1
|
|
2
|
A cis-regulatory mutation in troponin-I of Drosophila reveals the importance of proper stoichiometry of structural proteins during muscle assembly. Genetics 2015; 200:149-65. [PMID: 25747460 DOI: 10.1534/genetics.115.175604] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 03/01/2015] [Indexed: 02/02/2023] Open
Abstract
Rapid and high wing-beat frequencies achieved during insect flight are powered by the indirect flight muscles, the largest group of muscles present in the thorax. Any anomaly during the assembly and/or structural impairment of the indirect flight muscles gives rise to a flightless phenotype. Multiple mutagenesis screens in Drosophila melanogaster for defective flight behavior have led to the isolation and characterization of mutations that have been instrumental in the identification of many proteins and residues that are important for muscle assembly, function, and disease. In this article, we present a molecular-genetic characterization of a flightless mutation, flightless-H (fliH), originally designated as heldup-a (hdp-a). We show that fliH is a cis-regulatory mutation of the wings up A (wupA) gene, which codes for the troponin-I protein, one of the troponin complex proteins, involved in regulation of muscle contraction. The mutation leads to reduced levels of troponin-I transcript and protein. In addition to this, there is also coordinated reduction in transcript and protein levels of other structural protein isoforms that are part of the troponin complex. The altered transcript and protein stoichiometry ultimately culminates in unregulated acto-myosin interactions and a hypercontraction muscle phenotype. Our results shed new insights into the importance of maintaining the stoichiometry of structural proteins during muscle assembly for proper function with implications for the identification of mutations and disease phenotypes in other species, including humans.
Collapse
|
3
|
Kairamkonda S, Nongthomba U. Beadex function in the motor neurons is essential for female reproduction in Drosophila melanogaster. PLoS One 2014; 9:e113003. [PMID: 25396431 PMCID: PMC4232528 DOI: 10.1371/journal.pone.0113003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 10/17/2014] [Indexed: 01/08/2023] Open
Abstract
Drosophila melanogaster has served as an excellent model system for understanding the neuronal circuits and molecular mechanisms regulating complex behaviors. The Drosophila female reproductive circuits, in particular, are well studied and can be used as a tool to understand the role of novel genes in neuronal function in general and female reproduction in particular. In the present study, the role of Beadex, a transcription co-activator, in Drosophila female reproduction was assessed by generation of mutant and knock down studies. Null allele of Beadex was generated by transposase induced excision of P-element present within an intron of Beadex gene. The mutant showed highly compromised reproductive abilities as evaluated by reduced fecundity and fertility, abnormal oviposition and more importantly, the failure of sperm release from storage organs. However, no defect was found in the overall ovariole development. Tissue specific, targeted knock down of Beadex indicated that its function in neurons is important for efficient female reproduction, since its neuronal knock down led to compromised female reproductive abilities, similar to Beadex null females. Further, different neuronal class specific knock down studies revealed that Beadex function is required in motor neurons for normal fecundity and fertility of females. Thus, the present study attributes a novel and essential role for Beadex in female reproduction through neurons.
Collapse
Affiliation(s)
- Subhash Kairamkonda
- Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, Karnataka, India
| | - Upendra Nongthomba
- Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, Karnataka, India
- * E-mail:
| |
Collapse
|
4
|
Georgi B, Voight BF, Bućan M. From mouse to human: evolutionary genomics analysis of human orthologs of essential genes. PLoS Genet 2013; 9:e1003484. [PMID: 23675308 PMCID: PMC3649967 DOI: 10.1371/journal.pgen.1003484] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 03/15/2013] [Indexed: 02/01/2023] Open
Abstract
Understanding the core set of genes that are necessary for basic developmental functions is one of the central goals in biology. Studies in model organisms identified a significant fraction of essential genes through the analysis of null-mutations that lead to lethality. Recent large-scale next-generation sequencing efforts have provided unprecedented data on genetic variation in human. However, evolutionary and genomic characteristics of human essential genes have never been directly studied on a genome-wide scale. Here we use detailed phenotypic resources available for the mouse and deep genomics sequencing data from human populations to characterize patterns of genetic variation and mutational burden in a set of 2,472 human orthologs of known essential genes in the mouse. Consistent with the action of strong, purifying selection, these genes exhibit comparatively reduced levels of sequence variation, skew in allele frequency towards more rare, and exhibit increased conservation across the primate and rodent lineages relative to the remainder of genes in the genome. In individual genomes we observed ∼12 rare mutations within essential genes predicted to be damaging. Consistent with the hypothesis that mutations in essential genes are risk factors for neurodevelopmental disease, we show that de novo variants in patients with Autism Spectrum Disorder are more likely to occur in this collection of genes. While incomplete, our set of human orthologs shows characteristics fully consistent with essential function in human and thus provides a resource to inform and facilitate interpretation of sequence data in studies of human disease. Essential genes are necessary for fundamental processes in an organism and lead to pre- or neonatal lethality when disrupted. In this work, we characterize 2,472 human orthologs of mouse essential genes in terms of their evolutionary and population genetics properties using data from recent deep sequencing initiatives in human populations. We find a signature of strong, purifying selection and a reduced load of sequence variants within the putative essential genes when compared to a control-group of non-essential genes. We also show a significant enrichment of variants within essential genes across a set of four recent studies of de novo variants in patients with Autism Spectrum Disorder. Our results establish the catalogue of putative essential genes as an important resource for analysis and interpretation of sequencing studies for human disease.
Collapse
Affiliation(s)
- Benjamin Georgi
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Benjamin F. Voight
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail: (MB); (BFV)
| | - Maja Bućan
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail: (MB); (BFV)
| |
Collapse
|
5
|
Nolte V, Pandey RV, Kofler R, Schlötterer C. Genome-wide patterns of natural variation reveal strong selective sweeps and ongoing genomic conflict in Drosophila mauritiana. Genome Res 2013; 23:99-110. [PMID: 23051690 PMCID: PMC3530687 DOI: 10.1101/gr.139873.112] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 09/24/2012] [Indexed: 12/25/2022]
Abstract
Although it is well understood that selection shapes the polymorphism pattern in Drosophila, signatures of classic selective sweeps are scarce. Here, we focus on Drosophila mauritiana, an island endemic, which is closely related to Drosophila melanogaster. Based on a new, annotated genome sequence, we characterized the genome-wide polymorphism by sequencing pooled individuals (Pool-seq). We show that the interplay between selection and recombination results in a genome-wide polymorphism pattern characteristic for D. mauritiana. Two large genomic regions (>500 kb) showed the signature of almost complete selective sweeps. We propose that the absence of population structure and limited geographic distribution could explain why such pronounced sweep patterns are restricted to D. mauritiana. Further evidence for strong adaptive evolution was detected for several nucleoporin genes, some of which were not previously identified as genes involved in genomic conflict. Since this adaptive evolution is continuing after the split of D. mauritiana and Drosophila simulans, we conclude that genomic conflict is not restricted to short episodes, but rather an ongoing process in Drosophila.
Collapse
Affiliation(s)
- Viola Nolte
- Institut für Populationsgenetik, Vetmeduni Vienna, 1210 Wien, Austria
| | - Ram Vinay Pandey
- Institut für Populationsgenetik, Vetmeduni Vienna, 1210 Wien, Austria
| | - Robert Kofler
- Institut für Populationsgenetik, Vetmeduni Vienna, 1210 Wien, Austria
| | | |
Collapse
|
6
|
Cook RK, Christensen SJ, Deal JA, Coburn RA, Deal ME, Gresens JM, Kaufman TC, Cook KR. The generation of chromosomal deletions to provide extensive coverage and subdivision of the Drosophila melanogaster genome. Genome Biol 2012; 13:R21. [PMID: 22445104 PMCID: PMC3439972 DOI: 10.1186/gb-2012-13-3-r21] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 02/27/2012] [Accepted: 03/22/2012] [Indexed: 01/04/2023] Open
Abstract
Background Chromosomal deletions are used extensively in Drosophila melanogaster genetics research. Deletion mapping is the primary method used for fine-scale gene localization. Effective and efficient deletion mapping requires both extensive genomic coverage and a high density of molecularly defined breakpoints across the genome. Results A large-scale resource development project at the Bloomington Drosophila Stock Center has improved the choice of deletions beyond that provided by previous projects. FLP-mediated recombination between FRT-bearing transposon insertions was used to generate deletions, because it is efficient and provides single-nucleotide resolution in planning deletion screens. The 793 deletions generated pushed coverage of the euchromatic genome to 98.4%. Gaps in coverage contain haplolethal and haplosterile genes, but the sizes of these gaps were minimized by flanking these genes as closely as possible with deletions. In improving coverage, a complete inventory of haplolethal and haplosterile genes was generated and extensive information on other haploinsufficient genes was compiled. To aid mapping experiments, a subset of deletions was organized into a Deficiency Kit to provide maximal coverage efficiently. To improve the resolution of deletion mapping, screens were planned to distribute deletion breakpoints evenly across the genome. The median chromosomal interval between breakpoints now contains only nine genes and 377 intervals contain only single genes. Conclusions Drosophila melanogaster now has the most extensive genomic deletion coverage and breakpoint subdivision as well as the most comprehensive inventory of haploinsufficient genes of any multicellular organism. The improved selection of chromosomal deletion strains will be useful to nearly all Drosophila researchers.
Collapse
Affiliation(s)
- R Kimberley Cook
- Bloomington Drosophila Stock Center, Department of Biology, Indiana University, 47405, USA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Sahota VK, Grau BF, Mansilla A, Ferrús A. Troponin I and Tropomyosin regulate chromosomal stability and cell polarity. J Cell Sci 2009; 122:2623-31. [DOI: 10.1242/jcs.050880] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The Troponin-Tropomyosin (Tn-Tm) complex regulates muscle contraction through a series of Ca2+-dependent conformational changes that control actin-myosin interactions. Members of this complex in Drosophila include the actin-binding protein Troponin I (TnI), and two Tropomyosins (Tm1 and Tm2), which are thought to form heterodimers. We show here that pre-cellular embryos of TnI, Tm1 and Tm2 mutants exhibit abnormal nuclear divisions with frequent loss of chromosome fragments. During cellularization, apico-basal polarity is also disrupted as revealed by the defective location of Discs large (Dlg) and its ligand Rapsynoid (Raps; also known as Partner of Inscuteable, Pins). In agreement with these phenotypes in early development, on the basis of RT-PCR assays of unfertilized eggs and germ line mosaics of TnI mutants, we also show that TnI is part of the maternal deposit during oogenesis. In cultures of the S2 cell line, native TnI is immunodetected within the nucleus and immunoprecipitated from nuclear extracts. SUMOylation at an identified site is required for the nuclear translocation. These data illustrate, for the first time, a role for TnI in the nucleus and/or the cytoskeleton of non-muscle cells. We propose that the Tn-Tm complex plays a novel function as regulator of motor systems required to maintain nuclear integrity and apico-basal polarity during early Drosophila embryogenesis.
Collapse
|
8
|
Transcriptional adaptor ADA3 of Drosophila melanogaster is required for histone modification, position effect variegation, and transcription. Mol Cell Biol 2007; 28:376-85. [PMID: 17967867 DOI: 10.1128/mcb.01307-07] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Drosophila melanogaster gene diskette (also known as dik or dAda3) encodes a protein 29% identical to human ADA3, a subunit of GCN5-containing histone acetyltransferase (HAT) complexes. The fly dADA3 is a major contributor to oogenesis, and it is also required for somatic cell viability. dADA3 localizes to chromosomes, and it is significantly reduced in dGcn5 and dAda2a, but not in dAda2b, mutant backgrounds. In dAda3 mutants, acetylation at histone H3 K9 and K14, but not K18, and at histone H4 K12, but not K5, K8, and K16, is significantly reduced. Also, phosphorylation at H3 S10 is reduced in dAda3 and dGcn5 mutants. Variegation for white (w(m4)) and scute (Hw(v)) genes, caused by rearrangements of X chromosome heterochromatin, is modified in a dAda3(+) gene-dosage-dependent manner. The effect is not observed with rearrangements involving Y heterochromatin (bw(D)), euchromatin (Scutoid), or transvection effects on chromosomal pairing (white and zeste interaction). Activity of scute gene enhancers, targets for Iroquoi transcription factors, is abolished in dAda3 mutants. Also, Iroquoi-associated phenotypes are sensitive to dAda3(+) gene dosage. We conclude that dADA3 plays a role in HAT complexes which acetylate H3 and H4 at specific residues. In turn, this acetylation results in chromatin structure effects of certain rearrangements and transcription of specific genes.
Collapse
|
9
|
Romero-Pozuelo J, Dason JS, Atwood HL, Ferrús A. Chronic and acute alterations in the functional levels of Frequenins 1 and 2 reveal their roles in synaptic transmission and axon terminal morphology. Eur J Neurosci 2007; 26:2428-43. [DOI: 10.1111/j.1460-9568.2007.05877.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Howell GR, Munroe RJ, Schimenti JC. Transgenic rescue of the mouse t complex haplolethal locus Thl1. Mamm Genome 2005; 16:838-46. [PMID: 16284799 DOI: 10.1007/s00335-005-0045-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2005] [Accepted: 07/07/2005] [Indexed: 10/25/2022]
Abstract
Chromosomal deletions can uncover haploinsufficient or imprinted regions of the genome. Previously, the haploinsufficient locus t haplolethal 1 (Thl1) was identified and localized to a 1.3-Mb region using overlapping deletions around the Sod2 and D17Leh94 loci of the mouse t complex on Chr 17. Germline chimeric mice, produced from embryonic stem (ES) cells containing radiation-induced deletions of the Thl1 locus, never produced viable deletion-bearing progeny when mated to C57BL/6J (B6) females. However, deletion-bearing offspring could be obtained by mating to females of other strains. In this article we describe a transgenic approach to narrow the critical region for Thl1. BAC clones were introduced into a deletion-bearing ES cell line and one was shown to rescue the Thl1 phenotype, reducing the critical region to 140 kb. Analysis of the gene content of this region suggests two strong Thl1 candidates, Pdcd2 and a novel SET domain-containing gene termed Tset1. A more detailed analysis using mice carrying overlapping deletions identified subregions that influence the phenotypic characteristics of Thl1 hemizygotes.
Collapse
Affiliation(s)
- Gareth R Howell
- The Jackson Laboratory, 600 Main Street, Bar Harbor, Maine 04660, USA
| | | | | |
Collapse
|
11
|
Nongthomba U, Clark S, Cummins M, Ansari M, Stark M, Sparrow JC. Troponin I is required for myofibrillogenesis and sarcomere formation inDrosophilaflight muscle. J Cell Sci 2004; 117:1795-805. [PMID: 15075240 DOI: 10.1242/jcs.01024] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Myofibrillar proteins assemble to form the highly ordered repetitive contractile structural unit known as a sarcomere. Studies of myogenesis in vertebrate cell culture and embryonic developmental systems have identified some of the processes involved during sarcomere formation. However, isoform changes during vertebrate muscle development and a lack of mutants have made it difficult to determine how these proteins assemble to form sarcomeres. The indirect flight muscles (IFMs) of Drosophila provide a unique genetic system with which to study myofibrillogenesis in vivo. We show in this paper that neither sarcomeric myosin nor actin are required for myoblast fusion or the subsequent morphogenesis of muscle fibres, i.e. fibre morphogenesis does not depend on myofibrillogenesis. However, fibre formation and myofibrillogenesis are very sensitive to the interactions between the sarcomeric proteins. A troponin I (TnI) mutation, hdp3, leads to an absence of TnI in the IFMs and tergal depressor of trochanter (TDT) muscles due to a transcript-splicing defect. Sarcomeres do not form and the muscles degenerate. TnI is part of the thin filament troponin complex which regulates muscle contraction. The effects of the hdp3 mutation are probably caused by unregulated acto-myosin interactions between the thin and thick filaments as they assemble. We have tested this proposal by using a transgenic myosin construct to remove the force-producing myosin heads. The defects in sarcomeric organisation and fibre degeneration in hdp3 IFMs are suppressed, although not completely, indicating the need for inhibition of muscle contraction during muscle development. We show that mRNA and translated protein products of all the major thin filament proteins are reduced in hdp3 muscles and discuss how this and previous studies of thin filament protein mutants indicate a common co-ordinated control mechanism that may be the primary cause of the muscle defects.
Collapse
|
12
|
Marín MC, Rodríguez JR, Ferrús A. Transcription of Drosophila troponin I gene is regulated by two conserved, functionally identical, synergistic elements. Mol Biol Cell 2004; 15:1185-96. [PMID: 14718563 PMCID: PMC363105 DOI: 10.1091/mbc.e03-09-0663] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The Drosophila wings-up A gene encodes Troponin I. Two regions, located upstream of the transcription initiation site (upstream regulatory element) and in the first intron (intron regulatory element), regulate gene expression in specific developmental and muscle type domains. Based on LacZ reporter expression in transgenic lines, upstream regulatory element and intron regulatory element yield identical expression patterns. Both elements are required for full expression levels in vivo as indicated by quantitative reverse transcription-polymerase chain reaction assays. Three myocyte enhancer factor-2 binding sites have been functionally characterized in each regulatory element. Using exon specific probes, we show that transvection is based on transcriptional changes in the homologous chromosome and that Zeste and Suppressor of Zeste 3 gene products act as repressors for wings-up A. Critical regions for transvection and for Zeste effects are defined near the transcription initiation site. After in silico analysis in insects (Anopheles and Drosophila pseudoobscura) and vertebrates (Ratus and Coturnix), the regulatory organization of Drosophila seems to be conserved. Troponin I (TnI) is expressed before muscle progenitors begin to fuse, and sarcomere morphogenesis is affected by TnI depletion as Z discs fail to form, revealing a novel developmental role for the protein or its transcripts. Also, abnormal stoichiometry among TnI isoforms, rather than their absolute levels, seems to cause the functional muscle defects.
Collapse
Affiliation(s)
- María-Cruz Marín
- Instituto Cajal, Consejo Superior de Investigaciones Cientificas, Madrid 28002, Spain
| | | | | |
Collapse
|
13
|
Browning VL, Bergstrom RA, Daigle S, Schimenti JC. A haplolethal locus uncovered by deletions in the mouse T complex. Genetics 2002; 160:675-82. [PMID: 11861570 PMCID: PMC1461990 DOI: 10.1093/genetics/160.2.675] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Proper levels of gene expression are important for normal mammalian development. Typically, altered gene dosage caused by karyotypic abnormalities results in embryonic lethality or birth defects. Segmental aneuploidy can be compatible with life but often results in contiguous gene syndromes. The ability to manipulate the mouse genome allows the systematic exploration of regions that are affected by alterations in gene dosage. To explore the effects of segmental haploidy in the mouse t complex on chromosome 17, radiation-induced deletion complexes centered at the Sod2 and D17Leh94 loci were generated in embryonic stem (ES) cells. A small interval was identified that, when hemizygous, caused specific embryonic lethal phenotypes (exencephaly and edema) in most fetuses. The penetrance of these phenotypes was background dependent. Additionally, evidence for parent-of-origin effects was observed. This genetic approach should be useful for identifying genes that are imprinted or whose dosage is critical for normal embryonic development.
Collapse
|
14
|
Hernández-Hernández A, Ferrús A. Prodos is a conserved transcriptional regulator that interacts with dTAF(II)16 in Drosophila melanogaster. Mol Cell Biol 2001; 21:614-23. [PMID: 11134347 PMCID: PMC86631 DOI: 10.1128/mcb.21.2.614-623.2001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2000] [Accepted: 10/16/2000] [Indexed: 11/20/2022] Open
Abstract
The transcription factor TFIID is a multiprotein complex that includes the TATA box binding protein (TBP) and a number of associated factors, TAF(II). Prodos (PDS) is a conserved protein that exhibits a histone fold domain (HFD). In yeast two-hybrid tests using PDS as bait, we cloned the Drosophila TAF(II), dTAF(II)16, as a specific PDS target. dTAF(II)16 is closely related to human TAF(II)30 and to another recently discovered Drosophila TAF, dTAF(II)24. PDS and dTAF(II)24 do not interact, however, thus establishing a functional difference between these dTAFs. The PDS-dTAF(II)16 interaction is mediated by the HFD motif in PDS and the N terminus in dTAF(II)16, as indicated by yeast two-hybrid assays with protein fragments. Luciferase-reported transcription tests in transfected cells show that PDS or an HFD-containing fragment activates transcription only with the help of dTAF(II)16 and TBP. Consistent with this, the eye phenotype of flies expressing a sev-Ras1 construct is modulated by PDS and dTAF(II)16 in a gene dosage-dependent manner. Finally, we show that PDS function is required for cell viability in somatic mosaics. These findings indicate that PDS is a novel transcriptional coactivator that associates with a member of the general transcription factor TFIID.
Collapse
|
15
|
Aguilera M, Oliveros M, Martínez-Padrón M, Barbas JA, Ferrús A. Ariadne-1: a vital Drosophila gene is required in development and defines a new conserved family of ring-finger proteins. Genetics 2000; 155:1231-44. [PMID: 10880484 PMCID: PMC1461160 DOI: 10.1093/genetics/155.3.1231] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We report the identification and functional characterization of ariadne-1 (ari-1), a novel and vital Drosophila gene required for the correct differentiation of most cell types in the adult organism. Also, we identify a sequence-related gene, ari-2, and the corresponding mouse and human homologues of both genes. All these sequences define a new protein family by the Acid-rich, RING finger, B-box, RING finger, coiled-coil (ARBRCC) motif string. In Drosophila, ari-1 is expressed throughout development in all tissues. The mutant phenotypes are most noticeable in cells that undergo a large and rapid membrane deposition, such as rewiring neurons during metamorphosis, large tubular muscles during adult myogenesis, and photoreceptors. Occasional survivors of null alleles exhibit reduced life span, motor impairments, and short and thin bristles. Single substitutions at key cysteines in each RING finger cause lethality with no survivors and a drastic reduction of rough endoplasmic reticulum that can be observed in the photoreceptors of mosaic eyes. In yeast two-hybrid assays, the protein ARI-1 interacts with a novel ubiquitin-conjugating enzyme, UbcD10, whose sequence is also reported here. The N-terminal RING-finger motif is necessary and sufficient to mediate this interaction. Mouse and fly homologues of both ARI proteins and the Ubc can substitute for each other in the yeast two-hybrid assay, indicating that ARI represents a conserved novel mechanism in development. In addition to ARI homologues, the RBR signature is also found in the Parkinson-disease-related protein Parkin adjacent to an ubiquitin-like domain, suggesting that the study of this mechanism could be relevant for human pathology.
Collapse
Affiliation(s)
- M Aguilera
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid 28002J, Spain
| | | | | | | | | |
Collapse
|