exposure times. We show that, while there is a species-wide difference in magnitude of light-dependent copulation success, D. melanogaster copulation success is, on average, still impaired in the dark at both exposure times we measured. Additionally, there is significant variation in strain-specific ability to copulate in the dark in both species across two different exposure times. We find that this variation correlates strongly with longitude in D. melanogaster, but not in D. simulans. We hypothesize that differences in species history and demography may explain behavioral variation. Finally, we use courtship assays to show that light-dependent copulation success in one D. simulans strain is driven in part by both males and females. We discuss potential differences in courtship signals and/or signal importance between these species and potential for further comparative studies for functional characterization.
Collapse
Affiliation(s)
- Michael P. Shahandeh
- Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA, United States of America
| | - Cameryn Brock
- Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA, United States of America
| | - Thomas L. Turner
- Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA, United States of America
| |
Collapse
|
4
|
Austin CJ, Moehring AJ. Local thermal adaptation detected during multiple life stages across populations of
Drosophila melanogaster. J Evol Biol 2019; 32:1342-1351. [DOI: 10.1111/jeb.13530] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/19/2019] [Accepted: 08/23/2019] [Indexed: 11/30/2022]
Affiliation(s)
| | - Amanda J. Moehring
- Department of Biology The University of Western Ontario London ON Canada
| |
Collapse
|
5
|
Saint-Leandre B, Clavereau I, Hua-Van A, Capy P. Transcriptional polymorphism ofpiRNA regulatory genes underlies themarineractivity inDrosophila simulanstestes. Mol Ecol 2017; 26:3715-3731. [DOI: 10.1111/mec.14145] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 12/28/2016] [Indexed: 02/03/2023]
Affiliation(s)
- Bastien Saint-Leandre
- Laboratoire Evolution, Génomes, Comportement, Ecologie CNRS; Univ. Paris-Sud, IRD; Université Paris-Saclay; Gif-sur-Yvette Cedex France
| | - Isabelle Clavereau
- Laboratoire Evolution, Génomes, Comportement, Ecologie CNRS; Univ. Paris-Sud, IRD; Université Paris-Saclay; Gif-sur-Yvette Cedex France
| | - Aurelie Hua-Van
- Laboratoire Evolution, Génomes, Comportement, Ecologie CNRS; Univ. Paris-Sud, IRD; Université Paris-Saclay; Gif-sur-Yvette Cedex France
| | - Pierre Capy
- Laboratoire Evolution, Génomes, Comportement, Ecologie CNRS; Univ. Paris-Sud, IRD; Université Paris-Saclay; Gif-sur-Yvette Cedex France
| |
Collapse
|
6
|
Harper SE, Spradling TA, Demastes JW, Calhoun CS. Host behaviour drives parasite genetics at multiple geographic scales: population genetics of the chewing louse,Thomomydoecus minor. Mol Ecol 2015; 24:4129-44. [DOI: 10.1111/mec.13306] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 06/12/2015] [Accepted: 07/03/2015] [Indexed: 11/30/2022]
Affiliation(s)
- Sheree E. Harper
- Department of Biology; University of Northern Iowa; Cedar Falls IA 50614-0421 USA
| | - Theresa A. Spradling
- Department of Biology; University of Northern Iowa; Cedar Falls IA 50614-0421 USA
| | - James W. Demastes
- Department of Biology; University of Northern Iowa; Cedar Falls IA 50614-0421 USA
| | - Courtney S. Calhoun
- Department of Biology; University of Northern Iowa; Cedar Falls IA 50614-0421 USA
| |
Collapse
|
7
|
Navascués M, Legrand D, Campagne C, Cariou ML, Depaulis F. Distinguishing migration from isolation using genes with intragenic recombination: detecting introgression in the Drosophila simulans species complex. BMC Evol Biol 2014; 14:89. [PMID: 24762206 PMCID: PMC4022370 DOI: 10.1186/1471-2148-14-89] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 04/03/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Determining the presence or absence of gene flow between populations is the target of some statistical methods in population genetics. Until recently, these methods either avoided the use of recombining genes, or treated recombination as a nuisance parameter. However, genes with recombination contribute additional information for the detection of gene flow (i.e. through linkage disequilibrium). METHODS We present three summary statistics based on the spatial arrangement of fixed differences, and shared and exclusive polymorphisms that are sensitive to the presence and direction of gene flow. Power and false positive rate for tests based on these statistics are studied by simulation. RESULTS The application of these tests to populations from the Drosophila simulans species complex yielded results consistent with migration between D. simulans and its two endemic sister species D. mauritiana and D. sechellia, and between populations D. mauritiana on the islands of the Mauritius and Rodrigues. CONCLUSIONS We demonstrate the sensitivity of the developed statistics to the presence and direction of gene flow, and characterize their power as a function of differentiation level and recombination rate. The properties of these statistics make them especially suitable for analyzing high-throughput sequencing data or for their integration within the approximate Bayesian computation framework.
Collapse
Affiliation(s)
| | | | | | | | - Frantz Depaulis
- UMR 7625 Écologie et Évolution (CNRS/École Normale Supérieure/Université Pierre et Marie Curie), Paris, France.
| |
Collapse
|
8
|
Wurmser F, Mary-Huard T, Daudin JJ, Joly D, Montchamp-Moreau C. Variation of gene expression associated with colonisation of an anthropized environment: comparison between African and European populations of Drosophila simulans. PLoS One 2013; 8:e79750. [PMID: 24260296 PMCID: PMC3832527 DOI: 10.1371/journal.pone.0079750] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 10/01/2013] [Indexed: 11/18/2022] Open
Abstract
The comparison of transcriptome profiles among populations is a powerful tool for investigating the role of gene expression change in adaptation to new environments. In this study, we use massively parallel sequencing of 3' cDNAs obtained from large samples of adult males, to compare a population of Drosophila simulans from a natural reserve within its ancestral range (eastern Africa) with a derived population collected in the strongly anthropized Rhône valley (France). The goal was to scan for adaptation linked to the invasion of new environments by the species. Among 15,090 genes retained for the analysis, 794 were found to be differentially expressed between the two populations. We observed an increase in expression of reproduction-related genes in eastern Africa, and an even stronger increase in expression of Cytochrome P450, Glutathione transferase and Glucuronosyl transferase genes in the derived population. These three gene families are involved in detoxification processes, which suggests that pesticides are a major environmental pressure for the species in this area. The survey of the Cyp6g1 upstream region revealed the insertion of a transposable element, Juan, in the regulatory sequence that is almost fixed in the Rhône Valley, but barely present in Mayotte. This shows that Cyp6g1 has undergone parallel evolution in derived populations of D. simulans as previously shown for D. melanogaster. The increasing amount of data produced by comparative population genomics and transcriptomics should permit the identification of additional genes associated with functional divergence among those differentially expressed.
Collapse
Affiliation(s)
- François Wurmser
- Laboratoire Évolution Génomes et Spéciation, CNRS UPR9034, Gif-sur-Yvette, and Université Paris-Sud, Orsay, France
| | - Tristan Mary-Huard
- INRA UMR 518 MIA, Paris, France
- AgroParisTech, UMR 518 MIA, Paris, France
- UMR de Génétique Végétale, INRA, Université Paris-sud, CNRS, Gif-sur-Yvette, France
| | | | - Dominique Joly
- Laboratoire Évolution Génomes et Spéciation, CNRS UPR9034, Gif-sur-Yvette, and Université Paris-Sud, Orsay, France
| | - Catherine Montchamp-Moreau
- Laboratoire Évolution Génomes et Spéciation, CNRS UPR9034, Gif-sur-Yvette, and Université Paris-Sud, Orsay, France
| |
Collapse
|
9
|
Müller MJ, Dörr NCD, Deprá M, Schmitz HJ, Valiati VH, Valente VLDS. Reevaluating the infection status by the Wolbachia endosymbiont in Drosophila Neotropical species from the willistoni subgroup. INFECTION GENETICS AND EVOLUTION 2013; 19:232-9. [PMID: 23906981 DOI: 10.1016/j.meegid.2013.07.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 07/10/2013] [Accepted: 07/22/2013] [Indexed: 10/26/2022]
Abstract
Infections by the endosymbiotic bacterium Wolbachia developed a rapid global expansion within Old World Drosophila species, ultimately infecting also Neotropical species. In this sense, screenings are necessary to characterize new variants of Wolbachia or new hosts, and also in order to map the dynamics of already known infections. In this paper, we performed a double screening approach that combined Dot-blot and PCR techniques in order to reevaluate the infection status by Wolbachia in species from the willistoni subgroup of Drosophila. Genomic DNA from isofemale lines descendent from females collected in the Amazonian Rainforest (n=91) were submitted to Dot-blot, and were positive for Wolbachia, producing a gradient of hybridization signals, suggesting different infection levels, which was further confirmed through quantitative PCR. Samples with a strong signal in the Dot-blot easily amplified in the wsp-PCR, unlike most of the samples with a medium to weak signal. It was possible to molecularly characterize three Drosophila equinoxialis isofemale lines that were found to be infected in a low density by a wMel-like Wolbachia strain, which was also verified in a laboratory line of Drosophila paulistorum Amazonian. We also found Drosophila tropicalis to be infected with the wAu strain and a Drosophila paulistorum Andean-Brazilian semispecies laboratory line to be infected with a wAu-like Wolbachia. Moreover, we observed that all Drosophila willistoni samples tested with the VNTR-141 marker harbor the same Wolbachia variant, wWil, either in populations from the South or the North of Brazil. Horizontal transfer events involving species of Old World immigrants and Neotropical species of the willistoni subgroup are discussed.
Collapse
Affiliation(s)
- Mário Josias Müller
- Laboratório de Drosophila, Departamento de Genética, Programa de Pós Graduação em Genética e Biologia Molecular (PPGBM), Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | | | | | | | | | | |
Collapse
|
10
|
Sackton TB, Kulathinal RJ, Bergman CM, Quinlan AR, Dopman EB, Carneiro M, Marth GT, Hartl DL, Clark AG. Population genomic inferences from sparse high-throughput sequencing of two populations of Drosophila melanogaster. Genome Biol Evol 2009; 1:449-65. [PMID: 20333214 PMCID: PMC2839279 DOI: 10.1093/gbe/evp048] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2009] [Indexed: 12/20/2022] Open
Abstract
Short-read sequencing techniques provide the opportunity to capture genome-wide sequence data in a single experiment. A current challenge is to identify questions that shallow-depth genomic data can address successfully and to develop corresponding analytical methods that are statistically sound. Here, we apply the Roche/454 platform to survey natural variation in strains of Drosophila melanogaster from an African (n = 3) and a North American (n = 6) population. Reads were aligned to the reference D. melanogaster genomic assembly, single nucleotide polymorphisms were identified, and nucleotide variation was quantified genome wide. Simulations and empirical results suggest that nucleotide diversity can be accurately estimated from sparse data with as little as 0.2x coverage per line. The unbiased genomic sampling provided by random short-read sequencing also allows insight into distributions of transposable elements and copy number polymorphisms found within populations and demonstrates that short-read sequencing methods provide an efficient means to quantify variation in genome organization and content. Continued development of methods for statistical inference of shallow-depth genome-wide sequencing data will allow such sparse, partial data sets to become the norm in the emerging field of population genomics.
Collapse
Affiliation(s)
- Timothy B Sackton
- Department of Organismic and Evolutionary Biology, Harvard University, Boston, MA, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
African Drosophila melanogaster and D. simulans populations have similar levels of sequence variability, suggesting comparable effective population sizes. Genetics 2008; 178:405-12. [PMID: 18202383 DOI: 10.1534/genetics.107.080200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Drosophila melanogaster and D. simulans are two closely related species with a similar distribution range. Many studies suggested that D. melanogaster has a smaller effective population size than D. simulans. As most evidence was derived from non-African populations, we readdressed this question by sequencing 10 X-linked loci in five African D. simulans and six African D. melanogaster populations. Contrary to previous results, we found no evidence for higher variability, and thus larger effective population size, in D. simulans. Our observation of similar levels of variability of both species will have important implications for the interpretation of patterns of molecular evolution.
Collapse
|
12
|
Singh ND, Macpherson JM, Jensen JD, Petrov DA. Similar levels of X-linked and autosomal nucleotide variation in African and non-African populations of Drosophila melanogaster. BMC Evol Biol 2007; 7:202. [PMID: 17961244 PMCID: PMC2164965 DOI: 10.1186/1471-2148-7-202] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2007] [Accepted: 10/25/2007] [Indexed: 11/26/2022] Open
Abstract
Background Levels of molecular diversity in Drosophila have repeatedly been shown to be higher in ancestral, African populations than in derived, non-African populations. This pattern holds for both coding and noncoding regions for a variety of molecular markers including single nucleotide polymorphisms and microsatellites. Comparisons of X-linked and autosomal diversity have yielded results largely dependent on population of origin. Results In an attempt to further elucidate patterns of sequence diversity in Drosophila melanogaster, we studied nucleotide variation at putatively nonfunctional X-linked and autosomal loci in sub-Saharan African and North American strains of D. melanogaster. We combine our experimental results with data from previous studies of molecular polymorphism in this species. We confirm that levels of diversity are consistently higher in African versus North American strains. The relative reduction of diversity for X-linked and autosomal loci in the derived, North American strains depends heavily on the studied loci. While the compiled dataset, comprised primarily of regions within or in close proximity to genes, shows a much more severe reduction of diversity on the X chromosome compared to autosomes in derived strains, the dataset consisting of intergenic loci located far from genes shows very similar reductions of diversities for X-linked and autosomal loci in derived strains. In addition, levels of diversity at X-linked and autosomal loci in the presumably ancestral African population are more similar than expected under an assumption of neutrality and equal numbers of breeding males and females. Conclusion We show that simple demographic scenarios under assumptions of neutral theory cannot explain all of the observed patterns of molecular diversity. We suggest that the simplest model is a population bottleneck that retains an ancestral female-biased sex ratio, coupled with higher rates of positive selection at X-linked loci in close proximity to genes specifically in derived, non-African populations.
Collapse
Affiliation(s)
- Nadia D Singh
- Department of Biological Sciences, Stanford University, Stanford, CA 94305 USA.
| | | | | | | |
Collapse
|
13
|
Montchamp-Moreau C, Ginhoux V, Atlan A. THE Y CHROMOSOMES OF DROSOPHILA SIMULANS ARE HIGHLY POLYMORPHIC FOR THEIR ABILITY TO SUPPRESS SEX-RATIO DRIVE. Evolution 2007. [DOI: 10.1111/j.0014-3820.2001.tb00809.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Sánchez-Gracia A, Rozas J. Unusual pattern of nucleotide sequence variation at the OS-E and OS-F genomic regions of Drosophila simulans. Genetics 2007; 175:1923-35. [PMID: 17277360 PMCID: PMC1855126 DOI: 10.1534/genetics.106.068015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nucleotide variation at the genomic region encompassing the odorant-binding protein genes OS-E and OS-F (OS region) was surveyed in two populations of Drosophila simulans, one from Europe and the other from Africa. We found that the European population shows an atypical and large haplotype structure, which extends throughout the approximately 5-kb surveyed genomic region. This structure is depicted by two major haplotype groups segregating at intermediate frequency in the sample, one haplogroup with nearly no variation, and the other at levels more typical for this species. This pattern of variation was incompatible with neutral predictions for a population at a stationary equilibrium. Nevertheless, neutrality tests contrasting polymorphism and divergence data fail to detect any departure from the standard neutral model in this species, whereas they confirm the non-neutral behavior previously observed at the OS-E gene in D. melanogaster. Although positive Darwinian selection may have been responsible for the observed unusual nucleotide variation structure, coalescent simulation results do not allow rejecting the hypothesis that the pattern was generated by a recent bottleneck in the history of European populations of D. simulans.
Collapse
|
15
|
Schöfl G, Schlötterer C. Microsatellite variation and differentiation in African and non-African populations of Drosophila simulans. Mol Ecol 2006; 15:3895-905. [PMID: 17054491 DOI: 10.1111/j.1365-294x.2006.03065.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Drosophila simulans originated in sub-Saharan Africa or Madagascar and colonized the rest of the world after the last glaciation about 10 000 years ago. Consistent with this demographic history, sub-Saharan African populations have been shown to harbour higher levels of microsatellite and sequence variation than cosmopolitan populations. Nevertheless, only limited information is available on the population structure of D. simulans. Here, we analysed X-linked and autosomal microsatellite loci in four sub-Saharan African, one North African, one Israeli, and two European D. simulans populations. Bayesian clustering algorithms combined the North African, Israeli, and European populations into a single cosmopolitan group. The four sub-Saharan populations were split into two separate groups. Pairwise F(ST) analysis, however, indicated significant population differentiation between all eight populations surveyed. A significant signal for population reduction in cosmopolitan populations was found only for X-linked loci.
Collapse
Affiliation(s)
- Gerhard Schöfl
- Institut für Tierzucht und Genetik, Veterinärmedizinische Universität Wien, Josef-Baumann Gasse 1, 1210 Wien, Austria
| | | |
Collapse
|
16
|
Baudry E, Derome N, Huet M, Veuille M. Contrasted polymorphism patterns in a large sample of populations from the evolutionary genetics model Drosophila simulans. Genetics 2006; 173:759-67. [PMID: 16510794 PMCID: PMC1526533 DOI: 10.1534/genetics.105.046250] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
African populations of Drosophila simulans are thought to be ancestral in this model species and are increasingly used for testing general hypotheses in evolutionary genetics. It is often assumed that African populations are more likely to be at a neutral mutation drift equilibrium than other populations. Here we examine population structuring and the demographic profile in nine populations of D. simulans. We surveyed sequence variation in four X-linked genes (runt, sevenless, Sex-lethal, and vermilion) that have been used in a parallel study in the closely related species D. melanogaster. We found that an eastern group of populations from continental Africa and Indian Ocean islands (Kenya, Tanzania, Madagascar, and Mayotte Island) is widespread, shows little differentiation, and has probably undergone demographic expansion. The other two African populations surveyed (Cameroon and Zimbabwe) show no evidence of population expansion and are markedly differentiated from each other as well as from the populations from the eastern group. Two other populations, Europe and Antilles, are probably recent invaders to these areas. The Antilles population is probably derived from Europe through a substantial bottleneck. The history of these populations should be taken into account when drawing general conclusions from variation patterns.
Collapse
Affiliation(s)
- Emmanuelle Baudry
- Ecole Pratique des Hautes Etudes, Université Pierre et Marie Curie, Paris, France
| | | | | | | |
Collapse
|
17
|
Augustinos AA, Mamuris Z, Stratikopoulos EE, D'Amelio S, Zacharopoulou A, Mathiopoulos KD. Microsatellite analysis of olive fly populations in the Mediterranean indicates a westward expansion of the species. Genetica 2006; 125:231-41. [PMID: 16247695 DOI: 10.1007/s10709-005-8692-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2005] [Accepted: 06/13/2005] [Indexed: 10/25/2022]
Abstract
Bactrocera oleae is the major insect pest of the olive fruit. Twelve microsatellite loci isolated from the genome of this insect were used in a Mediterranean-wide population analysis. These loci were highly polymorphic with a mean number of alleles per locus of 10.42 and a mean effective number of alleles of 2.76. The analysis was performed on a sample of 671 flies collected from nineteen locations around the European part of the Mediterranean basin. Despite the high level of gene flow across the Mediterranean, results support the notion of a differentiation of three subpopulations: one of the Iberian Peninsula, one of Greece and Italy and one of Cyprus. In addition, the gradual decrease of heterozygosity from the Eastern to the Western part of the Mediterranean indicates a westward expansion of the species.
Collapse
Affiliation(s)
- A A Augustinos
- Department of Biology, University of Patras, Rion 26504, Greece
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
We study levels of X-linked vs. autosomal diversity using a model developed to analyze the hitchhiking effect. Repeated bouts of hitchhiking are thought to lower X-linked diversity for two reasons: first, because sojourn times of beneficial mutations are shorter on the X, and second, because adaptive substitutions may be more frequent on the X. We investigate whether each of these effects does, in fact, cause reduced X-linked diversity under hitchhiking. We study the strength of the hitchhiking effect on the X vs. autosomes when there is no recombination and under two different recombination schemes. When recombination occurs in both sexes, X-linked vs. autosomal diversity is reduced by hitchhiking under a broad range of conditions, but when there is no recombination in males, as in Drosophila, the required conditions are considerably more restrictive.
Collapse
|
19
|
Braverman JM, Lazzaro BP, Aguadé M, Langley CH. DNA sequence polymorphism and divergence at the erect wing and suppressor of sable loci of Drosophila melanogaster and D. simulans. Genetics 2005; 170:1153-65. [PMID: 15944367 PMCID: PMC1451169 DOI: 10.1534/genetics.104.033456] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Several evolutionary models of linked selection (e.g., genetic hitchhiking, background selection, and random environment) predict a reduction in polymorphism relative to divergence in genomic regions where the rate of crossing over per physical distance is restricted. We tested this prediction near the telomere of the Drosophila melanogaster and D. simulans X chromosome at two loci, erect wing (ewg) and suppressor of sable [su(s)]. Consistent with this prediction, polymorphism is reduced at both loci, while divergence is normal. The reduction is greater at ewg, the more distal of the two regions. Two models can be discriminated by comparing the observed site frequency spectra with those predicted by the models. The hitchhiking model predicts a skew toward rare variants in a sample, while the spectra under the background-selection model are similar to those of the neutral model of molecular evolution. Statistical tests of the fit to the predictions of these models require many sampled alleles and segregating sites. Thus we used SSCP and stratified DNA sequencing to cover a large number of randomly sampled alleles (approximately 50) from each of three populations. The result is a clear trend toward negative values of Tajima's D, indicating an excess of rare variants at ewg, the more distal of the two loci. One fixed difference among the populations and high FST values indicate strong population subdivision among the three populations at ewg. These results indicate genetic hitchhiking at ewg, in particular, geographically localized hitchhiking events within Africa. The reduction of polymorphism at su(s) combined with the excess of high-frequency variants in D. simulans is inconsistent with the hitchhiking and background-selection models.
Collapse
Affiliation(s)
- John M Braverman
- Department of Biology, Georgetown University, Washington, DC 20057-1229, USA.
| | | | | | | |
Collapse
|
20
|
Schlötterer C, Reiss M, Schneider A, Imhof M. Similar mating and sperm displacement patterns in two highly divergent D. simulans populations from Africa and Europe. Mol Ecol 2005; 14:1511-5. [PMID: 15813788 DOI: 10.1111/j.1365-294x.2005.02497.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The frequency of remating in Drosophila melanogaster is affected by both genetic and ecological factors. We studied the remating behaviour in one European (Italy) and one African (Uganda) Drosophila simulans population using six highly polymorphic microsatellite markers. Despite that the populations were genetically distinct (F(ST) = 0.18) and originated from very dissimilar ecological settings with different population densities, we inferred a very similar mating pattern. The remating parameter alpha was similar in both populations (a = 1.3-1.4). No more than two distinct paternal genotypes per family were detected in each population.
Collapse
|
21
|
Schlenke TA, Begun DJ. Linkage disequilibrium and recent selection at three immunity receptor loci in Drosophila simulans. Genetics 2005; 169:2013-22. [PMID: 15654108 PMCID: PMC1449586 DOI: 10.1534/genetics.104.035337] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2004] [Accepted: 12/07/2004] [Indexed: 11/18/2022] Open
Abstract
Immune system genes in a California population sample of Drosophila simulans were shown to bear several hallmarks of the effects of past directional selection. One potential effect of directional selection is an increase in linkage disequilibrium among the polymorphic sites that are linked to the site under selection. In this study, we focus on three D. simulans immunity loci, Hmu, Sr-CI/Sr-CIII, and Tehao, for which the polymorphic sites are in nearly perfect linkage disequilibrium, an unusual finding even with respect to other immunity genes sampled from the same lines. The most likely explanation for this finding is that, at each locus, two divergent alleles have been selected to intermediate frequencies in the recent past. The extent to which the linkage disequilibrium extends to the flanks of each of the immunity genes is minimal, suggesting that the favored mutations actually occurred within the immunity genes themselves. Furthermore, the excess linkage disequilibrium found in the California population is not found in an African D. simulans population sample and may be a result of novel pathogen-mediated selection pressures encountered during establishment of non-African populations.
Collapse
Affiliation(s)
- Todd A Schlenke
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA.
| | | |
Collapse
|
22
|
Dean MD, Ballard JWO. Linking phylogenetics with population genetics to reconstruct the geographic origin of a species. Mol Phylogenet Evol 2004; 32:998-1009. [PMID: 15288072 DOI: 10.1016/j.ympev.2004.03.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2003] [Revised: 03/18/2004] [Indexed: 10/26/2022]
Abstract
Reconstructing ancestral geographic origins is critical for understanding the long-term evolution of a species. Bayesian methods have been proposed to test biogeographic hypotheses while accommodating uncertainty in phylogenetic reconstruction. However, the problem that certain taxa may have a disproportionate influence on conclusions has not been addressed. Here, we infer the geographic origin of Drosophila simulans using 2,014 bp of the period locus from 63 lines collected from 18 countries. We also analyze two previously published datasets, alcohol dehydrogenase related and NADH:ubiquinone reductase 75 kDa subunit precursor. Phylogenetic inferences of all three loci support Madagascar as the geographic origin of D. simulans. Our phylogenetic conclusions are robust to taxon resampling and to the potentially confounding effects of recombination. To test our phylogenetically derived hypothesis we develop a randomization test of the population genetics prediction that sequences from the geographic origin should contain more genetic polymorphism than those from derived populations. We find that the Madagascar population has elevated genetic polymorphism relative to non-Madagascar sequences. These data are corroborated by mitochondrial DNA sequence data.
Collapse
Affiliation(s)
- Matthew D Dean
- University of Iowa, 202 Biology Building, Iowa City, IA 52242, USA.
| | | |
Collapse
|
23
|
Colson I, Hughes RN. Rapid recovery of genetic diversity of dogwhelk (Nucella lapillus L.) populations after local extinction and recolonization contradicts predictions from life-history characteristics. Mol Ecol 2004; 13:2223-33. [PMID: 15245396 DOI: 10.1111/j.1365-294x.2004.02245.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The dogwhelk Nucella lapillus is a predatory marine gastropod populating North Atlantic rocky shores. As with many other gastropod species, N. lapillus was affected by tributyltin (TBT) pollution during the 1970s and 1980s, when local populations became extinct. After a partial ban on TBT in the United Kingdom in 1987, vacant sites have been recolonized. N. lapillus lacks a planktonic larval stage and is therefore expected to have limited dispersal ability. Relatively fast recolonization of some sites, however, contradicts this assumption. We compared levels of genetic diversity and genetic structuring between recolonized sites and sites that showed continuous population at three localities across the British Isles. No significant genetic effects of extinction/recolonization events were observed in SW Scotland and NE England. In SW England we observed a decrease in genetic diversity and an increase in genetic structure in recolonized populations. This last result could be an artefact, however, due to the superposition of other local factors influencing the genetic structuring of dogwhelk populations. We conclude that recolonization of vacant sites was accomplished by a relatively high number of individuals originating from several source populations (the 'migrant-pool' model of recolonization), implying that movements are more widespread than expected on the basis of development mode alone. Comparison with published data on genetic structure of marine organisms with contrasted larval dispersal supports this hypothesis. Our results also stress the importance of local factors (geographical or ecological) in determining genetic structure of dogwhelk populations.
Collapse
Affiliation(s)
- I Colson
- School of Biological Sciences, University of Wales, Bangor, Deiniol Road, Bangor, Gwynedd LL57 2UW, UK
| | | |
Collapse
|
24
|
Schöfl G, Schlötterer C. Patterns of Microsatellite Variability Among X Chromosomes and Autosomes Indicate a High Frequency of Beneficial Mutations in Non-African D. simulans. Mol Biol Evol 2004; 21:1384-90. [PMID: 15044592 DOI: 10.1093/molbev/msh132] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We analyzed microsatellite variability at 42 X-linked and 39 autosomal loci from African and European populations of Drosophila simulans. The African D. simulans harbored significantly more microsatellite variability than the European flies. In the European population, X-linked polymorphism was more reduced than autosomal variation, whereas there was no significant difference between chromosomes in the African population. Previous studies also observed a similar pattern but failed to distinguish between a demographic event and a selection scenario. We performed extensive computer simulations using a wide range of demographic scenarios to distinguish between the two hypotheses. Approximate summary likelihood estimates differed dramatically among X chromosomes and autosomes. Furthermore, our experimental data showed a surplus of X-linked microsatellites with a significantly reduced variability in non-African D. simulans. We conclude that our data are not compatible with a neutral scenario. Thus, the reduced variability at X-linked loci is most likely caused by selective sweeps associated with the out-of-Africa habitat expansion of D. simulans.
Collapse
Affiliation(s)
- Gerhard Schöfl
- Institut fur Tierzucht und Genetik, Veterinarmedizinische Universitat, Vienna, Austria
| | | |
Collapse
|
25
|
Erickson DL, Hamrick JL, Kochert GD. Ecological determinants of genetic diversity in an expanding population of the shrub Myrica cerifera. Mol Ecol 2004; 13:1655-64. [PMID: 15140108 DOI: 10.1111/j.1365-294x.2004.02139.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The ecological mechanisms that contribute to the acquisition of genetic diversity in an expanding population of the shrub, Myrica cerifera, on an island habitat were investigated. Genealogical reconstruction was used to assess the contribution of early reproductive colonists to subsequent recruitment. In addition, through determination of parentage, the source of recruiting seedlings was identified and the contribution of seed and pollen dispersal into the colonizing sites was inferred. The relative contribution of different sources of gene flow was determined directly and an investigation was made into how variability in breeding patterns may have contributed to observed levels of genetic variability. It was expected that early colonists that could flower would contribute to subsequent recruiting cohorts, and that the limited number of such early reproductive colonists would lead to variance in mating success, inbreeding, or bottlenecks which could reduce genetic diversity and increase genetic differentiation among subsequent recruiting cohorts. Analyses of parentage (with paternity exclusion probability > 95%) for all recruiting plants demonstrated that in fact, there was little contribution by the early reproductive colonists to subsequent cohorts, and that immigration from outside the study sites in the form of seed dispersal accounted for over 94% of the recruitment in the study plots, with pollen dispersal accounting for less than 3% gene flow. No genetic bottleneck or evidence of reproductive skew in the recruiting cohorts were found, suggesting that propagule dispersal was from many source individuals in other established populations.
Collapse
Affiliation(s)
- David L Erickson
- Laboratory of Analytical Biology, Smithsonian Institution, 4210 Silver Hill Road., Suitland, MD 20742, USA.
| | | | | |
Collapse
|
26
|
Hufbauer RA, Bogdanowicz SM, Harrison RG. The population genetics of a biological control introduction: mitochondrial DNA and microsatellie variation in native and introduced populations of Aphidus ervi, a parisitoid wasp. Mol Ecol 2004; 13:337-48. [PMID: 14717891 DOI: 10.1046/j.1365-294x.2003.02084.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Introductions of biological control agents may cause bottlenecks in population size despite efforts to avoid them. We examined the population genetics of Aphidius ervi (Hymenoptera: Braconidae), a parasitoid that was introduced to North America from Western Europe in 1959 to control pea aphids. To explore the phylogeographical relationships of A. ervi we sequenced 1249 bp of mitochondrial DNA (mtDNA) from 27 individuals from the native range and 51 individuals from the introduced range. Most individuals from Western Europe, the Middle East and North America shared one of two common haplotypes, consistent with the known history of the introduction. However, some A. ervi from the Pacific Northwest have a haplotype that is most similar to haplotypes found in Japan, raising the possibility of a second accidental introduction. To examine population structure and assess whether a bottleneck occurred upon introduction to North America, we assayed variation at 5 microsatellite loci in 62 individuals from 2 native populations and 230 individuals from 6 introduced populations. Introduced samples had fewer rare alleles than native samples (F1,34 = 13.5, P = 0.0008), but heterozygosity did not differ significantly. These results suggest that a mild bottleneck occurred in spite of the introduction of over 1000 individuals. Using a hierarchical Bayesian approach, the founding population size was estimated to be 245 individuals. amova showed significant genetic differentiation between the European and North American samples, and a Bayesian assignment approach clustered individuals into four groups, with most European individuals in one group and most North American individuals in the other three. These results highlight that genetic changes are associated with founder events in rapidly growing natural populations, even when the founding population size is relatively large.
Collapse
Affiliation(s)
- R A Hufbauer
- Department of Ecology and Evlutionary Biology, Cornell University, Ithacaa, NY 14853, USA.
| | | | | |
Collapse
|
27
|
Colson I. Drosophila simulans' response to laboratory selection for tolerance to a toxic food source used by its sister species D. sechellia. Evol Ecol 2004. [DOI: 10.1023/b:evec.0000017669.56353.cb] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
28
|
Dean MD, Ballard KJ, Glass A, Ballard JWO. Influence of Two Wolbachia Strains on Population Structure of East AfricanDrosophila simulans. Genetics 2003; 165:1959-69. [PMID: 14704179 PMCID: PMC1462921 DOI: 10.1093/genetics/165.4.1959] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AbstractDrosophila simulans is hypothesized to have originated in continental East Africa or Madagascar. In this study, we investigated evolutionary forces operating on mitochondrial DNA (mtDNA) in populations of D. simulans from Zimbabwe, Malawi, Tanzania, and Kenya. Variation in mtDNA may be affected by positive selection, background selection, demographic history, and/or any maternally inherited factor such as the bacterial symbiont Wolbachia. In East Africa, the wRi and wMa Wolbachia strains associate with the siII or siIII mitochondrial haplogroups, respectively. To ask how polymorphism relates to Wolbachia infection status, we sequenced 1776 bp of mitochondrial DNA and 1029 bp of the X-linked per locus from 79 lines. The two southern populations were infected with wRi and exhibited significantly reduced mtDNA variation, while Wolbachia-uninfected siII flies from Tanzania and Kenya showed high levels of mtDNA polymorphism. These are the first known populations of D. simulans that do not exhibit reduced mtDNA variation. We observed no mitochondrial variation in the siIII haplogroup regardless of Wolbachia infection status, suggesting positive or background selection. These populations offer a unique opportunity to monitor evolutionary dynamics in ancestral populations that harbor multiple strains of Wolbachia.
Collapse
Affiliation(s)
- Matthew D Dean
- Department of Biological Sciences, University of Iowa, Iowa City, Iowa 52242-1324, USA
| | | | | | | |
Collapse
|
29
|
Dieringer D, Schlötterer C. microsatellite analyser(MSA): a platform independent analysis tool for large microsatellite data sets. ACTA ACUST UNITED AC 2003. [DOI: 10.1046/j.1471-8286.2003.00351.x] [Citation(s) in RCA: 1287] [Impact Index Per Article: 61.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
30
|
Odgers WA, Aquadro CF, Coppin CW, Healy MJ, Oakeshott JG. Nucleotide polymorphism in the Est6 promoter, which is widespread in derived populations of Drosophila melanogaster, changes the level of Esterase 6 expressed in the male ejaculatory duct. Genetics 2002; 162:785-97. [PMID: 12399389 PMCID: PMC1462297 DOI: 10.1093/genetics/162.2.785] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Previous analysis of an Australian population of D. melanogaster revealed two predominant Est6 promoter haplotypes, P1 and P7. These haplotypes, which differ at 14 sites over a 325-bp region, are associated with a 15-20% difference in male EST6 activity. Here we show that the P1/P7 sequence difference causes the male activity variation by recreating the activity difference among >60 independently transformed lines containing representative P1 or P7 promoter alleles fused to an identical Est6 coding region. Furthermore we find that the whole fly difference reflects about a twofold difference in EST6 activity in the anterior sperm ejaculatory duct. EST6 activity variation in this tissue is known to affect reproductive fitness. Using a combination of RFLP analysis and DNA sequencing, we show that P1 and P7 are predominant in six populations from America, Asia, and Australia, albeit less frequent in a population from the presumptively ancestral east African range of the species. The sequence data show significant departures from neutral expectations for the derived American and Australian populations but not the presumptively ancestral Zimbabwean population. Thus the P1/P7 difference could be a major source of adaptively significant EST6 activity variation through much of the now cosmopolitan range of D. melanogaster.
Collapse
|
31
|
Biémont C, Vieira C, Borie N. Éléments transposables et évolution du génome d’une espèce invasive: le cas de Drosophila simulans. Genet Sel Evol 2001. [DOI: 10.1186/bf03500876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
32
|
Abstract
A number of tests have been developed to detect positive selection at the molecular level. These tests are based on DNA polymorphism within and divergence between species. Applications of these tests have revealed a large collection of genes that have evolved under positive selection and some general insights into adaptive evolution. Recently, these tests have been applied on a genomic scale and have provided estimates of the frequency of adaptive substitutions and a critical test of the neutral theory.
Collapse
Affiliation(s)
- J C Fay
- Committee on Genetics, University of Chicago, 1101 East 57th Street, Chicago, Illinois 60637, USA.
| | | |
Collapse
|
33
|
Michalak P, Minkov I, Helin A, Lerman DN, Bettencourt BR, Feder ME, Korol AB, Nevo E. Genetic evidence for adaptation-driven incipient speciation of Drosophila melanogaster along a microclimatic contrast in "Evolution Canyon," Israel. Proc Natl Acad Sci U S A 2001; 98:13195-200. [PMID: 11687637 PMCID: PMC60847 DOI: 10.1073/pnas.231478298] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2001] [Indexed: 11/18/2022] Open
Abstract
Substantial genetic differentiation, as great as among species, exists between populations of Drosophila melanogaster inhabiting opposite slopes of a small canyon. Previous work has shown that prezygotic sexual isolation and numerous differences in stress-related phenotypes have evolved between D. melanogaster populations in "Evolution Canyon," Israel, in which slopes 100-400 m apart differ dramatically in aridity, solar radiation, and associated vegetation. Because the canyon's width is well within flies' dispersal capabilities, we examined genetic changes associated with local adaptation and incipient speciation in the absence of geographical isolation. Here we report remarkable genetic differentiation of microsatellites and divergence in the regulatory region of hsp70Ba which encodes the major inducible heat shock protein of Drosophila, in the two populations. Additionally, an analysis of microsatellites suggests a limited exchange of migrants and lack of recent population bottlenecks. We hypothesize that adaptation to the contrasting microclimates overwhelms gene flow and is responsible for the genetic and phenotypic divergence between the populations.
Collapse
Affiliation(s)
- P Michalak
- Department of Organismal Biology and Anatomy, University of Chicago, 1027 East 57th Street, Chicago, IL 60637-1508, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Calabrese PP, Durrett RT, Aquadro CF. Dynamics of microsatellite divergence under stepwise mutation and proportional slippage/point mutation models. Genetics 2001; 159:839-52. [PMID: 11606557 PMCID: PMC1461831 DOI: 10.1093/genetics/159.2.839] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Recently Kruglyak, Durrett, Schug, and Aquadro showed that microsatellite equilibrium distributions can result from a balance between polymerase slippage and point mutations. Here, we introduce an elaboration of their model that keeps track of all parts of a perfect repeat and a simplification that ignores point mutations. We develop a detailed mathematical theory for these models that exhibits properties of microsatellite distributions, such as positive skewness of allele lengths, that are consistent with data but are inconsistent with the predictions of the stepwise mutation model. We use our theoretical results to analyze the successes and failures of the genetic distances (delta(mu))(2) and D(SW) when used to date four divergences: African vs. non-African human populations, humans vs. chimpanzees, Drosophila melanogaster vs. D. simulans, and sheep vs. cattle. The influence of point mutations explains some of the problems with the last two examples, as does the fact that these genetic distances have large stochastic variance. However, we find that these two features are not enough to explain the problems of dating the human-chimpanzee split. One possible explanation of this phenomenon is that long microsatellites have a mutational bias that favors contractions over expansions.
Collapse
Affiliation(s)
- P P Calabrese
- Department of Applied Mathematics, Cornell University, Ithaca, New York 14853, USA
| | | | | |
Collapse
|
35
|
Abstract
Patterns of codon bias in Drosophila suggest that silent mutations can be classified into two types: unpreferred (slightly deleterious) and preferred (slightly beneficial). Results of previous analyses of polymorphism and divergence in Drosophila simulans were interpreted as supporting a mutation-selection-drift model in which slightly deleterious, silent mutants make significantly greater contributions to polymorphism than to divergence. Frequencies of unpreferred polymorphisms were inferred to be lower than frequencies of other silent polymorphisms. Here, I analyzed additional D. simulans data to reevaluate the support for these ideas. I found that D. simulans has fixed more unpreferred than preferred mutations, suggesting that this lineage has not been at mutation-selection-drift equilibrium at silent sites. Frequencies of polarized unpreferred polymorphisms are not skewed toward rare alleles. However, frequencies of unpolarized unpreferred codons are lower in high-bias genes than in low-bias genes. This supports the idea that unpreferred codons are borderline deleterious mutations. Purifying selection on silent sites appears to be stronger at twofold-degenerate codons than at fourfold-degenerate codons. Finally, I found that X-linked polymorphisms occur at a higher average frequency than polymorphisms on chromosome arm 3R, even though an average X-linked site is significantly less likely to be polymorphic than an average site on 3R. This result supports a previous analysis of D. simulans indicating different population genetics of X-linked versus autosomal mutations.
Collapse
Affiliation(s)
- D J Begun
- Section of Evolution and Ecology, University of California at Davis, 95616, USA.
| |
Collapse
|
36
|
Andolfatto P, Przeworski M. Regions of lower crossing over harbor more rare variants in African populations of Drosophila melanogaster. Genetics 2001; 158:657-65. [PMID: 11404330 PMCID: PMC1461661 DOI: 10.1093/genetics/158.2.657] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A correlation between diversity levels and rates of recombination is predicted both by models of positive selection, such as hitchhiking associated with the rapid fixation of advantageous mutations, and by models of purifying selection against strongly deleterious mutations (commonly referred to as "background selection"). With parameter values appropriate for Drosophila populations, only the first class of models predicts a marked skew in the frequency spectrum of linked neutral variants, relative to a neutral model. Here, we consider 29 loci scattered throughout the Drosophila melanogaster genome. We show that, in African populations, a summary of the frequency spectrum of polymorphic mutations is positively correlated with the meiotic rate of crossing over. This pattern is demonstrated to be unlikely under a model of background selection. Models of weakly deleterious selection are not expected to produce both the observed correlation and the extent to which nucleotide diversity is reduced in regions of low (but nonzero) recombination. Thus, of existing models, hitchhiking due to the recurrent fixation of advantageous variants is the most plausible explanation for the data.
Collapse
Affiliation(s)
- P Andolfatto
- Institute of Cell and Animal Population Biology, Ashworth Labs, University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom.
| | | |
Collapse
|
37
|
Newman RA, Squire T. Microsatellite variation and fine-scale population structure in the wood frog (Rana sylvatica). Mol Ecol 2001; 10:1087-100. [PMID: 11380868 DOI: 10.1046/j.1365-294x.2001.01255.x] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We investigated genetic population structure in wood frogs (Rana sylvatica) from a series of Prairie Pothole wetlands in the northern Great Plains. Amphibians are often thought to exist in demographic metapopulations, which require some movement between populations, yet genetic studies have revealed strong subdivision among populations, even at relatively fine scales (several km). Wood frogs are highly philopatric and studies of dispersal suggest that they may exhibit subdivision on a scale of approximately 1-2 km. We used microsatellites to examine population structure among 11 breeding assemblages separated by as little as 50 m up to approximately 5.5 km, plus one population separated from the others by 20 km. We found evidence for differentiation at the largest distances we examined and among a few neighbouring ponds, but most populations were strikingly similar in allele frequencies, suggesting high gene flow among all but the most distant populations. We hypothesize that the few significant differences among neighbouring populations at the finest scale may be a transient effect of extinction-recolonization founder events, driven by periodic drying of wetlands in this hydrologically dynamic landscape.
Collapse
Affiliation(s)
- R A Newman
- Starcher Hall/Department of Biology, University of North Dakota, Grand Forks, ND 58202-9019, USA.
| | | |
Collapse
|
38
|
Montchamp-Moreau C, Ginhoux V, Atlan A. The Y chromosomes of Drosophila simulans are highly polymorphic for their ability to suppress sex-ratio drive. Evolution 2001; 55:728-37. [PMID: 11392391 DOI: 10.1554/0014-3820(2001)055[0728:tycods]2.0.co;2] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The sex-ratio trait, known in several species of Drosophila including D. simulans, results from meiotic drive of the X chromosome against the Y. Males that carry a sex-ratio X chromosome produce strongly female-biased progeny. In D. simulans, drive suppressors have evolved on the Y chromosome and on the autosomes. Both the frequency of sex-ratio X and the strength of the total drive suppression (Y-linked and autosomal) vary widely among geographic populations of this worldwide species. We have investigated the pattern of Y-linked drive suppression in six natural populations representative of this variability. Y-linked suppressors were found to be a regular component of the suppression, with large differences between populations in the mean level of suppression. These variations did not correspond to differences in frequency of discrete types of Y chromosomes, but to a more or less wide continuum of phenotypes, from nonsuppressor to partial or total suppressor. We concluded that a large diversity of Y-linked suppressor alleles exists in D. simulans and that some populations are highly polymorphic. Our results support the hypothesis that a Y-chromosome polymorphism can be easily maintained by a balance between meiotic drive and the cost of drive suppression.
Collapse
|
39
|
Hansson B, Bensch S, Hasselquist D, Lillandt BG, Wennerberg L, von Schantz T. Increase of genetic variation over time in a recently founded population of great reed warblers (Acrocephalus arundinaceus) revealed by microsatellites and DNA fingerprinting. Mol Ecol 2000; 9:1529-38. [PMID: 11050548 DOI: 10.1046/j.1365-294x.2000.01028.x] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Genetic similarity within pairs of individuals was examined using both 10 polymorphic microsatellite loci and multi-locus DNA fingerprinting profiles in a semi-isolated population of great reed warblers at Lake Kvismaren, south Central Sweden, in 1987-1993. The population was founded by a few individuals in 1978, followed by a gradual increase in numbers until 1988, since when the population has remained relatively stable with about 60 breeding birds. We have previously found that high genetic similarity between pair-mates in the population during the early part of the study period reduced egg hatching success, and hence reproductive success. The measures of pairwise genetic similarity, microsatellite allele sharing and DNA fingerprinting band sharing, were highly correlated with pedigree-based relatedness. Both microsatellite and DNA fingerprinting similarities between pair-mates declined significantly over the study period, and the pattern was most pronounced in the DNA fingerprinting data. Analyses restricted to the microsatellite data showed that the average annual microsatellite similarity between pairwise combinations of individuals, as well as individual homozygosity in males, declined significantly over the study period, and that several immigrants carrying novel alleles entered the population during the study. Hence, the temporal decline in genetic similarity of mates in the population is probably a consequence of increased immigration, facilitated by the recent expansion of the species in the region. These results suggest that the population has now recovered genetically, or is in the process of recovering, from a recent founder event.
Collapse
Affiliation(s)
- B Hansson
- Department of Animal Ecology, Ecology Building, Lund University, S-223 62 Lund, Sweden.
| | | | | | | | | | | |
Collapse
|
40
|
Anderson TJ, Su XZ, Roddam A, Day KP. Complex mutations in a high proportion of microsatellite loci from the protozoan parasite Plasmodium falciparum. Mol Ecol 2000; 9:1599-608. [PMID: 11050555 DOI: 10.1046/j.1365-294x.2000.01057.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Microsatellite loci are generally assumed to evolve via a stepwise mutational process and a battery of statistical techniques has been developed in recent years based on this or related mutation models. It is therefore important to investigate the appropriateness of these models in a wide variety of taxa. We used two approaches to examine mutation patterns in the malaria parasite Plasmodium falciparum: (i) we examined sequence variation at 12 tri-nucleotide repeat loci; and (ii) we analysed patterns of repeat structure and heterozygosity at 114 loci using data from 12 laboratory parasite lines. The sequencing study revealed complex patterns of mutation in five of the 12 loci studied. Alleles at two loci contain indels of 24 bp and 57 bp in flanking regions, while in the other three loci, blocks of imperfect microsatellites appear to be duplicated or inserted; these loci essentially consist of minisatellite repeats, with each repeat unit containing four to eight microsatellites. The survey of heterozygosity revealed a positive relationship between repeat number and microsatellite variability for both di- and trinucleotides, indicating a higher mutation rate in loci with longer repeat arrays. Comparisons of levels of variation in different repeat types indicate that the mutation rate of dinucleotide-bearing loci is 1.6-2.1 times faster than trinucleotides, consistent with the lower mean number of repeats in trinucleotide-bearing loci. However, despite the evidence that microsatellite arrays themselves are evolving in a manner consistent with stepwise mutation model in P. falciparum, the high frequency of complex mutations precludes the use of analytical tools based on this mutation model for many microsatellite-bearing loci in this protozoan. The results call into question the generality of models based on stepwise mutation for analysing microsatellite data, but also demonstrate the ease with which loci that violate model assumptions can be detected using minimal sequencing effort.
Collapse
Affiliation(s)
- T J Anderson
- Department of Genetics, Southwest Foundation for Biomedical Research, PO Box 760549, San Antonio, TX 78245-0549, USA.
| | | | | | | |
Collapse
|
41
|
Andolfatto P, Przeworski M. A genome-wide departure from the standard neutral model in natural populations of Drosophila. Genetics 2000; 156:257-68. [PMID: 10978290 PMCID: PMC1461228 DOI: 10.1093/genetics/156.1.257] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We analyze nucleotide polymorphism data for a large number of loci in areas of normal to high recombination in Drosophila melanogaster and D. simulans (24 and 16 loci, respectively). We find a genome-wide, systematic departure from the neutral expectation for a panmictic population at equilibrium in natural populations of both species. The distribution of sequence-based estimates of 2Nc across loci is inconsistent with the assumptions of the standard neutral theory, given the observed levels of nucleotide diversity and accepted values for recombination and mutation rates. Under these assumptions, most estimates of 2Nc are severalfold too low; in other words, both species exhibit greater intralocus linkage disequilibrium than expected. Variation in recombination or mutation rates is not sufficient to account for the excess of linkage disequilibrium. While an equilibrium island model does not seem to account for the data, more complicated forms of population structure may. A proper test of alternative demographic models will require loci to be sampled in a more consistent fashion.
Collapse
Affiliation(s)
- P Andolfatto
- Institute for Cell, Animal and Population Biology, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom
| | | |
Collapse
|
42
|
Pascual M, Schug MD, Aquadro CF. High density of long dinucleotide microsatellites in Drosophila subobscura. Mol Biol Evol 2000; 17:1259-67. [PMID: 10908646 DOI: 10.1093/oxfordjournals.molbev.a026409] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We isolated 96 dinucleotide repeats with five or more tandemly repeated units from a subgenomic Drosophila subobscura library. The mean repeat unit length of microsatellite clones in D. subobscura is 15, higher than that observed in other Drosophila species. Population variation was assayed in 32-40 chromosomes from Barcelona, Spain, using 18 randomly chosen microsatellite loci. Positive correlation between measures of variation and perfect repeat length measures (mean size, most common, and longest allele) is consistent with a higher mutation rate in loci with longer repeat units. Levels of microsatellite variation measured as variance in repeat number and heterozygosity in D. subobscura were similar to those of Drosophila pseudoobscura and higher than those of Drosophila melanogaster and Drosophila simulans. Our data suggest that higher levels of microsatellite variation, and possibly density, in D. subobscura compared with D. melanogaster are due to both a higher average effective population and a higher intrinsic slippage rate in the former species.
Collapse
Affiliation(s)
- M Pascual
- Department of Molecular Biology and Genetics, Cornell University, New York, NY, USA.
| | | | | |
Collapse
|
43
|
Bonizzoni M, Malacrida AR, Guglielmino CR, Gomulski LM, Gasperi G, Zheng L. Microsatellite polymorphism in the Mediterranean fruit fly, Ceratitis capitata. INSECT MOLECULAR BIOLOGY 2000; 9:251-261. [PMID: 10886408 DOI: 10.1046/j.1365-2583.2000.00184.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A total of forty-three simple sequence repeats (SSRs) were identified in the Mediterranean fruit fly (medfly) Ceratitis capitata. The most common SSR was the dinucleotide (TG)n/(CA)n occurring in thirty of the forty-three microsatellite loci. Polymorphism at ten dinucleotide markers was investigated in 122 flies from six natural populations sampled in the native and colonized areas. A very high level of allelic diversity was detected in the species range. An average of 13.6 alleles was found over all the ten loci indicating the informativeness of SSRs as genetic markers for the medfly. The distribution of microsatellite polymorphism in the species range reflects the medfly colonization history.
Collapse
Affiliation(s)
- M Bonizzoni
- Department of Animal Biology, University of Pavia, Pavia, Italy
| | | | | | | | | | | |
Collapse
|
44
|
Andolfatto P, Kreitman M. Molecular variation at the In(2L)t proximal breakpoint site in natural populations of Drosophila melanogaster and D. simulans. Genetics 2000; 154:1681-91. [PMID: 10747062 PMCID: PMC1461028 DOI: 10.1093/genetics/154.4.1681] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A previous study of nucleotide polymorphism in a Costa Rican population of Drosophila melanogaster found evidence for a nonneutral deficiency in the number of haplotypes near the proximal breakpoint of In(2L)t, a common inversion polymorphism in this species. Another striking feature of the data was a window of unusually high nucleotide diversity spanning the breakpoint site. To distinguish between selective and neutral demographic explanations for the observed patterns in the data, we sample alleles from three additional populations of D. melanogaster and one population of D. simulans. We find that the strength of associations among sites found at the breakpoint varies between populations of D. melanogaster. In D. simulans, analysis of the homologous region reveals unusually elevated levels of nucleotide polymorphism spanning the breakpoint site. As with American populations of D. melanogaster, our D. simulans sample shows a marked reduction in the number of haplotypes but not in nucleotide diversity. Haplotype tests reveal a significant deficiency in the number of haplotypes relative to the neutral expectation in the D. simulans sample and some populations of D. melanogaster. At the breakpoint site, the level of divergence between haplotype classes is comparable to interspecific divergence. The observation of interspecific polymorphisms that differentiate major haplotype classes in both species suggests that haplotype classes at this locus are considerably old. When considered in the context of other studies on patterns of variation within and between populations of D. melanogaster and D. simulans, our data appear more consistent with the operation of selection than with simple demographic explanations.
Collapse
Affiliation(s)
- P Andolfatto
- Committee on Genetics, Department of Ecology and Evolution, University of Chicago, IL 60637, USA.
| | | |
Collapse
|
45
|
Noor MA, Pascual M, Smith KR. Genetic variation in the spread of Drosophila subobscura from a nonequilibrium population. Evolution 2000; 54:696-703. [PMID: 10937245 DOI: 10.1111/j.0014-3820.2000.tb00071.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Drosophila subobscura was first identified in North America in the early 1980s, and a newer D. subobscura population in Utah appears to have been established more than 10 years later. In this study, we use nuclear microsatellite allele frequencies, mitochondrial restriction fragment length polymorphism (RFLP) allele frequencies, and computer simulations to investigate possible scenarios of how this species has spread across North America. Our method develops a 95% confidence interval for the maximum and minimum number of founders that could have colonized the new population given various scenarios for spread. Unlike many other methods, it may be applied to nonequilibrium source populations given certain conditions. We find that observed allele frequency differences between newer and older D. subobscura populations are consistent with very few inseminated females being transported east from the coast in a single step or with larger numbers of colonizers invading after several intermediate steps. They are not consistent with a large, panmictic population of D. subobscura colonizing Utah in a single step.
Collapse
Affiliation(s)
- M A Noor
- Department of Biological Sciences, Louisiana State University, Baton Rouge 70803, USA.
| | | | | |
Collapse
|
46
|
Noor MAF, Pascual M, Smith KR. GENETIC VARIATION IN THE SPREAD OF DROSOPHILA SUBOBSCURA FROM A NONEQUILIBRIUM POPULATION. Evolution 2000. [DOI: 10.1554/0014-3820(2000)054[0696:gvitso]2.0.co;2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
47
|
Andolfatto P, Wall JD, Kreitman M. Unusual haplotype structure at the proximal breakpoint of In(2L)t in a natural population of Drosophila melanogaster. Genetics 1999; 153:1297-311. [PMID: 10545460 PMCID: PMC1460810 DOI: 10.1093/genetics/153.3.1297] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The existence of temporally stable frequency clines for In(2L)t in natural populations of Drosophila melanogaster suggests a role for selection in the maintenance of this polymorphism. We have collected nucleotide polymorphism data from the proximal breakpoint junction regions of In(2L)t to infer its evolutionary history. The finding of a novel LINE-like element near the In(2L)t breakpoint junction in sampled inverted chromosomes supports a transposable element-mediated origin for this inversion. An analysis of nucleotide variation in a Costa Rican population sample of standard and inverted chromosomes indicates a unique and relatively recent origin for In(2L)t. Additional In(2L)t alleles from three geographically diverse populations reveal no detectable geographic differentiation. Low levels of In(2L)t nucleotide polymorphism suggest a recent increase in the inversion's frequency in tropical populations. An unusual feature of our sample of standard alleles is a marked heterogeneity in levels of linkage disequilibrium among polymorphic sites across the breakpoint region. We introduce a test of neutral equilibrium haplotype structure that corrects both for multiple tests and for an arbitrarily chosen window size. It reveals that an approximately 1.4-kb region immediately spanning the breakpoint has fewer haplotypes than expected under the neutral model, given the expected level of recombination in this genomic region. Certain features of our data suggest that the unusual pattern in standard chromosomes is the product of selection rather than demography.
Collapse
Affiliation(s)
- P Andolfatto
- Committee on Genetics, University of Chicago, Chicago, Illinois 60637, USA.
| | | | | |
Collapse
|
48
|
Hamblin MT, Veuille M. Population structure among African and derived populations of Drosophila simulans: evidence for ancient subdivision and recent admixture. Genetics 1999; 153:305-17. [PMID: 10471714 PMCID: PMC1460727 DOI: 10.1093/genetics/153.1.305] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Previous studies based on allozyme variation have found little evidence for genetic differentiation in Drosophila simulans. On the basis of DNA sequence variation at two nuclear loci in four African populations of D. simulans, we show that there is significant structure to D. simulans populations within Africa. Variation at one of the loci, vermilion, appears to be neutral and supports an eastern African origin for European and American populations. Samples from the West Indies, Europe, and North America had a nucleotide diversity lower than that of African populations at vermilion and show nonequilibrium haplotype distributions at both vermilion and G6pd, consistent with a hypothesis of recent bottleneck and possibly also admixture in the history of these populations. Directional selection, previously documented at G6pd, appears to have occurred within the coalescence time of the species, obscuring deep population history.
Collapse
Affiliation(s)
- M T Hamblin
- Laboratoire d'Ecologie-EPHE, Université Pierre-et-Marie Curie, 75252 Paris Cedex 05, France.
| | | |
Collapse
|