1
|
Mammarenavirus Genetic Diversity and Its Biological Implications. Curr Top Microbiol Immunol 2023; 439:265-303. [PMID: 36592249 DOI: 10.1007/978-3-031-15640-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Members of the family Arenaviridae are classified into four genera: Antennavirus, Hartmanivirus, Mammarenavirus, and Reptarenavirus. Reptarenaviruses and hartmaniviruses infect (captive) snakes and have been shown to cause boid inclusion body disease (BIBD). Antennaviruses have genomes consisting of 3, rather than 2, segments, and were discovered in actinopterygian fish by next-generation sequencing but no biological isolate has been reported yet. The hosts of mammarenaviruses are mainly rodents and infections are generally asymptomatic. Current knowledge about the biology of reptarenaviruses, hartmaniviruses, and antennaviruses is very limited and their zoonotic potential is unknown. In contrast, some mammarenaviruses are associated with zoonotic events that pose a threat to human health. This review will focus on mammarenavirus genetic diversity and its biological implications. Some mammarenaviruses including lymphocytic choriomeningitis virus (LCMV) are excellent experimental model systems for the investigation of acute and persistent viral infections, whereas others including Lassa (LASV) and Junin (JUNV) viruses, the causative agents of Lassa fever (LF) and Argentine hemorrhagic fever (AHF), respectively, are important human pathogens. Mammarenaviruses were thought to have high degree of intra-and inter-species amino acid sequence identities, but recent evidence has revealed a high degree of mammarenavirus genetic diversity in the field. Moreover, closely related mammarenavirus can display dramatic phenotypic differences in vivo. These findings support a role of genetic variability in mammarenavirus adaptability and pathogenesis. Here, we will review the molecular biology of mammarenaviruses, phylogeny, and evolution, as well as the quasispecies dynamics of mammarenavirus populations and their biological implications.
Collapse
|
2
|
Tesfaye Y, Khan F, Gelaye E. Vaccine matching and antigenic variability of foot-and-mouth disease virus serotypes O and A from 2018 Ethiopian isolates. Int Microbiol 2021; 25:47-59. [PMID: 34224048 DOI: 10.1007/s10123-021-00178-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 04/16/2021] [Accepted: 04/21/2021] [Indexed: 10/20/2022]
Abstract
Foot-and-mouth disease (FMD) is highly infectious, limits live animal trade, and affects ranchers owing to the loss of animal yield. The present study was designed to perform vaccine matching for field FMD virus isolates from clinically diseased cattle and assess the antigenic properties of the field isolates against the current vaccine strains used for vaccine production at the National Veterinary Institute, Ethiopia. Both sequencing and reverse transcription-polymerase chain reactions were used for distinguishing between the viral strains. To evaluate the serological relationship of the vaccine strain with these field isolates (r1 value), in vitro cross-neutralization was performed using ETH/6/2000 and ETH/38/2005 antisera. Infectious field FMD viral samples represented serotypes A and O. Sequence analysis showed that serotype A VP1/1D possessed amino acid variability at positions 28 and 42 to 48, 138, 141, 142, 148, 156, 173, and 197 compared with the ETH/6/2000 vaccine strain, whereas serotype O possessed amino acid variability at positions 45, 48, 138, 139, 140, 141, and 197 compared with the ETH/38/2005 vaccine strain. Based on the one-dimensional virus neutralization test, serotypes A and O demonstrated antigenic matching of up to 13/17 (76.47%) with the vaccine strain, except for the isolates ETH/40/2018, ETH/48/2018, ETH/55/2018, and ETH/61/2018, which had r-values less than 0.3. Therefore, the currently used vaccine strains ETH/38/2005 for serotype O and ETH/6/2000 for serotype A protected against all and most field viruses characterized as serotypes O and A, respectively, and amino acid residue variation was observed in different FMD virus B-C loops, G-H loops, and C-termini of VP1 at sites 1 and 3 in both serotypes.
Collapse
Affiliation(s)
- Yeneneh Tesfaye
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, 201306, UP, India.,National Veterinary Institute, POBox: 19, Bishoftu, Ethiopia
| | - Fazlurrahman Khan
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, 201306, UP, India. .,Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, South Korea.
| | - Esayas Gelaye
- National Veterinary Institute, POBox: 19, Bishoftu, Ethiopia.
| |
Collapse
|
3
|
Seeyo KB, Nishi T, Kawaguchi R, Ungvanijban S, Udon R, Fukai K, Yamakawa M, Rukkwamsuk T. Evolution of antigenic and genetic characteristics of foot-and-mouth disease virus serotype A circulating in Thailand, 2007-2019. Virus Res 2020; 290:198166. [PMID: 32961212 DOI: 10.1016/j.virusres.2020.198166] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/16/2020] [Accepted: 09/15/2020] [Indexed: 10/23/2022]
Abstract
Foot-and-mouth disease (FMD) is a persistent, major economic concern for livestock productivity, which is highly exacerbated by outbreaks in Thailand. FMD virus (FMDV) serotype A is more highly antigenic and genetically diverse than other serotypes, which has important implications for vaccine development as well as selection. Therefore, it is essential to continuously monitor antigenic and genetic changes of field isolates of FMDV serotype A. Here we used antisera against three vaccine strains (A/118/87, A/Sakolnakorn/97, and A/Lopburi/2012) to analyze the antigenicity of 133 field isolates of FMDV serotypes A in Thailand from 2007 to 2019. The majority of the isolates from 2007 to 2008 reacted only with the antiserum against strain A/118/87. In contrast, antigenic analysis revealed broad cross-reactivity and antigenic variations of the isolates from 2009 through 2019 against strains A/Sakolnakorn/97 and A/Lopburi/2012. These results indicate periodic changes in the antigenicity of field isolates of FMDV serotype A. Phylogenetic analysis of the VP1 region revealed that all isolates were of the Sea-97 lineage within the ASIA topotype. Analysis of the L-fragment genome sequences of 30 FMDV isolates collected throughout Thailand revealed highly variable amino acid sequences of VP1 and 3A, with the lowest average identity (94.56 %) and invariant (78.43 %) rates, respectively. The present findings indicate the importance of an active routine surveillance system incorporating antigenic and genetic analysis designated to continually update information about field isolates of FMDV serotype A. Such a system is essential for establishing and improving measures to control FMDV infections in Thailand and in neighboring Asian countries.
Collapse
Affiliation(s)
- Kingkarn Boonsuya Seeyo
- Regional Reference Laboratory for Foot and Mouth Disease in South East Asia, Pakchong, Nakhornratchasima, Thailand
| | - Tatsuya Nishi
- Exotic Disease Research Station, National Institute of Animal Health, National Agriculture and Food Research Organization, Kodaira, Tokyo, Japan
| | - Rie Kawaguchi
- Exotic Disease Research Station, National Institute of Animal Health, National Agriculture and Food Research Organization, Kodaira, Tokyo, Japan
| | - Sahawatchara Ungvanijban
- Regional Reference Laboratory for Foot and Mouth Disease in South East Asia, Pakchong, Nakhornratchasima, Thailand
| | - Romphruke Udon
- Regional Reference Laboratory for Foot and Mouth Disease in South East Asia, Pakchong, Nakhornratchasima, Thailand
| | - Katsuhiko Fukai
- Exotic Disease Research Station, National Institute of Animal Health, National Agriculture and Food Research Organization, Kodaira, Tokyo, Japan.
| | - Makoto Yamakawa
- Exotic Disease Research Station, National Institute of Animal Health, National Agriculture and Food Research Organization, Kodaira, Tokyo, Japan
| | - Theera Rukkwamsuk
- Faculty of Veterinary Medicine, Kamphaen Saen, Kasetsart University, Thailand
| |
Collapse
|
4
|
Maake L, Harvey WT, Rotherham L, Opperman P, Theron J, Reeve R, Maree FF. Genetic Basis of Antigenic Variation of SAT3 Foot-And-Mouth Disease Viruses in Southern Africa. Front Vet Sci 2020; 7:568. [PMID: 33102544 PMCID: PMC7506032 DOI: 10.3389/fvets.2020.00568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/16/2020] [Indexed: 11/13/2022] Open
Abstract
Foot-and-mouth disease (FMD) continues to be a major burden for livestock owners in endemic countries and a continuous threat to FMD-free countries. The epidemiology and control of FMD in Africa is complicated by the presence of five clinically indistinguishable serotypes. Of these the Southern African Territories (SAT) type 3 has received limited attention, likely due to its restricted distribution and it being less frequently detected. We investigated the intratypic genetic variation of the complete P1 capsid-coding region of 22 SAT3 viruses and confirmed the geographical distribution of five of the six SAT3 topotypes. The antigenic cross-reactivity of 12 SAT3 viruses against reference antisera was assessed by performing virus neutralization assays and calculating the r1-values, which is a ratio of the heterologous neutralizing titer to the homologous neutralizing titer. Interestingly, cross-reactivity between the SAT3 reference antisera and many SAT3 viruses was notably high (r1-values >0.3). Moreover, some of the SAT3 viruses reacted more strongly to the reference sera compared to the homologous virus (r1-values >1). An increase in the avidity of the reference antisera to the heterologous viruses could explain some of the higher neutralization titers observed. Subsequently, we used the antigenic variability data and corresponding genetic and structural data to predict naturally occurring amino acid positions that correlate with antigenic changes. We identified four unique residues within the VP1, VP2, and VP3 proteins, associated with a change in cross-reactivity, with two sites that change simultaneously. The analysis of antigenic variation in the context of sequence differences is critical for both surveillance-informed selection of effective vaccines and the rational design of vaccine antigens tailored for specific geographic localities, using reverse genetics.
Collapse
Affiliation(s)
- Lorens Maake
- Vaccine and Diagnostic Development Programme, Onderstepoort Veterinary Institute, Agricultural Research Council, Pretoria, South Africa
- Department of Biochemistry, Genetics and Microbiology, Faculty of Agricultural and Natural Sciences, University of Pretoria, Pretoria, South Africa
| | - William T Harvey
- Boyd Orr Centre for Population and Ecosystem Health, Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Lia Rotherham
- Vaccine and Diagnostic Development Programme, Onderstepoort Veterinary Institute, Agricultural Research Council, Pretoria, South Africa
| | - Pamela Opperman
- Vaccine and Diagnostic Development Programme, Onderstepoort Veterinary Institute, Agricultural Research Council, Pretoria, South Africa
- Department of Animal Production Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Jacques Theron
- Department of Biochemistry, Genetics and Microbiology, Faculty of Agricultural and Natural Sciences, University of Pretoria, Pretoria, South Africa
| | - Richard Reeve
- Boyd Orr Centre for Population and Ecosystem Health, Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Francois F Maree
- Vaccine and Diagnostic Development Programme, Onderstepoort Veterinary Institute, Agricultural Research Council, Pretoria, South Africa
- Department of Biochemistry, Genetics and Microbiology, Faculty of Agricultural and Natural Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
5
|
Alkhamis MA, Li C, Torremorell M. Animal Disease Surveillance in the 21st Century: Applications and Robustness of Phylodynamic Methods in Recent U.S. Human-Like H3 Swine Influenza Outbreaks. Front Vet Sci 2020; 7:176. [PMID: 32373634 PMCID: PMC7186338 DOI: 10.3389/fvets.2020.00176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 03/16/2020] [Indexed: 11/22/2022] Open
Abstract
Emerging and endemic animal viral diseases continue to impose substantial impacts on animal and human health. Most current and past molecular surveillance studies of animal diseases investigated spatio-temporal and evolutionary dynamics of the viruses in a disjointed analytical framework, ignoring many uncertainties and made joint conclusions from both analytical approaches. Phylodynamic methods offer a uniquely integrated platform capable of inferring complex epidemiological and evolutionary processes from the phylogeny of viruses in populations using a single Bayesian statistical framework. In this study, we reviewed and outlined basic concepts and aspects of phylodynamic methods and attempted to summarize essential components of the methodology in one analytical pipeline to facilitate the proper use of the methods by animal health researchers. Also, we challenged the robustness of the posterior evolutionary parameters, inferred by the commonly used phylodynamic models, using hemagglutinin (HA) and polymerase basic 2 (PB2) segments of the currently circulating human-like H3 swine influenza (SI) viruses isolated in the United States and multiple priors. Subsequently, we compared similarities and differences between the posterior parameters inferred from sequence data using multiple phylodynamic models. Our suggested phylodynamic approach attempts to reduce the impact of its inherent limitations to offer less biased and biologically plausible inferences about the pathogen evolutionary characteristics to properly guide intervention activities. We also pinpointed requirements and challenges for integrating phylodynamic methods in routine animal disease surveillance activities.
Collapse
Affiliation(s)
- Moh A Alkhamis
- Department of Epidemiology and Biostatistics, Faculty of Public Health, Health Sciences Center, Kuwait University, Kuwait City, Kuwait.,Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States
| | - Chong Li
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States
| | - Montserrat Torremorell
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States
| |
Collapse
|
6
|
Sirdar MM, Fosgate GT, Blignaut B, Gummow B, Shileyi B, Lazarus DD, Mutowembwa P, van der Merwe D, Heath L. A novel method for performing antigenic vaccine matching for foot-and-mouth disease in absence of the homologous virus. Vaccine 2019; 37:5025-5034. [PMID: 31296377 DOI: 10.1016/j.vaccine.2019.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/25/2019] [Accepted: 07/01/2019] [Indexed: 10/26/2022]
Abstract
Foot-and-mouth-disease (FMD) is a highly contagious transboundary animal disease that has negative consequences on regional and international trade. Vaccination is an important approach for FMD control and an essential consideration is the degree of cross-protection conferred by the vaccine against currently circulating field viruses. The objective of this study was to evaluate a new vaccine matching technique that does not require knowledge concerning the homologous vaccine virus. As a proof of concept, the vaccine-match was assessed for 41 FMD field viruses isolated from southern Africa over a 25-year period. A diverse group of 20 SAT1 and 21 SAT2 FMDV isolates collected from cattle and wildlife during 1991-2015 were selected for this study. Virus neutralization tests were performed against two sets of pooled sera for each serotype: vaccinated cattle sera (4-16 weeks post-vaccination) and convalescent cattle sera (3 weeks post-experimental challenge). Novel r1-values were calculated as the ratio of the titre of the vaccinated sera to the titre for convalescent cattle sera. A validation r1-value was calculated based on an assumption concerning the true homologous vaccine virus. There was a strong positive correlation between r1-values for the novel and the validation methods for SAT1 viruses (Spearman's rho = 0.84, P < 0.01) and a very strong correlation for SAT2 viruses (Spearman's rho = 0.90, P < 0.01). In addition, there was moderate to good agreement between the novel and validation methods for both serotypes based on a r1-value cut-off of 0.3, which is presumed to represent a good vaccine-match. The agreement between methods using prevalence-adjusted and bias-adjusted kappa (PABAK) was 0.67 and 0.84 for SAT1 and SAT2 viruses, respectively. The new r1-value method provides a feasible, alternative vaccine matching approach that could benefit FMD control in southern Africa.
Collapse
Affiliation(s)
- Mohamed M Sirdar
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, 0110, South Africa; Transboundary Animal Diseases Programme, Onderstepoort Veterinary Research, Agricultural Research Council, Onderstepoort, 0110, South Africa.
| | - Geoffrey T Fosgate
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, 0110, South Africa
| | - Belinda Blignaut
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, 0110, South Africa; Transboundary Animal Diseases Programme, Onderstepoort Veterinary Research, Agricultural Research Council, Onderstepoort, 0110, South Africa
| | - Bruce Gummow
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, 0110, South Africa; College of Public Health, Medical and Veterinary Sciences, James Cook University, QLD, Australia
| | - Bernard Shileyi
- Transboundary Animal Diseases Programme, Onderstepoort Veterinary Research, Agricultural Research Council, Onderstepoort, 0110, South Africa
| | - David D Lazarus
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, 0110, South Africa; National Veterinary Research Institute, Foot-and-Mouth Disease Laboratory, PMB 01, Vom, Nigeria
| | - P Mutowembwa
- Transboundary Animal Diseases Programme, Onderstepoort Veterinary Research, Agricultural Research Council, Onderstepoort, 0110, South Africa
| | - Danica van der Merwe
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, 0110, South Africa; Transboundary Animal Diseases Programme, Onderstepoort Veterinary Research, Agricultural Research Council, Onderstepoort, 0110, South Africa
| | - Livio Heath
- Transboundary Animal Diseases Programme, Onderstepoort Veterinary Research, Agricultural Research Council, Onderstepoort, 0110, South Africa
| |
Collapse
|
7
|
Mansour KA, Naser HH, Hussain MH. Clinical, molecular detection and phylogenetic analysis study of local foot-and-mouth disease virus in Al-Qadisiyah province of Iraq. Vet World 2018; 11:1210-1213. [PMID: 30410223 PMCID: PMC6200567 DOI: 10.14202/vetworld.2018.1210-1213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 07/16/2018] [Indexed: 11/16/2022] Open
Abstract
Aim This study was directed during an outbreak of suspected foot-and-mouth disease (FMD) in cattle in Al-Qadisiyah province, Iraq 2016. The disease has made a huge economic loss in livestock. It was suspected that the vaccination has failed to protect the animals from the infection because of the difference in the strains. Consequently, we designed the study to make the diagnosis and detect the strain of the causative virus. Materials and Methods The extraction of the DNA was done on 73 samples and Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) was used in the detection of FMD virus (FMDV) for primary diagnosis, and serotype-specific diagnosis was done with universal primer sets 1F/1R, A-1C612, and O-ARS4 with the expected band of 329, 865, and 1301 bp, respectively. Results Universal primer pair 1F/1R detected FMD in 55 of 73 (75.3%); of these, 37 (67.3%) were females and 18 (32.7%) were males, with high significance (p<0.01) between males and females in the PCR positivity ratio. The tested samples with positive universal primer were amplified with specific primers A-IC612 with no reaction for serotype O-ARS4. Conclusion The products of RT-PCR were sent for RNA sequencing, and the results were 100% positive to serotype A which means that it is the predominant type in Iraq. It may help in the importing or production of the vaccine to make a preventive plan for the disease. The virus of FMD is contagious and dangerous due to its role in the huge economic loses. The detection of this virus is widely explained in lots of articles, but it is more specific and sensitive in RT-PCR and sequencing. Consequently, the authorities responsible for importing and/or production vaccines have to avoid the importing of other serotypes because it will be losing money and more outbreaks will explode.
Collapse
Affiliation(s)
- Khalefa Ali Mansour
- Department of Internal and Preventive Veterinary Medicine, College of Veterinary Medicine, University of Al-Qadisiyah, Iraq
| | - Hassan Hachim Naser
- Department of Internal and Preventive Veterinary Medicine, College of Veterinary Medicine, University of Al-Qadisiyah, Iraq
| | - Muthanna Hadi Hussain
- Department of Internal and Preventive Veterinary Medicine, College of Veterinary Medicine, University of Al-Qadisiyah, Iraq
| |
Collapse
|
8
|
Ramirez-Carvajal L, Pauszek SJ, Ahmed Z, Farooq U, Naeem K, Shabman RS, Stockwell TB, Rodriguez LL. Genetic stability of foot-and-mouth disease virus during long-term infections in natural hosts. PLoS One 2018; 13:e0190977. [PMID: 29390015 PMCID: PMC5794060 DOI: 10.1371/journal.pone.0190977] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 12/23/2017] [Indexed: 12/14/2022] Open
Abstract
Foot-and-mouth disease (FMD) is a severe infection caused by a picornavirus that affects livestock and wildlife. Persistence in ruminants is a well-documented feature of Foot-and-mouth disease virus (FMDV) pathogenesis and a major concern for disease control. Persistently infected animals harbor virus for extended periods, providing a unique opportunity to study within-host virus evolution. This study investigated the genetic dynamics of FMDV during persistent infections of naturally infected Asian buffalo. Using next-generation sequencing (NGS) we obtained 21 near complete FMDV genome sequences from 12 sub-clinically infected buffalo over a period of one year. Four animals yielded only one virus isolate and one yielded two isolates of different serotype suggesting a serial infection. Seven persistently infected animals yielded more than one virus of the same serotype showing a long-term intra-host viral genetic divergence at the consensus level of less than 2.5%. Quasi-species analysis showed few nucleotide variants and non-synonymous substitutions of progeny virus despite intra-host persistence of up to 152 days. Phylogenetic analyses of serotype Asia-1 VP1 sequences clustered all viruses from persistent animals with Group VII viruses circulating in Pakistan in 2011, but distinct from those circulating on 2008–2009. Furthermore, signature amino acid (aa) substitutions were found in the antigenically relevant VP1 of persistent viruses compared with viruses from 2008–2009. Intra-host purifying selective pressure was observed, with few codons in structural proteins undergoing positive selection. However, FMD persistent viruses did not show a clear pattern of antigenic selection. Our findings provide insight into the evolutionary dynamics of FMDV populations within naturally occurring subclinical and persistent infections that may have implications to vaccination strategies in the region.
Collapse
Affiliation(s)
- Lisbeth Ramirez-Carvajal
- Foreign Animal Disease Research Unit, Agricultural Research Service, Plum Island Animal Disease Center, New York, United States of America
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, Tennessee, United States of America
- * E-mail: (LLR); (LRC)
| | - Steven J. Pauszek
- Foreign Animal Disease Research Unit, Agricultural Research Service, Plum Island Animal Disease Center, New York, United States of America
| | - Zaheer Ahmed
- Foreign Animal Disease Research Unit, Agricultural Research Service, Plum Island Animal Disease Center, New York, United States of America
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, Tennessee, United States of America
- Foreign Animal Disease Diagnostic Laboratory, Animal Plant Health Inspection Service (APHIS), Plum Island Animal Disease Center, New York, United States of America
| | - Umer Farooq
- Animal Health Program, National Agricultural Research Center, Islamabad, Pakistan
| | - Khalid Naeem
- Animal Health Program, National Agricultural Research Center, Islamabad, Pakistan
| | - Reed S. Shabman
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | | | - Luis L. Rodriguez
- Foreign Animal Disease Research Unit, Agricultural Research Service, Plum Island Animal Disease Center, New York, United States of America
- * E-mail: (LLR); (LRC)
| |
Collapse
|
9
|
Ularamu HG, Ibu JO, Wood BA, Abenga JN, Lazarus DD, Wungak YS, Knowles NJ, Wadsworth J, Mioulet V, King DP, Shamaki D, Adah MI. Characterization of Foot-and-Mouth Disease Viruses Collected in Nigeria Between 2007 and 2014: Evidence for Epidemiological Links Between West and East Africa. Transbound Emerg Dis 2017; 64:1867-1876. [PMID: 27718336 DOI: 10.1111/tbed.12584] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Indexed: 11/29/2022]
Abstract
This study describes the molecular characterization of 47 foot-and-mouth disease (FMD) viruses recovered from field outbreaks in Nigeria between 2007 and 2014. Antigen ELISA of viral isolates was used to identify FMD virus serotypes O, A and SAT 2. Phylogenetic analyses of VP1 nucleotide sequences provide evidence for the presence of multiple sublineages of serotype SAT 2, and O/EAST AFRICA 3 (EA-3) and O/WEST AFRICA topotypes in the country. In contrast, for serotype A, a single monophyletic cluster of viruses has persisted within Nigeria (2009-2013). These results demonstrate the close genetic relatedness of viruses in Nigeria to those from other African countries, including the first formal characterization of serotype O/EA-3 viruses in Nigeria. The introductions and persistence of certain viral lineages in Nigeria may reflect transmission patterns via nomadic pastoralism and animal trade. Continuous monitoring of field outbreaks is necessary to dissect the complexity of FMD epidemiology in sub-Saharan Africa.
Collapse
Affiliation(s)
- H G Ularamu
- Virology Research Division, National Veterinary Research Institute, Vom, Nigeria
| | - J O Ibu
- College of Veterinary Medicine, University of Agriculture, Makurdi, Nigeria
| | - B A Wood
- The Pirbright Institute, Woking, Surrey, UK
| | - J N Abenga
- College of Veterinary Medicine, University of Agriculture, Makurdi, Nigeria
| | - D D Lazarus
- Virology Research Division, National Veterinary Research Institute, Vom, Nigeria
| | - Y S Wungak
- Virology Research Division, National Veterinary Research Institute, Vom, Nigeria
| | | | | | - V Mioulet
- The Pirbright Institute, Woking, Surrey, UK
| | - D P King
- The Pirbright Institute, Woking, Surrey, UK
| | - D Shamaki
- Virology Research Division, National Veterinary Research Institute, Vom, Nigeria
| | - M I Adah
- College of Veterinary Medicine, University of Agriculture, Makurdi, Nigeria
| |
Collapse
|
10
|
Tully DC, Fares MA. Unravelling Selection Shifts among Foot-and-Mouth Disease virus (FMDV) Serotypes. Evol Bioinform Online 2017. [DOI: 10.1177/117693430600200009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
FMDV virus has been increasingly recognised as the most economically severe animal virus with a remarkable degree of antigenic diversity. Using an integrative evolutionary and computational approach we have compelling evidence for heterogeneity in the selection forces shaping the evolution of the seven different FMDV serotypes. Our results show that positive Darwinian selection has governed the evolution of the major antigenic regions of serotypes A, Asia1, O, SAT1 and SAT2, but not C or SAT3. Co-evolution between sites from antigenic regions under positive selection pinpoints their functional communication to generate immune-escape mutants while maintaining their ability to recognise the host-cell receptors. Neural network and functional divergence analyses strongly point to selection shifts between the different serotypes. Our results suggest that, unlike African FMDV serotypes, serotypes with wide geographical distribution have accumulated compensatory mutations as a strategy to ameliorate the effect of slightly deleterious mutations fixed by genetic drift. This strategy may have provided the virus by a flexibility to generate immune-escape mutants and yet recognise host-cell receptors. African serotypes presented no evidence for compensatory mutations. Our results support heterogeneous selective constraints affecting the different serotypes. This points to the possible accelerated rates of evolution diverging serotypes sharing geographical locations as to ameliorate the competition for the host.
Collapse
Affiliation(s)
- Damien C. Tully
- Molecular Evolution and Bioinformatics Laboratory, Biology Department, National University of Ireland, Maynooth, Co. Kildare, Ireland
- Department of Genetics, Smurfit Institute, University of Dublin, Trinity College, Co. Dublin, Ireland
| | - Mario A. Fares
- Molecular Evolution and Bioinformatics Laboratory, Biology Department, National University of Ireland, Maynooth, Co. Kildare, Ireland
- Department of Genetics, Smurfit Institute, University of Dublin, Trinity College, Co. Dublin, Ireland
| |
Collapse
|
11
|
Mueller L, Bertelli C, Pillonel T, Salamin N, Greub G. One Year Genome Evolution of Lausannevirus in Allopatric versus Sympatric Conditions. Genome Biol Evol 2017; 9:1432-1449. [PMID: 28525571 PMCID: PMC5513546 DOI: 10.1093/gbe/evx074] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2017] [Indexed: 02/07/2023] Open
Abstract
Amoeba-resisting microorganisms raised a great interest during the last decade. Among them, some large DNA viruses present huge genomes up to 2.5 Mb long, exceeding the size of small bacterial genomes. The rate of genome evolution in terms of mutation, deletion, and gene acquisition in these genomes is yet unknown. Given the suspected high plasticity of viral genomes, the microevolution of the 346 kb genome of Lausannevirus, a member of Megavirales, was studied. Hence, Lausannevirus was co-cultured within the amoeba Acanthamoeba castellanii over one year. Despite a low number of mutations, the virus showed a genome reduction of 3.7% after 12 months. Lausannevirus genome evolution in sympatric conditions was investigated by its co-culture with Estrella lausannensis, an obligate intracellular bacterium, in the amoeba A. castellanii during one year. Cultures were split every 3 months. Genome sequencing revealed that in these conditions both, Lausannevirus and E. lausannensis, show stable genome, presenting no major rearrangement. In fact, after one year they acquired from 2 to 7 and from 4 to 10 mutations per culture for Lausannevirus and E. lausannensis, respectively. Interestingly, different mutations in the endonuclease encoding genes of Lausannevirus were observed in different subcultures, highlighting the importance of this gene product in the replication of Lausannevirus. Conversely, mutations in E. lausannensis were mainly located in a gene encoding for a phosphoenolpyruvate–protein phosphotransferase (PtsI), implicated in sugar metabolism. Moreover, in our conditions and with our analyses we detected no horizontal gene transfer during one year of co-culture.
Collapse
Affiliation(s)
- Linda Mueller
- Center for Research on Intracellular Bacteria (CRIB), Institute of Microbiology, Lausanne University Hospital, and University of Lausanne, Switzerland
| | - Claire Bertelli
- Center for Research on Intracellular Bacteria (CRIB), Institute of Microbiology, Lausanne University Hospital, and University of Lausanne, Switzerland.,SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Trestan Pillonel
- Center for Research on Intracellular Bacteria (CRIB), Institute of Microbiology, Lausanne University Hospital, and University of Lausanne, Switzerland
| | - Nicolas Salamin
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland.,Department of Ecology and Evolution, Biophore, University of Lausanne, Switzerland
| | - Gilbert Greub
- Center for Research on Intracellular Bacteria (CRIB), Institute of Microbiology, Lausanne University Hospital, and University of Lausanne, Switzerland
| |
Collapse
|
12
|
Abstract
Adult C57BL/6J mice have been used to study Foot-and-mouth disease virus (FMDV) biology. In this work, two variants of an FMDV A/Arg/01 strain exhibiting differential pathogenicity in adult mice were identified and characterized: a non-lethal virus (A01NL) caused mild signs of disease, whereas a lethal virus (A01L) caused death within 24-48h independently of the dose used. Both viruses caused a systemic infection with pathological changes in the exocrine pancreas. Virus A01L reached higher viral loads in plasma and organs of inoculated mice as well as increased replication in an ovine kidney cell line. Complete consensus sequences revealed 6 non-synonymous changes between A01L and A10NL genomes that might be linked to replication differences, as suggested by in silico prediction studies. Our results highlight the biological significance of discrete genomic variations and reinforce the usefulness of this animal model to study viral determinants of lethality.
Collapse
|
13
|
Human Rhinovirus Diversity and Evolution: How Strange the Change from Major to Minor. J Virol 2017; 91:JVI.01659-16. [PMID: 28100614 DOI: 10.1128/jvi.01659-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 01/10/2017] [Indexed: 01/20/2023] Open
Abstract
Rhinoviruses are the most common causes of the common cold. Their many distinct lineages fall into "major" and "minor" groups that use different cell surface receptors to enter host cells. Minor-group rhinoviruses are more immunogenic in laboratory studies, although their patterns of transmission and their cold symptoms are broadly similar to those of the major group. Here we present evolutionary evidence that minor-group viruses are also more immunogenic in humans. A key finding is that rates of amino acid substitutions at exposed sites in the capsid proteins VP2, VP3, and VP1 tend to be elevated in minor-group relative to major-group viruses, while rates at buried sites show no consistent differences. A reanalysis of historical virus watch data also indicates a higher immunogenicity of minor-group viruses, consistent with our findings about evolutionary rates at amino acid positions most directly exposed to immune surveillance. The increased immunogenicity and speed of evolution in minor-group lineages may contribute to the very large numbers of rhinovirus serotypes that coexist while differing in virulence.IMPORTANCE Most colds are caused by rhinoviruses (RVs). Those caused by a subset known as the minor-group members of rhinovirus species A (RV-A) are correlated with the inception and aggravation of asthma in at-risk populations. Genetically, minor-group viruses are similar to major-group RV-A, from which they were derived, although they tend to elicit stronger immune responses. Differences in their rates and patterns of molecular evolution should be highly relevant to their epidemiology. All RV-A strains show high rates of amino acid substitutions in the capsid proteins at exposed sites not previously identified as being immunogenic, and this increase is significantly greater in minor-group viruses. These findings will inform future studies of the recently discovered RV-C, which also appears to exacerbate asthma in adults and children. In addition, these findings draw attention to the difficult problem of explaining the long-term coexistence of many serotypes of major- and minor-group RVs.
Collapse
|
14
|
Abstract
The family Arenaviridae currently comprises over 20 viral species, each of them associated with a main rodent species as the natural reservoir and in one case possibly phyllostomid bats. Moreover, recent findings have documented a divergent group of arenaviruses in captive alethinophidian snakes. Human infections occur through mucosal exposure to aerosols or by direct contact of abraded skin with infectious materials. Arenaviruses merit interest both as highly tractable experimental model systems to study acute and persistent infections and as clinically important human pathogens including Lassa (LASV) and Junin (JUNV) viruses, the causative agents of Lassa and Argentine hemorrhagic fevers (AHFs), respectively, for which there are no FDA-licensed vaccines, and current therapy is limited to an off-label use of ribavirin (Rib) that has significant limitations. Arenaviruses are enveloped viruses with a bi-segmented negative strand (NS) RNA genome. Each genome segment, L (ca 7.3 kb) and S (ca 3.5 kb), uses an ambisense coding strategy to direct the synthesis of two polypeptides in opposite orientation, separated by a noncoding intergenic region (IGR). The S genomic RNA encodes the virus nucleoprotein (NP) and the precursor (GPC) of the virus surface glycoprotein that mediates virus receptor recognition and cell entry via endocytosis. The L genome RNA encodes the viral RNA-dependent RNA polymerase (RdRp, or L polymerase) and the small (ca 11 kDa) RING finger protein Z that has functions of a bona fide matrix protein including directing virus budding. Arenaviruses were thought to be relatively stable genetically with intra- and interspecies amino acid sequence identities of 90-95 % and 44-63 %, respectively. However, recent evidence has documented extensive arenavirus genetic variability in the field. Moreover, dramatic phenotypic differences have been documented among closely related LCMV isolates. These data provide strong evidence of viral quasispecies involvement in arenavirus adaptability and pathogenesis. Here, we will review several aspects of the molecular biology of arenaviruses, phylogeny and evolution, and quasispecies dynamics of arenavirus populations for a better understanding of arenavirus pathogenesis, as well as for the development of novel antiviral strategies to combat arenavirus infections.
Collapse
Affiliation(s)
- Esteban Domingo
- Campus de Cantoblanco, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Peter Schuster
- The Santa Fe Institute, Santa Fe, NM, USA and Institut f. Theoretische Chemie, Universität Wien, Vienna, Austria
| |
Collapse
|
15
|
Evolutionary analysis of structural protein gene VP1 of foot-and-mouth disease virus serotype Asia 1. ScientificWorldJournal 2015; 2015:734253. [PMID: 25793223 PMCID: PMC4352495 DOI: 10.1155/2015/734253] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 12/29/2014] [Accepted: 02/02/2015] [Indexed: 12/02/2022] Open
Abstract
Foot-and-mouth disease virus (FMDV) serotype Asia 1 was mostly endemic in Asia and then was responsible for economically important viral disease of cloven-hoofed animals, but the study on its selection and evolutionary process is comparatively rare. In this study, we characterized 377 isolates from Asia collected up until 2012, including four vaccine strains. Maximum likelihood analysis suggested that the strains circulating in Asia were classified into 8 different groups (groups I–VIII) or were unclassified (viruses collected before 2000). On the basis of divergence time analyses, we infer that the TMRCA of Asia 1 virus existed approximately 86.29 years ago. The result suggested that the virus had a high mutation rate (5.745 × 10−3 substitutions/site/year) in comparison to the other serotypes of FMDV VP1 gene. Furthermore, the structural protein VP1 was under lower selection pressure and the positive selection occurred at many sites, and four codons (positions 141, 146, 151, and 169) were located in known critical antigenic residues. The remaining sites were not located in known functional regions and were moderately conserved, and the reason for supporting all sites under positive selection remains to be elucidated because the power of these analyses was largely unknown.
Collapse
|
16
|
Poletto C, Meloni S, Van Metre A, Colizza V, Moreno Y, Vespignani A. Characterising two-pathogen competition in spatially structured environments. Sci Rep 2015; 5:7895. [PMID: 25600088 PMCID: PMC4298724 DOI: 10.1038/srep07895] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 12/16/2014] [Indexed: 11/10/2022] Open
Abstract
Different pathogens spreading in the same host population often generate complex co-circulation dynamics because of the many possible interactions between the pathogens and the host immune system, the host life cycle, and the space structure of the population. Here we focus on the competition between two acute infections and we address the role of host mobility and cross-immunity in shaping possible dominance/co-dominance regimes. Host mobility is modelled as a network of traveling flows connecting nodes of a metapopulation, and the two-pathogen dynamics is simulated with a stochastic mechanistic approach. Results depict a complex scenario where, according to the relation among the epidemiological parameters of the two pathogens, mobility can either be non-influential for the competition dynamics or play a critical role in selecting the dominant pathogen. The characterisation of the parameter space can be explained in terms of the trade-off between pathogen's spreading velocity and its ability to diffuse in a sparse environment. Variations in the cross-immunity level induce a transition between presence and absence of competition. The present study disentangles the role of the relevant biological and ecological factors in the competition dynamics, and provides relevant insights into the spatial ecology of infectious diseases.
Collapse
Affiliation(s)
- Chiara Poletto
- 1] Sorbonne Universités, UPMC Univ Paris 06, UMR-S 1136, Institut Pierre Louis d'Epidémiologie et de Santé Publique, F-75013, Paris, France [2] INSERM, UMR-S 1136, Institut Pierre Louis d'Epidémiologie et de Santé Publique, F-75013, Paris, France
| | - Sandro Meloni
- 1] Institute for Biocomputation and Physics of Complex Systems, University of Zaragoza, Zaragoza, Spain [2] Department of Theoretical Physics, University of Zaragoza, Zaragoza, Spain
| | - Ashleigh Van Metre
- 1] Sorbonne Universités, UPMC Univ Paris 06, UMR-S 1136, Institut Pierre Louis d'Epidémiologie et de Santé Publique, F-75013, Paris, France [2] INSERM, UMR-S 1136, Institut Pierre Louis d'Epidémiologie et de Santé Publique, F-75013, Paris, France [3] Wofford College, South Carolina, USA
| | - Vittoria Colizza
- 1] Sorbonne Universités, UPMC Univ Paris 06, UMR-S 1136, Institut Pierre Louis d'Epidémiologie et de Santé Publique, F-75013, Paris, France [2] INSERM, UMR-S 1136, Institut Pierre Louis d'Epidémiologie et de Santé Publique, F-75013, Paris, France [3] ISI Foundation, Torino, Italy
| | - Yamir Moreno
- 1] Institute for Biocomputation and Physics of Complex Systems, University of Zaragoza, Zaragoza, Spain [2] Department of Theoretical Physics, University of Zaragoza, Zaragoza, Spain [3] ISI Foundation, Torino, Italy
| | - Alessandro Vespignani
- 1] ISI Foundation, Torino, Italy [2] Laboratory for the Modeling of Biological and Socio-technical Systems, Northeastern University, Boston MA, USA
| |
Collapse
|
17
|
Li J, Zhang KQ. Independent expansion of zincin metalloproteinases in Onygenales fungi may be associated with their pathogenicity. PLoS One 2014; 9:e90225. [PMID: 24587291 PMCID: PMC3938660 DOI: 10.1371/journal.pone.0090225] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 01/28/2014] [Indexed: 11/24/2022] Open
Abstract
To get a comprehensive view of fungal M35 family (deuterolysin) and M36 family (fungalysin) genes, we conducted genome-wide investigations and phylogenetic analyses of genes in these two families from 50 sequenced Ascomycota fungi with different life styles. Large variations in the number of M35 family and M36 family genes were found among different fungal genomes, indicating that these two gene families have been highly dynamic through fungal evolution. Moreover, we found obvious expansions of Meps in two families of Onygenales: Onygenaceae and Arthodermataceae, whereas species in family Ajellomycetace did not show expansion of these genes. The strikingly different gene duplication and loss patterns in Onygenales may be associated with the different pathogenicity of these species. Interestingly, likelihood ratio tests (LRT) of both M35 family and M36 family genes suggested that several branches leading to the duplicated genes in dermatophytic and Coccidioides fungi had signatures of positive selection, indicating that the duplicated Mep genes have likely diverged functionally to play important roles during the evolution of pathogenicity of dermatophytic and Coccidioides fungi. The potentially positively selected residues discovered by our analysis may have contributed to the development of new physiological functions of the duplicated Mep genes in dermatophytic fungi and Coccidioides species. Our study adds to the current knowledge of the evolution of Meps in fungi and also establishes a theoretical foundation for future experimental investigations.
Collapse
Affiliation(s)
- Juan Li
- Laboratory for Conservation and Utilization of Bio-resources, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, P.R. China
| | - Ke-Qin Zhang
- Laboratory for Conservation and Utilization of Bio-resources, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, P.R. China
- * E-mail:
| |
Collapse
|
18
|
Gjini E, Haydon DT, David Barry J, Cobbold CA. Revisiting the diffusion approximation to estimate evolutionary rates of gene family diversification. J Theor Biol 2014; 341:111-22. [PMID: 24120993 DOI: 10.1016/j.jtbi.2013.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 06/21/2013] [Accepted: 10/02/2013] [Indexed: 11/18/2022]
Abstract
Genetic diversity in multigene families is shaped by multiple processes, including gene conversion and point mutation. Because multi-gene families are involved in crucial traits of organisms, quantifying the rates of their genetic diversification is important. With increasing availability of genomic data, there is a growing need for quantitative approaches that integrate the molecular evolution of gene families with their higher-scale function. In this study, we integrate a stochastic simulation framework with population genetics theory, namely the diffusion approximation, to investigate the dynamics of genetic diversification in a gene family. Duplicated genes can diverge and encode new functions as a result of point mutation, and become more similar through gene conversion. To model the evolution of pairwise identity in a multigene family, we first consider all conversion and mutation events in a discrete manner, keeping track of their details and times of occurrence; second we consider only the infinitesimal effect of these processes on pairwise identity accounting for random sampling of genes and positions. The purely stochastic approach is closer to biological reality and is based on many explicit parameters, such as conversion tract length and family size, but is more challenging analytically. The population genetics approach is an approximation accounting implicitly for point mutation and gene conversion, only in terms of per-site average probabilities. Comparison of these two approaches across a range of parameter combinations reveals that they are not entirely equivalent, but that for certain relevant regimes they do match. As an application of this modelling framework, we consider the distribution of nucleotide identity among VSG genes of African trypanosomes, representing the most prominent example of a multi-gene family mediating parasite antigenic variation and within-host immune evasion.
Collapse
Affiliation(s)
- Erida Gjini
- Instituto Gulbenkian de Ciência Oeiras, Portugal.
| | - Daniel T Haydon
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom; The Boyd Orr Centre for Population and Ecosystem Health, University of Glasgow, Glasgow, United Kingdom; Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - J David Barry
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Christina A Cobbold
- School of Mathematics and Statistics, College of Science and Engineering, University of Glasgow, Glasgow, United Kingdom; The Boyd Orr Centre for Population and Ecosystem Health, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
19
|
Chitray M, de Beer TAP, Vosloo W, Maree FF. Genetic heterogeneity in the leader and P1-coding regions of foot-and-mouth disease virus serotypes A and O in Africa. Arch Virol 2013; 159:947-61. [PMID: 24221247 PMCID: PMC4010724 DOI: 10.1007/s00705-013-1838-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 07/22/2013] [Indexed: 02/03/2023]
Abstract
Genetic information regarding the leader (L) and complete capsid-coding (P1) region of FMD serotype A and O viruses prevalent on the African continent is lacking. Here, we present the complete L-P1 sequences for eight serotype A and nine serotype O viruses recovered from FMDV outbreaks in East and West Africa over the last 33 years. Phylogenetic analysis of the P1 and capsid-coding regions revealed that the African isolates grouped according to serotype, and certain clusters were indicative of transboundary as well as intra-regional spread of the virus. However, similar analysis of the L region revealed random groupings of isolates from serotypes O and A. Comparisons between the phylogenetic trees derived from the structural coding regions and the L region pointed to a possibility of genetic recombination. The intertypic nucleotide and amino acid variation of all the isolates in this study supported results from previous studies where the externally located 1D was the most variable whilst the internally located 1A was the most conserved, which likely reflects the selective pressures on these proteins. Amino acids identified previously as important for FMDV structure and functioning were found to be highly conserved. The information gained from this study will contribute to the construction of structurally designed FMDV vaccines in Africa.
Collapse
Affiliation(s)
- M Chitray
- Agricultural Research Council, Onderstepoort Veterinary Institute, Transboundary Animal Diseases, Private Bag X05, Onderstepoort, Pretoria, South Africa,
| | | | | | | |
Collapse
|
20
|
Phylogenetic patterns of human coxsackievirus B5 arise from population dynamics between two genogroups and reveal evolutionary factors of molecular adaptation and transmission. J Virol 2013; 87:12249-59. [PMID: 24006446 DOI: 10.1128/jvi.02075-13] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The aim of this study was to gain insights into the tempo and mode of the evolutionary processes that sustain genetic diversity in coxsackievirus B5 (CVB5) and into the interplay with virus transmission. We estimated phylodynamic patterns with a large sample of virus strains collected in Europe by Bayesian statistical methods, reconstructed the ancestral states of genealogical nodes, and tested for selection. The genealogies estimated with the structural one-dimensional gene encoding the VP1 protein and nonstructural 3CD locus allowed the precise description of lineages over time and cocirculating virus populations within the two CVB5 clades, genogroups A and B. Strong negative selection shaped the evolution of both loci, but compelling phylogenetic data suggested that immune selection pressure resulted in the emergence of the two genogroups with opposed evolutionary pathways. The genogroups also differed in the temporal occurrence of the amino acid changes. The virus strains of genogroup A were characterized by sequential acquisition of nonsynonymous changes in residues exposed at the virus 5-fold axis. The genogroup B viruses were marked by selection of three changes in a different domain (VP1 C terminus) during its early emergence. These external changes resulted in a selective sweep, which was followed by an evolutionary stasis that is still ongoing after 50 years. The inferred population history of CVB5 showed an alternation of the prevailing genogroup during meningitis epidemics across Europe and is interpreted to be a consequence of partial cross-immunity.
Collapse
|
21
|
Poletto C, Meloni S, Colizza V, Moreno Y, Vespignani A. Host mobility drives pathogen competition in spatially structured populations. PLoS Comput Biol 2013; 9:e1003169. [PMID: 23966843 PMCID: PMC3744403 DOI: 10.1371/journal.pcbi.1003169] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 06/21/2013] [Indexed: 11/26/2022] Open
Abstract
Interactions among multiple infectious agents are increasingly recognized as a fundamental issue in the understanding of key questions in public health regarding pathogen emergence, maintenance, and evolution. The full description of host-multipathogen systems is, however, challenged by the multiplicity of factors affecting the interaction dynamics and the resulting competition that may occur at different scales, from the within-host scale to the spatial structure and mobility of the host population. Here we study the dynamics of two competing pathogens in a structured host population and assess the impact of the mobility pattern of hosts on the pathogen competition. We model the spatial structure of the host population in terms of a metapopulation network and focus on two strains imported locally in the system and having the same transmission potential but different infectious periods. We find different scenarios leading to competitive success of either one of the strain or to the codominance of both strains in the system. The dominance of the strain characterized by the shorter or longer infectious period depends exclusively on the structure of the population and on the the mobility of hosts across patches. The proposed modeling framework allows the integration of other relevant epidemiological, environmental and demographic factors, opening the path to further mathematical and computational studies of the dynamics of multipathogen systems.
Collapse
Affiliation(s)
- Chiara Poletto
- Computational Epidemiology Laboratory, Institute for Scientific Interchange, Turin, Italy.
| | | | | | | | | |
Collapse
|
22
|
Alam SMS, Amin R, Rahman MZ, Hossain MA, Sultana M. Antigenic heterogeneity of capsid protein VP1 in foot-and-mouth disease virus (FMDV) serotype Asia 1. Adv Appl Bioinform Chem 2013; 6:37-46. [PMID: 23983476 PMCID: PMC3751384 DOI: 10.2147/aabc.s49587] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Foot and mouth disease virus (FMDV), with its seven serotypes, is a highly contagious virus infecting mainly cloven-hoofed animals. The serotype Asia1 occurs mainly in Asian regions. An in-silico approach was taken to reveal the antigenic heterogeneities within the capsid protein VP1 of Asia1. A total of 47 VP1 sequences of Asia1 isolates from different countries of South Asian regions were selected, retrieved from database, and were aligned. The structure of VP1 protein was modeled using a homology modeling approach. Several antigenic sites were identified and mapped onto the three-dimensional protein structure. Variations at these antigenic sites were analyzed by calculating the protein variability index and finding mutation combinations. The data suggested that vaccine escape mutants have derived from only few mutations at several antigenic sites. Five antigenic peptides have been identified as the least variable epitopes, with just fewer amino acid substitutions. Only a limited number of serotype Asia1 antigenic variants were found to be circulated within the South Asian region. This emphasizes a possibility of formulating synthetic vaccines for controlling foot-and-mouth disease by Asia1 serotypes.
Collapse
Affiliation(s)
- S M Sabbir Alam
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
| | | | | | | | | |
Collapse
|
23
|
Yeo DSY, Lian JE, Fernandez CJ, Lin YN, Liaw JCW, Soh ML, Lim EAS, Chan KP, Ng ML, Tan HC, Oh S, Ooi EE, Tan BH. A highly divergent Encephalomyocarditis virus isolated from nonhuman primates in Singapore. Virol J 2013; 10:248. [PMID: 23914943 PMCID: PMC3750836 DOI: 10.1186/1743-422x-10-248] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 07/24/2013] [Indexed: 02/05/2023] Open
Abstract
Background In 2001 and 2002, fatal myocarditis resulted in the sudden deaths of four, two adult and two juvenile, orang utans out of a cohort of 26 in the Singapore Zoological Gardens. Methods Of the four orang utans that underwent post-mortem examination, virus isolation was performed from the tissue homogenates of the heart and lung obtained from the two juvenile orang utans in Vero cell cultures. The tissue culture fluid was examined using electron microscopy. Reverse transcription and polymerase chain reaction with Encephalomyocarditis virus (EMCV)-specific primers targeting the gene regions of VP3/VP1 and 3D polymerase (3Dpol) confirmed the virus genus and species. The two EMCV isolates were sequenced and phylogenetic analyses of the virus genes performed. Serological testing on other animal species in the Singapore Zoological Gardens was also conducted. Results Electron microscopy of the two EMCV isolates, designated Sing-M100-02 and Sing-M105-02, revealed spherical viral particles of about 20 to 30 nm, consistent with the size and morphology of members belonging to the family Picornaviridae. In addition, infected-Vero cells showed positive immunoflorescence staining with antiserum to EMCV. Sequencing of the viral genome showed that the two EMCV isolates were 99.9% identical at the nucleotide level, indicating a similar source of origin. When compared with existing EMCV sequences in the VP1 and 3Dpol gene regions, the nucleotide divergence were at a maximum of 38.8% and 23.6% respectively, while the amino acid divergence were at a maximum of 33.9% and 11.3% respectively. Phylogenetic analyses of VP1 and 3Dpol genes further grouped the Sing-M100-02 and Sing-M105-02 isolates to themselves, away from existing EMCV lineages. This strongly suggested that Sing-M100-02 and Sing-M105-02 isolates are highly divergent variants of EMCV. Apart from the two deceased orang utans, a serological survey conducted among other zoo animals showed that a number of other animal species had neutralizing antibodies to Sing-M105-02 isolate, indicating that the EMCV variant has a relatively wide host range. Conclusions The etiological agent responsible for the fatal myocarditis cases among two of the four orang utans in the Singapore Zoological Gardens was a highly divergent variant of EMCV. This is the first report of an EMCV infection in Singapore and South East Asia.
Collapse
|
24
|
Patch JR, Kenney M, Pacheco JM, Grubman MJ, Golde WT. Characterization of cytotoxic T lymphocyte function after foot-and-mouth disease virus infection and vaccination. Viral Immunol 2013; 26:239-49. [PMID: 23829779 DOI: 10.1089/vim.2013.0011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The induction of neutralizing antibodies specific for foot-and-mouth disease virus (FMDV) has been the central goal of vaccination efforts against this economically important disease of cloven-hoofed animals. Although these efforts have yielded much success, challenges remain, including little cross-serotype protection and inadequate duration of immunity. Commonly, viral infections are characterized by induction of cytotoxic T lymphocytes (CTL), yet the function of CTL in FMDV immunity is poorly defined. We developed an assay for detection of CTL specific for FMDV and reported that a modified adenovirus-vectored FMDV vaccine could induce CTL activity. This allowed us to determine whether FMDV-specific CTL responses are induced during infection and to test further whether vaccine-induced CTL could protect against challenge with FMDV. We now show the induction of antigen-specific CTL responses after infection of swine with FMDV strain A24 Cruizero. In addition, we developed a vaccination strategy that induces FMDV-specific CTL in the absence of significant neutralizing antibody. Animals vaccinated using this protocol showed delayed clinical disease and significantly suppressed viremia compared to control animals, suggesting a role for CTLs in the control of virus shedding. These results provide new insights showing induction of CTL responses to FMDV following infection or vaccination, and create the potential for improving vaccine performance by targeting cellular immunity.
Collapse
Affiliation(s)
- Jared R Patch
- Plum Island Animal Disease Center, Agricultural Research Service, USDA, Greenport, New York, USA
| | | | | | | | | |
Collapse
|
25
|
Chase-Topping ME, Handel I, Bankowski BM, Juleff ND, Gibson D, Cox SJ, Windsor MA, Reid E, Doel C, Howey R, Barnett PV, Woolhouse MEJ, Charleston B. Understanding foot-and-mouth disease virus transmission biology: identification of the indicators of infectiousness. Vet Res 2013; 44:46. [PMID: 23822567 PMCID: PMC3716626 DOI: 10.1186/1297-9716-44-46] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 06/05/2013] [Indexed: 11/28/2022] Open
Abstract
The control of foot-and-mouth disease virus (FMDV) outbreaks in non-endemic countries relies on the rapid detection and removal of infected animals. In this paper we use the observed relationship between the onset of clinical signs and direct contact transmission of FMDV to identify predictors for the onset of clinical signs and identify possible approaches to preclinical screening in the field. Threshold levels for various virological and immunological variables were determined using Receiver Operating Characteristic (ROC) curve analysis and then tested using generalized linear mixed models to determine their ability to predict the onset of clinical signs. In addition, concordance statistics between qualitative real time PCR test results and virus isolation results were evaluated. For the majority of animals (71%), the onset of clinical signs occurred 3-4 days post infection. The onset of clinical signs was associated with high levels of virus in the blood, oropharyngeal fluid and nasal fluid. Virus is first detectable in the oropharyngeal fluid, but detection of virus in the blood and nasal fluid may also be good candidates for preclinical indicators. Detection of virus in the air was also significantly associated with transmission. This study is the first to identify statistically significant indicators of infectiousness for FMDV at defined time periods during disease progression in a natural host species. Identifying factors associated with infectiousness will advance our understanding of transmission mechanisms and refine intra-herd and inter-herd disease transmission models.
Collapse
Affiliation(s)
- Margo E Chase-Topping
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom
| | - Ian Handel
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, United Kingdom
| | | | | | - Debi Gibson
- The Pirbright Institute, Surrey GU24 0NF, United Kingdom
| | - Sarah J Cox
- The Pirbright Institute, Surrey GU24 0NF, United Kingdom
| | | | - Elizabeth Reid
- The Pirbright Institute, Surrey GU24 0NF, United Kingdom
| | - Claudia Doel
- The Pirbright Institute, Surrey GU24 0NF, United Kingdom
| | - Richard Howey
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | - Paul V Barnett
- The Pirbright Institute, Surrey GU24 0NF, United Kingdom
| | - Mark EJ Woolhouse
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom
| | | |
Collapse
|
26
|
Morelli MJ, Wright CF, Knowles NJ, Juleff N, Paton DJ, King DP, Haydon DT. Evolution of foot-and-mouth disease virus intra-sample sequence diversity during serial transmission in bovine hosts. Vet Res 2013; 44:12. [PMID: 23452550 PMCID: PMC3630017 DOI: 10.1186/1297-9716-44-12] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 02/01/2013] [Indexed: 01/13/2023] Open
Abstract
RNA virus populations within samples are highly heterogeneous, containing a large number of minority sequence variants which can potentially be transmitted to other susceptible hosts. Consequently, consensus genome sequences provide an incomplete picture of the within- and between-host viral evolutionary dynamics during transmission. Foot-and-mouth disease virus (FMDV) is an RNA virus that can spread from primary sites of replication, via the systemic circulation, to found distinct sites of local infection at epithelial surfaces. Viral evolution in these different tissues occurs independently, each of them potentially providing a source of virus to seed subsequent transmission events. This study employed the Illumina Genome Analyzer platform to sequence 18 FMDV samples collected from a chain of sequentially infected cattle. These data generated snap-shots of the evolving viral population structures within different animals and tissues. Analyses of the mutation spectra revealed polymorphisms at frequencies >0.5% at between 21 and 146 sites across the genome for these samples, while 13 sites acquired mutations in excess of consensus frequency (50%). Analysis of polymorphism frequency revealed that a number of minority variants were transmitted during host-to-host infection events, while the size of the intra-host founder populations appeared to be smaller. These data indicate that viral population complexity is influenced by small intra-host bottlenecks and relatively large inter-host bottlenecks. The dynamics of minority variants are consistent with the actions of genetic drift rather than strong selection. These results provide novel insights into the evolution of FMDV that can be applied to reconstruct both intra- and inter-host transmission routes.
Collapse
|
27
|
Yuvaraj S, Madhanmohan M, Nagendrakumar S, Kumar R, Mohana Subramanian B, Mohapatra JK, Sanyal A, Pattnaik B, Srinivasan V. Genetic and antigenic characterization of Indian foot-and-mouth disease virus serotype O isolates collected during the period 2001 to 2012. INFECTION GENETICS AND EVOLUTION 2013; 13:109-15. [DOI: 10.1016/j.meegid.2012.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 10/03/2012] [Accepted: 10/23/2012] [Indexed: 10/27/2022]
|
28
|
Kuo SM, Kao HW, Hou MH, Wang CH, Lin SH, Su HL. Evolution of infectious bronchitis virus in Taiwan: positively selected sites in the nucleocapsid protein and their effects on RNA-binding activity. Vet Microbiol 2012; 162:408-418. [PMID: 23159091 PMCID: PMC7117379 DOI: 10.1016/j.vetmic.2012.10.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 10/15/2012] [Accepted: 10/17/2012] [Indexed: 12/04/2022]
Abstract
RNA recombination has been shown to underlie the sporadic emergence of new variants of coronavirus, including the infectious bronchitis virus (IBV), a highly contagious avian pathogen. We have demonstrated that RNA recombination can give rise to a new viral population, supported by the finding that most isolated Taiwanese (TW) IBVs, similar to Chinese (CH) IBVs, exhibit a genetic rearrangement with the American (US) IBV at the 5’ end of the nucleocapsid (N) gene. Here, we further show that positive selection has occurred at two sites within the putative crossover region of the N-terminal domain (NTD) of the TW IBV N protein. Based on the crystal structure of the NTD, the stereographic positions of both predicted selected sites do not fall close to the RNA-binding groove. Surprisingly, converting either of the two residues to the amino acid present in most CH IBVs resulted in significantly reduced affinity of the N protein for the synthetic RNA repeats of the viral transcriptional regulatory sequence. These results suggest that modulating the amino acid residue at either selected site may alter the conformation of the N protein and affect the viral RNA–N interaction. This study illustrates that the N protein of the current TW IBV variant has been shaped by both RNA recombination and positive selection and that the latter may promote viral survival and fitness, potentially by increasing the RNA-binding capacity of the N protein.
Collapse
Affiliation(s)
- Shu-Ming Kuo
- Department of Life Sciences, Agricultural Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan
| | - Hsiao-Wei Kao
- Department of Life Sciences, Agricultural Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan
| | - Ming-Hon Hou
- Institute of Genomics and Bioinformatics, Agricultural Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan
| | - Ching-Ho Wang
- School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan
| | - Siou-Hong Lin
- Department of Life Sciences, Agricultural Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan
| | - Hong-Lin Su
- Department of Life Sciences, Agricultural Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan; Department of Physical Therapy, Graduate Institute of Rehabilitation Science, China Medical University, Taichung, Taiwan.
| |
Collapse
|
29
|
Brito BP, Perez AM, Jamal SM, Belsham GJ, Pauszek SJ, Ahmed Z, Rodriguez LL. Foot-and-Mouth Disease Virus Serotype O Phylodynamics: Genetic Variability Associated with Epidemiological Factors in Pakistan. Transbound Emerg Dis 2012; 60:516-24. [DOI: 10.1111/j.1865-1682.2012.01366.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Malirat V, Bergmann IE, de Mendonça Campos R, Conde F, Quiroga JL, Villamil M, Salgado G, Ortiz S. Molecular epidemiology of foot-and-mouth disease virus type A in South America. Vet Microbiol 2012; 158:82-94. [DOI: 10.1016/j.vetmic.2012.02.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 02/06/2012] [Accepted: 02/09/2012] [Indexed: 11/26/2022]
|
31
|
Jamal SM, Ferrari G, Ahmed S, Normann P, Curry S, Belsham GJ. Evolutionary analysis of serotype A foot-and-mouth disease viruses circulating in Pakistan and Afghanistan during 2002-2009. J Gen Virol 2011; 92:2849-2864. [PMID: 21813704 DOI: 10.1099/vir.0.035626-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Foot-and-mouth disease (FMD) is endemic in Pakistan and Afghanistan. Three different serotypes of the virus, namely O, A and Asia-1, are responsible for the outbreaks of this disease in these countries. In the present study, the nucleotide-coding sequences for the VP1 capsid protein (69 samples) or for all four capsid proteins (P1, seven representative samples) of the serotype A FMD viruses circulating in Pakistan and Afghanistan were determined. Phylogenetic analysis of the foot-and-mouth disease virus (FMDV) VP1-coding sequences from these countries collected between 2002 and 2009 revealed the presence of at least four lineages within two distinct genotypes, all belonging to the Asia topotype, within serotype A. The predominant lineage observed was A-Iran05 but three other lineages (a new one is named here A-Pak09) were also identified. The A-Iran05 lineage is still evolving as revealed by the presence of seven distinct variants, the dominant being the A-Iran05AFG-07 and A-Iran05BAR-08 sublineages. The rate of evolution of the A-Iran05 lineage was found to be about 1.2×10(-2) substitutions per nucleotide per year. This high rate of change is consistent with the rapid appearance of new variants of FMDV serotype A in the region. The A22/Iraq FMDV vaccine is antigenically distinct from the A-Iran05BAR-08 viruses. Mapping of the amino acid changes between the capsid proteins of the A22/Iraq vaccine strain and the A-Iran05BAR-08 viruses onto the A22/Iraq capsid structure identified candidate amino acid substitutions, exposed on the virus surface, which may explain this antigenic difference.
Collapse
Affiliation(s)
- Syed M Jamal
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan.,National Veterinary Laboratory, Park Road, 45500 Islamabad, Pakistan.,National Veterinary Institute, Technical University of Denmark, Lindholm, 4771 Kalvehave, Denmark
| | - Giancarlo Ferrari
- Food and Agriculture Organization of the United Nations, Rome, Italy
| | - Safia Ahmed
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Preben Normann
- National Veterinary Institute, Technical University of Denmark, Lindholm, 4771 Kalvehave, Denmark
| | - Stephen Curry
- Biophysics Section, Blackett Laboratory, Division of Cell and Molecular Biology, Imperial College London, London SW7 2AZ, UK
| | - Graham J Belsham
- National Veterinary Institute, Technical University of Denmark, Lindholm, 4771 Kalvehave, Denmark
| |
Collapse
|
32
|
Muellner P, Zadoks RN, Perez AM, Spencer SEF, Schukken YH, French NP. The integration of molecular tools into veterinary and spatial epidemiology. Spat Spatiotemporal Epidemiol 2011; 2:159-71. [PMID: 22748175 DOI: 10.1016/j.sste.2011.07.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
At the interface of molecular biology and epidemiology, the emerging discipline of molecular epidemiology offers unique opportunities to advance the study of diseases through the investigation of infectious agents at the molecular level. Molecular tools can increase our understanding of the factors that shape the spatial and temporal distribution of pathogens and disease. Both spatial and molecular aspects have always been important to the field of infectious disease epidemiology, but recently news tools have been developed which increase our ability to consider both elements within a common framework. This enables the epidemiologist to make inferences about disease patterns in space and time. This paper introduces some basic concepts of molecular epidemiology in a veterinary context and illustrates the application of molecular tools at a range of spatio-temporal scales. Case studies - a multi-state outbreak of Serratia mastitis, a national control program for campylobacteriosis, and evolution of foot-and-mouth-disease viruses - are used to demonstrate the importance of considering molecular aspects in modern epidemiological studies. The discipline of molecular epidemiology is in its infancy and our contribution aims to promote awareness, understanding and uptake of molecular epidemiology in veterinary science.
Collapse
Affiliation(s)
- Petra Muellner
- Epi-interactive, 8a Darlington Road, Miramar, Wellington 6022, New Zealand.
| | | | | | | | | | | |
Collapse
|
33
|
Esteban DJ, Hutchinson AP. Genes in the terminal regions of orthopoxvirus genomes experience adaptive molecular evolution. BMC Genomics 2011; 12:261. [PMID: 21605412 PMCID: PMC3123329 DOI: 10.1186/1471-2164-12-261] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Accepted: 05/23/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Orthopoxviruses are dsDNA viruses with large genomes, some encoding over 200 genes. Genes essential for viral replication are located in the center of the linear genome and genes encoding host response modifiers and other host interacting proteins are located in the terminal regions. The central portion of the genome is highly conserved, both in gene content and sequence, while the terminal regions are more diverse. In this study, we investigated the role of adaptive molecular evolution in poxvirus genes and the selective pressures that act on the different regions of the genome. The relative fixation rates of synonymous and non-synonymous mutations (the d(N)/d(S) ratio) are an indicator of the mechanism of evolution of sequences, and can be used to identify purifying, neutral, or diversifying selection acting on a gene. Like highly conserved residues, amino acids under diversifying selection may be functionally important. Many genes experiencing diversifying selection are involved in host-pathogen interactions, such as antigen-antibody interactions, or the "host-pathogen arms race." RESULTS We analyzed 175 gene families from orthopoxviruses for evidence of diversifying selection. 79 genes were identified as experiencing diversifying selection, 25 with high confidence. Many of these genes are located in the terminal regions of the genome and function to modify the host response to infection or are virion-associated, indicating a greater role for diversifying selection in host-interacting genes. Of the 79 genes, 20 are of unknown function, and implicating diversifying selection as an important mechanism in their evolution may help characterize their function or identify important functional residues. CONCLUSIONS We conclude that diversifying selection is an important mechanism of orthopoxvirus evolution. Diversifying selection in poxviruses may be the result of interaction with host defense mechanisms.
Collapse
Affiliation(s)
- David J Esteban
- Biology Department, Vassar College, Poughkeepsie, NY 12604, USA.
| | | |
Collapse
|
34
|
Chen TH, Lee F, Lin YL, Dekker A, Chung WB, Pan CH, Jong MH, Huang CC, Lee MC, Tsai HJ. Differentiation of foot-and-mouth disease-infected pigs from vaccinated pigs using antibody-detecting sandwich ELISA. J Vet Med Sci 2011; 73:977-84. [PMID: 21467761 DOI: 10.1292/jvms.10-0351] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The presence of serum antibodies for nonstructural proteins of the foot-and-mouth disease virus (FMDV) can differentiate FMDV-infected animals from vaccinated animals. In this study, a sandwich ELISA was developed for rapid detection of the foot-and-mouth disease (FMD) antibodies; it was based on an Escherichia coli-expressed, highly conserved region of the 3ABC nonstructural protein of the FMDV O/TW/99 strain and a monoclonal antibody derived from the expressed protein. The diagnostic sensitivity of the assay was 98.4%, and the diagnostic specificity was 100% for naïve and vaccinated pigs; the detection ability of the assay was comparable those of the PrioCHECK and UBI kits. There was 97.5, 93.4 and 66.6% agreement between the results obtained from our ELISA and those obtained from the PrioCHECK, UBI and CHEKIT kits, respectively. The kappa statistics were 0.95, 0.87 and 0.37, respectively. Moreover, antibodies for nonstructural proteins of the serotypes A, C, Asia 1, SAT 1, SAT 2 and SAT 3 were also detected in bovine sera. Furthermore, the absence of cross-reactions generated by different antibody titers against the swine vesicular disease virus and vesicular stomatitis virus (VSV) was also highlighted in this assay's specificity.
Collapse
Affiliation(s)
- Tsu-Han Chen
- Division of Hog Cholera Research, Animal Health Research Institute, 376 Chung-Cheng Road, Tamsui, New Taipei City 25158, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Gu M, Liu W, Xu L, Cao Y, Yao C, Hu S, Liu X. Positive selection in the hemagglutinin-neuraminidase gene of Newcastle disease virus and its effect on vaccine efficacy. Virol J 2011; 8:150. [PMID: 21453506 PMCID: PMC3101160 DOI: 10.1186/1743-422x-8-150] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Accepted: 03/31/2011] [Indexed: 12/24/2022] Open
Abstract
Background To investigate the relationship between the selective pressure and the sequence variation of the hemagglutinin-neuraminidase (HN) protein, we performed the positive selection analysis by estimating the ratio of non-synonymous to synonymous substitutions with 132 complete HN gene sequences of Newcastle disease viruses (NDVs) isolated in China. Results The PAML software applying a maximum likelihood method was used for the analysis and three sites (residues 266, 347 and 540) in the HN protein were identified as being under positive selection. Codon 347 was located exactly in a recognized antigenic determinant (residues 345-353) and codon 266 in a predicted linear B-cell epitope. Substitutions at codon 540 contributed to the N-linked glycosylation potential of residue 538. To further evaluate the effect of positively selected sites on the vaccine efficacy, we constructed two recombinant fowlpox viruses rFPV-JS6HN and rFPV-LaSHN, expressing the HN proteins from a genotype VII field isolate Go/JS6/05 (with A266, K347 and A540) and vaccine strain La Sota (with V266, E347 and T540), respectively. Two groups of SPF chickens, 18 each, were vaccinated with the two recombinant fowlpox viruses and challenged by Go/JS6/05 at 3 weeks post-immunization. The results showed that rFPV-JS6HN could elicit more effective immunity against the prevalent virus infection than rFPV-LaSHN in terms of reducing virus shedding. Conclusions The analysis of positively selected codons and their effect on the vaccine efficacy indicated that the selective pressure on the HN protein can induce antigenic variation, and new vaccine to control the current ND epidemics should be developed.
Collapse
Affiliation(s)
- Min Gu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China
| | | | | | | | | | | | | |
Collapse
|
36
|
Mechanisms of GII.4 norovirus evolution. Trends Microbiol 2011; 19:233-40. [PMID: 21310617 DOI: 10.1016/j.tim.2011.01.002] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 12/20/2010] [Accepted: 01/07/2011] [Indexed: 12/14/2022]
Abstract
Since the late 1990s norovirus (NoV) strains belonging to a single genotype (GII.4) have caused at least four global epidemics. To date, the higher epidemiological fitness of the GII.4 strains has been attributed to a faster rate of evolution within the virus capsid, resulting in the ability to escape herd immunity. Four key factors have been proposed to influence the rate of evolution in NoV. These include host receptor recognition, sequence space, duration of herd immunity, and replication kinetics. In this review we discuss recent advancements in our understanding of these four mechanisms in relation to GII.4 evolution.
Collapse
|
37
|
Jelokhani-Niaraki S, Esmaelizad M, Daliri M, Vaez-Torshizi R, Kamalzadeh M, Lotfi M. Sequence and phylogenetic analysis of the non-structural 3A and 3B protein-coding regions of foot-and-mouth disease virus subtype A Iran 05. J Vet Sci 2010; 11:243-7. [PMID: 20706032 PMCID: PMC2924486 DOI: 10.4142/jvs.2010.11.3.243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The A Iran 05 foot-and-mouth disease virus (FMDV) subtype was detected in Iran during 2005 and has proven to be highly virulent. This study was undertaken to focus on molecular and phylogenetic analysis of 3A and 3B coding-regions in the A Iran 05 field isolate. To assess the genetic relatedness of A Iran 05 isolate the nucleotide and predicted amino acid sequences of the 3AB region of type A FMDV isolates were compared with twenty previously described type A FMDV isolates. The phylogenetic tree based on the 672 bp 3AB gene sequences of type A FMDV from thirteen different locations clustered them into five distinct lineages. The A Iran 05 isolate clustered in lineage A along with four type A variants and was closely matched with viruses isolated in Turkey and Pakistan during 2005~2006. The number of protein sequence differences exhibited by each of the isolates revealed that A Iran 05 isolate contains three amino acid substitutions at positions 47 and 119 of 3A and 27 of the 3B coding region. The nucleotide identity between A Iran 05 and the other four isolates of lineage A was estimated to be 98%.
Collapse
Affiliation(s)
- Saber Jelokhani-Niaraki
- Department of Animal Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
38
|
Sangula AK, Belsham GJ, Muwanika VB, Heller R, Balinda SN, Masembe C, Siegismund HR. Evolutionary analysis of foot-and-mouth disease virus serotype SAT 1 isolates from east Africa suggests two independent introductions from southern Africa. BMC Evol Biol 2010; 10:371. [PMID: 21118525 PMCID: PMC3004922 DOI: 10.1186/1471-2148-10-371] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Accepted: 11/30/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In East Africa, foot-and-mouth disease virus serotype SAT 1 is responsible for occasional severe outbreaks in livestock and is known to be maintained within the buffalo populations. Little is known about the evolutionary forces underlying its epidemiology in the region. To enhance our appreciation of the epidemiological status of serotype SAT 1 virus in the region, we inferred its evolutionary and phylogeographic history by means of genealogy-based coalescent methods using 53 VP1 coding sequences covering a sampling period from 1948-2007. RESULTS The VP1 coding sequence of 11 serotype SAT 1 FMD viruses from East Africa has been determined and compared with known sequences derived from other SAT 1 viruses from sub-Saharan Africa. Purifying (negative) selection and low substitution rates characterized the SAT 1 virus isolates in East Africa. Two virus groups with probable independent introductions from southern Africa were identified from a maximum clade credibility tree. One group was exclusive to Uganda while the other was present within Kenya and Tanzania. CONCLUSIONS Our results provide a baseline characterization of the inter-regional spread of SAT 1 in sub-Saharan Africa and highlight the importance of a regional approach to trans-boundary animal disease control in order to monitor circulating strains and apply appropriate vaccines.
Collapse
Affiliation(s)
- Abraham K Sangula
- Makerere University, Institute of Environment and Natural Resources, Molecular Biology Laboratory, P, O, Box 7298, Kampala, Uganda.
| | | | | | | | | | | | | |
Collapse
|
39
|
López C, Aramburu J, Galipienso L, Soler S, Nuez F, Rubio L. Evolutionary analysis of tomato Sw-5 resistance-breaking isolates of Tomato spotted wilt virus. J Gen Virol 2010; 92:210-5. [PMID: 20881087 DOI: 10.1099/vir.0.026708-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Tomato spotted wilt virus (TSWV) causes severe economic losses in many crops worldwide and often overcomes resistant cultivars used for disease control. Comparison of nucleotide and amino acid sequences suggested that tomato resistance conferred by the gene Sw-5 can be overcome by the amino acid substitution C to Y at position 118 (C118Y) or T120N in the TSWV movement protein, NSm. Phylogenetic analysis revealed that substitution C118Y has occurred independently three times in the studied isolates by convergent evolution, whereas the substitution T120N was a unique event. Analysis of rates of non-synonymous and synonymous changes at individual codons showed that substitution C118Y was positively selected.
Collapse
Affiliation(s)
- Carmelo López
- COMAV-Universidad Politécnica de Valencia, 46022 Valencia, Spain
| | | | | | | | | | | |
Collapse
|
40
|
Le VP, Nguyen T, Park JH, Kim SM, Ko YJ, Lee HS, Nguyen VC, Mai TD, Do TH, Cho IS, Lee KN. Heterogeneity and genetic variations of serotypes O and Asia 1 foot-and-mouth disease viruses isolated in Vietnam. Vet Microbiol 2010; 145:220-9. [PMID: 20478669 DOI: 10.1016/j.vetmic.2010.04.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 04/05/2010] [Accepted: 04/09/2010] [Indexed: 11/26/2022]
Abstract
Six field foot-and-mouth disease viruses (FMDVs), including four serotype O and two serotype Asia 1 strains, were collected from endemic outbreaks in 2005, 2006, and 2007 from four different provinces in Vietnam. The viruses were isolated and genetically characterized for their complete genomic sequences. The genetic analysis based on the complete genomic coding sequences revealed that the four serotype O FMDVs were related to each other, sharing 95.2% nucleotide (nt) identity and 97.5-97.6% amino acid (aa) identity. Genetic analysis and a phylogenetic tree, based on the VP1 gene of FMDV, showed that the four present Vietnamese serotype O strains have a high level of identity with other serotype O representatives of the Mya-98 lineage of the Southeast Asian (SEA) topotype. The four viruses were all clustered into the Mya-98 lineage of the SEA topotype, sharing 92.3-95.6% nt and 93.4-96.7% aa identity. This finding of the Mya-98 lineage was different from previous reports that the Vietnamese serotype O strains belonged to the Cam-94 lineage of the SEA topotype and two other topotypes, Middle East-South Asia (ME-SA) and Cathay. For the two serotype Asia 1 FMDVs, the genetic analysis based on the complete genomic coding sequences as well as on the VP1 gene revealed that they belonged to two genogroups, IV and V. Of note, the As1/VN/QT03/2007 strain of genogroup V, isolated in 2007, was very closely related to the pandemic Asia 1 strain which caused FMD outbreaks in China (Asia1/WHN/CHA/06, FJ906802) and Mongolia (Asia1/MOG/05, EF614458) in 2005, sharing 99.0-99.3% nt and 99.5-100% aa identity. In contrast, the second strain As1/VN/LC04/2005 of genogroup IV, isolated in 2005, was closely related to all referenced Vietnamese serotype Asia 1 strains found in the GenBank databases, sharing 86.4-100% nt and 90.9-100% aa identity with each. This study is the first description of the full-length genomic sequence of Vietnamese FMDV serotypes O and Asia 1 and may provide the evidence of the concurrent circulation of different serotypes and subtypes of FMDV in recent years in Vietnam.
Collapse
Affiliation(s)
- Van Phan Le
- Foreign Animal Disease Division, National Veterinary Research and Quarantine Service, Anyang, Gyeonggi 430-757, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Kinnear M, Linde CC. Capsid gene divergence in rabbit hemorrhagic disease virus. J Gen Virol 2009; 91:174-81. [DOI: 10.1099/vir.0.014076-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
42
|
Garabed RB, Johnson WO, Thurmond MC. Analytical Epidemiology of Genomic Variation among Pan Asia Strains of Foot-and-Mouth Disease Virus. Transbound Emerg Dis 2009; 56:142-56. [DOI: 10.1111/j.1865-1682.2009.01068.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
43
|
Tully DC, Fares MA. The tale of a modern animal plague: Tracing the evolutionary history and determining the time-scale for foot and mouth disease virus. Virology 2008; 382:250-6. [DOI: 10.1016/j.virol.2008.09.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Revised: 08/17/2008] [Accepted: 09/07/2008] [Indexed: 10/21/2022]
|
44
|
Cooke JN, Westover KM. Serotype-specific differences in antigenic regions of foot-and-mouth disease virus (FMDV): A comprehensive statistical analysis. INFECTION GENETICS AND EVOLUTION 2008; 8:855-63. [DOI: 10.1016/j.meegid.2008.08.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Revised: 08/11/2008] [Accepted: 08/15/2008] [Indexed: 10/21/2022]
|
45
|
Shifts in the selection-drift balance drive the evolution and epidemiology of foot-and-mouth disease virus. J Virol 2008; 83:781-90. [PMID: 19004952 DOI: 10.1128/jvi.01500-08] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Foot-and-mouth disease virus (FMDV) is the causative agent of an acute vesicular disease affecting wild and domesticated animals. Despite the economic burden of the disease and all efforts to eradicate it, FMD outbreaks continue to emerge unexpectedly in developed and developing countries. Correlation of the mutational dynamics of the virus with its epidemiology remains unexplored. Analysis of 103 complete genomes representing the seven serotypes shows the important role that selection plays in the genomic evolution of viral isolates for serotypes. We identified selection and relaxed constraints due to genetic drift through analyses of synonymous sites. Finally, we investigated interactions between mutations that showed coevolving patterns and analyzed, based on protein structures, slightly deleterious and compensatory mutational dynamics. Specifically, we demonstrate that structurally exposed capsid proteins present a greater number of adaptive mutations and relaxed selection than nonstructural proteins. Such events have been magnified during the evolution of the southern African virus types (SATs). These shifts in selection-drift balance have generated the great antigenic and genetic diversity observed for SAT serotypes and that are responsible for epizootics on the continent of Africa. The high number of slightly deleterious and compensatory mutations in SAT serotypes in structural proteins is testament to such balance plasticity. The significant accumulation of these coevolving mutations in African serotypes supports their contribution in generating adaptive immune-escaping mutants and in establishing persistent infections. The reverse of this pattern in nonstructural proteins reveals the neutral fixation of mutations in the more widely spread and commonly studied Euro-Asiatic serotypes.
Collapse
|
46
|
Lumbsch HT, Hipp AL, Divakar PK, Blanco O, Crespo A. Accelerated evolutionary rates in tropical and oceanic parmelioid lichens (Ascomycota). BMC Evol Biol 2008; 8:257. [PMID: 18808710 PMCID: PMC2564941 DOI: 10.1186/1471-2148-8-257] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Accepted: 09/22/2008] [Indexed: 11/24/2022] Open
Abstract
Background The rate of nucleotide substitutions is not constant across the Tree of Life, and departures from a molecular clock have been commonly reported. Within parmelioid lichens, the largest group of macrolichens, large discrepancies in branch lengths between clades were found in previous studies. Using an extended taxon sampling, we test for presence of significant rate discrepancies within and between these clades and test our a priori hypothesis that such rate discrepancies may be explained by shifts in moisture regime or other environmental conditions. Results In this paper, the first statistical evidence for accelerated evolutionary rate in lichenized ascomycetes is presented. Our results give clear evidence for a faster rate of evolution in two Hypotrachyna clades that includes species occurring in tropical and oceanic habitats in comparison with clades consisting of species occurring in semi-arid and temperate habitats. Further we explore potential links between evolutionary rates and shifts in habitat by comparing alternative Ornstein-Uhlenbeck models. Conclusion Although there was only weak support for a shift at the base of a second tropical clade, where the observed nucleotide substitution rate is high, overall support for a shift in environmental conditions at cladogenesis is very strong. This suggests that speciation in some lichen clades has proceeded by dispersal into a novel environment, followed by radiation within that environment. We found moderate support for a shift in moisture regime at the base of one tropical clade and a clade occurring in semi-arid regions and a shift in minimum temperature at the base of a boreal-temperate clade.
Collapse
Affiliation(s)
- H Thorsten Lumbsch
- Departamento de Biología Vegetal II, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid 28040, Spain.
| | | | | | | | | |
Collapse
|
47
|
Pepin KM, Domsic J, McKenna R. Genomic evolution in a virus under specific selection for host recognition. INFECTION GENETICS AND EVOLUTION 2008; 8:825-34. [PMID: 18804189 DOI: 10.1016/j.meegid.2008.08.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Revised: 08/01/2008] [Accepted: 08/06/2008] [Indexed: 10/21/2022]
Abstract
Genetic variation in viral structural proteins is often explained by evolutionary escape of strong host defenses through processes such as immune evasion, host switching, and tissue tropism. An understanding of the mechanisms driving evolutionary change in virus surface proteins is key to designing effective intervention strategies to disease emergence. This study investigated the predictability of virus genomic evolution in response to highly specific differences in host receptor structure. The bacteriophage PhiX174 was evolved on three E. coli mutant hosts, each differing only by a single sugar group in the lipopolysaccharides, used for phage attachment. Large phage populations were used in order to maximize the amount of sequence space explored by mutation, and thus the potential for parallel evolution. Repeatability was assessed by genome sequencing of multiple isolates from endpoint populations and by fitness of the endpoint population relative to its ancestor. Evolutionary lines showed similar magnitudes of fitness increase between treatments. Only one mutation, occurring in the internal DNA pilot protein H, was completely repeatable, and it appeared to be a necessary stepping stone toward further adaptive change. Substitutions in the surface accessible major capsid protein F appeared to be involved in capsid stability rather than specific interactions with host receptors, suggesting that non-specific alterations to capsid structure could be an important component of adaptation to novel hosts. 33% of mutations were synonymous and showed evidence of selection on codon usage. Lastly, results supported previous findings that evolving populations of small ssDNA viruses may maintain relatively high levels of genetic variation.
Collapse
Affiliation(s)
- Kim M Pepin
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844-3051, USA.
| | | | | |
Collapse
|
48
|
Lewis-Rogers N, McClellan DA, Crandall KA. The evolution of foot-and-mouth disease virus: impacts of recombination and selection. INFECTION GENETICS AND EVOLUTION 2008; 8:786-98. [PMID: 18718559 DOI: 10.1016/j.meegid.2008.07.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Revised: 07/08/2008] [Accepted: 07/11/2008] [Indexed: 10/21/2022]
Abstract
Foot-and-mouth disease virus is an economically important animal virus that exhibits extensive genetic and antigenic heterogeneity. To examine the evolutionary forces that have influenced the population dynamics of foot-and-mouth disease virus, individual genes and the coding genomes for the Eurasian (Asia1, A, C, and O) serotypes were examined for phylogenetic relationships, recombination, genetic diversity and selection. Our analyses demonstrate that paraphyletic relationships among serotypes are not as prevalent as previously proposed and suggest that convergent evolution might be obscuring phylogenetic relationships. We provide evidence that identification of recombinant sequences and recombination breakpoint patterns among and within serotypes are heavily dependent on the level of genetic diversity and convergent characters present in a particular data set as well as the methods used to detect recombination. Here, we also investigate the impact of adaptive positive selection on the capsid proteins and the non-structural genes 2B, 2C, 3A, and 3Cpro to identify genome regions involved in genetic diversity and antigenic variation. Two different categories of positive selection at the amino acid level were examined; conservative (stabilizing) selection that maintains particular phenotypic properties of an amino acid residue and radical (destabilizing), and selection that dramatically alters the phenotype and potentially the functional and/or structural features of the protein. Approximately, 29% of residues in the capsid proteins were under positive selection. Of those, 64% were under the influence of destabilizing selection, 80% were under the influence of stabilizing selection, and 44% had phenotypic properties influenced by both selection types. The majority of residues under selection (74%) were located outside of known antigenic sites; suggestive of additional uncharacterized epitopes and genomic regions involved in antigenic drift.
Collapse
Affiliation(s)
- Nicole Lewis-Rogers
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA.
| | | | | |
Collapse
|
49
|
Dolz R, Pujols J, Ordóñez G, Porta R, Majó N. Molecular epidemiology and evolution of avian infectious bronchitis virus in Spain over a fourteen-year period. Virology 2008; 374:50-9. [PMID: 18215734 PMCID: PMC7103278 DOI: 10.1016/j.virol.2007.12.020] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2007] [Revised: 08/20/2007] [Accepted: 12/16/2007] [Indexed: 01/01/2023]
Abstract
An in-depth molecular study of infectious bronchitis viruses (IBV) with particular interest in evolutionary aspects of IBV in Spain was carried out in the present study based on the S1 gene molecular characterization of twenty-six Spanish strains isolated over a fourteen-year period. Four genotypes were identified based on S1 gene sequence analyses and phylogenetic studies. A drastic virus population shift was demonstrated along time and the novel Italy 02 serotype was shown to have displaced the previous predominant serotype 4/91 in the field. Detailed analyses of synonymous to non-synonymous ratio of the S1 gene sequences of this new serotype Italy 02 suggested positive selection pressures might have contributed to the successful establishment of Italy 02 serotype in our country. In addition, differences on the fitness abilities of new emergent genotypes were indicated. Furthermore, intergenic sequences (IGs)-like motifs within S1 gene sequences of IBV isolates were suggested to enhance the recombination abilities of certain serotypes.
Collapse
Affiliation(s)
- Roser Dolz
- Centre de Recerca en Sanitat Animal (CReSA), Esfera UAB, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
| | | | | | | | | |
Collapse
|
50
|
McCarthy AJ, Shaw MA, Goodman SJ. Pathogen evolution and disease emergence in carnivores. Proc Biol Sci 2008; 274:3165-74. [PMID: 17956850 DOI: 10.1098/rspb.2007.0884] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Emerging infectious diseases constitute some of the most pressing problems for both human and domestic animal health, and biodiversity conservation. Currently it is not clear whether the removal of past constraints on geographical distribution and transmission possibilities for pathogens alone are sufficient to give rise to novel host-pathogen combinations, or whether pathogen evolution is also generally required for establishment in novel hosts. Canine distemper virus (CDV) is a morbillivirus that is prevalent in the world dog population and poses an important conservation threat to a diverse range of carnivores. We performed an extensive phylogenetic and molecular evolution analysis on complete sequences of all CDV genes to assess the role of selection and recombination in shaping viral genetic diversity and driving the emergence of CDV in non-dog hosts. We tested the specific hypothesis that molecular adaptation at known receptor-binding sites of the haemagglutinin gene is associated with independent instances of the spread of CDV to novel non-dog hosts in the wild. This hypothesis was upheld, providing compelling evidence that repeated evolution at known functional sites (in this case residues 530 and 549 of the haemagglutinin molecule) is associated with multiple independent occurrences of disease emergence in a range of novel host species.
Collapse
Affiliation(s)
- Alex J McCarthy
- Institute of Integrative and Comparative Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| | | | | |
Collapse
|