1
|
Ogunbona OB, Baile MG, Claypool SM. Cardiomyopathy-associated mutation in the ADP/ATP carrier reveals translation-dependent regulation of cytochrome c oxidase activity. Mol Biol Cell 2018; 29:1449-1464. [PMID: 29688796 PMCID: PMC6014099 DOI: 10.1091/mbc.e17-12-0700] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/16/2018] [Accepted: 04/18/2018] [Indexed: 01/07/2023] Open
Abstract
How the absence of the major mitochondrial ADP/ATP carrier in yeast, Aac2p, results in a specific defect in cytochrome c oxidase (COX; complex IV) activity is a long-standing mystery. Aac2p physically associates with respiratory supercomplexes, which include complex IV, raising the possibility that its activity is dependent on its association with Aac2p. Here, we have leveraged a transport-dead pathogenic AAC2 point mutant to determine the basis for the reduced COX activity in the absence of Aac2p. The steady-state levels of complex IV subunits encoded by the mitochondrial genome are significantly reduced in the absence of Aac2p function, whether its association with respiratory supercomplexes is preserved or not. This diminution in COX amounts is not caused by a reduction in the mitochondrial genome copy number or the steady-state level of its transcripts, and does not reflect a defect in complex IV assembly. Instead, the absence of Aac2p activity, genetically or pharmacologically, results in an aberrant pattern of mitochondrial translation. Interestingly, compared with the complete absence of Aac2p, the complex IV-related defects are greater in mitochondria expressing the transport-inactive Aac2p mutant. Our results highlight a critical role for Aac2p transport in mitochondrial translation whose disturbance uniquely impacts cytochrome c oxidase.
Collapse
Affiliation(s)
- Oluwaseun B. Ogunbona
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2185
| | | | - Steven M. Claypool
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2185
| |
Collapse
|
2
|
De Silva D, Poliquin S, Zeng R, Zamudio-Ochoa A, Marrero N, Perez-Martinez X, Fontanesi F, Barrientos A. The DEAD-box helicase Mss116 plays distinct roles in mitochondrial ribogenesis and mRNA-specific translation. Nucleic Acids Res 2017; 45:6628-6643. [PMID: 28520979 PMCID: PMC5499750 DOI: 10.1093/nar/gkx426] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 04/27/2017] [Accepted: 05/03/2017] [Indexed: 11/21/2022] Open
Abstract
Members of the DEAD-box family are often multifunctional proteins involved in several RNA transactions. Among them, yeast Saccharomyces cerevisiae Mss116 participates in mitochondrial intron splicing and, under cold stress, also in mitochondrial transcription elongation. Here, we show that Mss116 interacts with the mitoribosome assembly factor Mrh4, is required for efficient mitoribosome biogenesis, and consequently, maintenance of the overall mitochondrial protein synthesis rate. Additionally, Mss116 is required for efficient COX1 mRNA translation initiation and elongation. Mss116 interacts with a COX1 mRNA-specific translational activator, the pentatricopeptide repeat protein Pet309. In the absence of Mss116, Pet309 is virtually absent, and although mitoribosome loading onto COX1 mRNA can occur, activation of COX1 mRNA translation is impaired. Mutations abolishing the helicase activity of Mss116 do not prevent the interaction of Mss116 with Pet309 but also do not allow COX1 mRNA translation. We propose that Pet309 acts as an adaptor protein for Mss116 action on the COX1 mRNA 5΄-UTR to promote efficient Cox1 synthesis. Overall, we conclude that the different functions of Mss116 in the biogenesis and functioning of the mitochondrial translation machinery depend on Mss116 interplay with its protein cofactors.
Collapse
Affiliation(s)
- Dasmanthie De Silva
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Sarah Poliquin
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Rui Zeng
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Angelica Zamudio-Ochoa
- Departamento de Genetica Molecular, Instituto de Fisiología Celular, Universidad Nacional Autonoma de Mexico, Mexico City 04510, Mexico
| | - Natalie Marrero
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Xochitl Perez-Martinez
- Departamento de Genetica Molecular, Instituto de Fisiología Celular, Universidad Nacional Autonoma de Mexico, Mexico City 04510, Mexico
| | - Flavia Fontanesi
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Antoni Barrientos
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
3
|
Zamudio-Ochoa A, Camacho-Villasana Y, García-Guerrero AE, Pérez-Martínez X. The Pet309 pentatricopeptide repeat motifs mediate efficient binding to the mitochondrial COX1 transcript in yeast. RNA Biol 2014; 11:953-67. [PMID: 25181249 PMCID: PMC4179968 DOI: 10.4161/rna.29780] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Mitochondrial synthesis of Cox1, the largest subunit of the cytochrome c oxidase complex, is controlled by Mss51 and Pet309, two mRNA-specific translational activators that act via the COX1 mRNA 5′-UTR through an unknown mechanism. Pet309 belongs to the pentatricopeptide repeat (PPR) protein family, which is involved in RNA metabolism in mitochondria and chloroplasts, and its sequence predicts at least 12 PPR motifs in the central portion of the protein. Deletion of these motifs selectively disrupted translation but not accumulation of the COX1 mRNA. We used RNA coimmunoprecipitation assays to show that Pet309 interacts with the COX1 mRNA in vivo and that this association is present before processing of the COX1 mRNA from the ATP8/6 polycistronic mRNA. This association was not affected by deletion of 8 of the PPR motifs but was undetectable after deletion of the entire 12-PPR region. However, interaction of the Pet309 protein lacking 12 PPR motifs with the COX1 mRNA was detected after overexpression of the mutated form of the protein, suggesting that deletion of this region decreased the binding affinity for the COX1 mRNA without abolishing it entirely. Moreover, binding of Pet309 to the COX1 mRNA was affected by deletion of Mss51. This work demonstrates an in vivo physical interaction between a yeast mitochondrial translational activator and its target mRNA and shows the cooperativity of the PPR domains of Pet309 in interaction with the COX1 mRNA.
Collapse
Affiliation(s)
- Angélica Zamudio-Ochoa
- Departamento de Genética Molecular; Instituto de Fisiología Celular; Universidad Nacional Autónoma de México; México
| | - Yolanda Camacho-Villasana
- Departamento de Genética Molecular; Instituto de Fisiología Celular; Universidad Nacional Autónoma de México; México
| | - Aldo E García-Guerrero
- Departamento de Genética Molecular; Instituto de Fisiología Celular; Universidad Nacional Autónoma de México; México
| | - Xochitl Pérez-Martínez
- Departamento de Genética Molecular; Instituto de Fisiología Celular; Universidad Nacional Autónoma de México; México
| |
Collapse
|
4
|
Daoud R, Forget L, Lang BF. Yeast mitochondrial RNase P, RNase Z and the RNA degradosome are part of a stable supercomplex. Nucleic Acids Res 2011; 40:1728-36. [PMID: 22034500 PMCID: PMC3287206 DOI: 10.1093/nar/gkr941] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Initial steps in the synthesis of functional tRNAs require 5'- and 3'-processing of precursor tRNAs (pre-tRNAs), which in yeast mitochondria are achieved by two endonucleases, RNase P and RNase Z. In this study, using a combination of detergent-free Blue Native Gel Electrophoresis, proteomics and in vitro testing of pre-tRNA maturation, we reveal the physical association of these plus other mitochondrial activities in a large, stable complex of 136 proteins. It contains a total of seven proteins involved in RNA processing including RNase P and RNase Z, five out of six subunits of the mitochondrial RNA degradosome, components of the fatty acid synthesis pathway, translation, metabolism and protein folding. At the RNA level, there are the small and large rRNA subunits and RNase P RNA. Surprisingly, this complex is absent in an oar1Δ deletion mutant of the type II fatty acid synthesis pathway, supporting a recently published functional link between pre-tRNA processing and the FAS II pathway--apparently by integration into a large complex as we demonstrate here. Finally, the question of mt-RNase P localization within mitochondria was investigated, by GFP-tracing of a known protein subunit (Rpm2p). We find that about equal fractions of RNase P are soluble versus membrane-attached.
Collapse
Affiliation(s)
- Rachid Daoud
- Robert-Cedergren Centre for Bioinformatics and Genomics, Department of Biochemistry, Université de Montréal, 2900 Edouard-Montpetit, Montreal, Quebec H3T 1J4, Canada
| | | | | |
Collapse
|
5
|
Stribinskis V, Ramos KS. Rpm2p, a protein subunit of mitochondrial RNase P, physically and genetically interacts with cytoplasmic processing bodies. Nucleic Acids Res 2007; 35:1301-11. [PMID: 17267405 PMCID: PMC1851656 DOI: 10.1093/nar/gkm023] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The RPM2 gene of Saccharomyces cerevisiae codes for a protein subunit of mitochondrial RNase P and has another unknown essential function. We previously demonstrated that Rpm2p localizes to the nucleus and acts as a transcriptional activator. Rpm2p influences the level of mRNAs that encode components of the mitochondrial import apparatus and essential mitochondrial chaperones. Evidence is presented here that Rpm2p interacts with Dcp2p, a subunit of mRNA decapping enzyme in the two-hybrid assay, and is enriched in cytoplasmic P bodies, the sites of mRNA degradation and storage in yeast and mammalian cells. When overexpressed, GFP-Rpm2p does not impact the number and size of P bodies; however, it prevents their disappearance when translation elongation is inhibited by cycloheximide. Proteasome mutants, ump1-2 and pre4-2, that bypass essential Rpm2p function, also stabilize P bodies. The stabilization of P bodies by Rpm2p may occur through reduced protein degradation since GFP-Rpm2p expressing cells have lower levels of ubiquitin. Genetic analysis revealed that overexpression of Dhh1p (a DEAD box helicase localized to P bodies) suppresses temperature-sensitive growth of the rpm2-100 mutant. Overexpression of Pab1p (a poly (A)-binding protein) also suppresses rpm2-100, suggesting that Rpm2p functions in at least two aspects of mRNA metabolism. The results presented here, and the transcriptional activation function demonstrated earlier, implicate Rpm2p as a coordinator of transcription and mRNA storage/decay in P bodies.
Collapse
Affiliation(s)
- Vilius Stribinskis
- Department of Biochemistry and Molecular Biology and Center for Genetics and Molecular Medicine, School of Medicine, University of Louisville, Louisville, KY, USA.
| | | |
Collapse
|
6
|
Abstract
Ribonuclease P (RNase P) is an ancient and essential endonuclease that catalyses the cleavage of the 5' leader sequence from precursor tRNAs (pre-tRNAs). The enzyme is one of only two ribozymes which can be found in all kingdoms of life (Bacteria, Archaea, and Eukarya). Most forms of RNase P are ribonucleoproteins; the bacterial enzyme possesses a single catalytic RNA and one small protein. However, in archaea and eukarya the enzyme has evolved an increasingly more complex protein composition, whilst retaining a structurally related RNA subunit. The reasons for this additional complexity are not currently understood. Furthermore, the eukaryotic RNase P has evolved into several different enzymes including a nuclear activity, organellar activities, and the evolution of a distinct but closely related enzyme, RNase MRP, which has different substrate specificities, primarily involved in ribosomal RNA biogenesis. Here we examine the relationship between the bacterial and archaeal RNase P with the eukaryotic enzyme, and summarize recent progress in characterizing the archaeal enzyme. We review current information regarding the nuclear RNase P and RNase MRP enzymes in the eukaryotes, focusing on the relationship between these enzymes by examining their composition, structure and functions.
Collapse
Affiliation(s)
- Scott C Walker
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-0606, USA
| | | |
Collapse
|
7
|
Stribinskis V, Heyman HC, Ellis SR, Steffen MC, Martin NC. Rpm2p, a component of yeast mitochondrial RNase P, acts as a transcriptional activator in the nucleus. Mol Cell Biol 2005; 25:6546-58. [PMID: 16024791 PMCID: PMC1190346 DOI: 10.1128/mcb.25.15.6546-6558.2005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rpm2p, a protein subunit of yeast mitochondrial RNase P, has another function that is essential in cells lacking the wild-type mitochondrial genome. This function does not require the mitochondrial leader sequence and appears to affect transcription of nuclear genes. Rpm2p expressed as a fusion protein with green fluorescent protein localizes to the nucleus and activates transcription from promoters containing lexA-binding sites when fused to a heterologous DNA binding domain, lexA. The transcriptional activation region of Rpm2p contains two leucine zippers that are required for transcriptional activation and are conserved in the distantly related yeast Candida glabrata. The presence of a mitochondrial leader sequence does not prevent a portion of Rpm2p from locating to the nucleus, and several observations suggest that the nuclear location and transcriptional activation ability of Rpm2p are physiologically significant. The ability of RPM2 alleles to suppress tom40-3, a temperature-sensitive mutant of a component of the mitochondrial import apparatus, correlates with their ability to transactivate the reporter genes with lexA-binding sites. In cells lacking mitochondrial DNA, Rpm2p influences the levels of TOM40, TOM6, TOM20, TOM22, and TOM37 mRNAs, which encode components of the mitochondrial import apparatus, but not that of TOM70 mRNA. It also affects HSP60 and HSP10 mRNAs that encode essential mitochondrial chaperones. Rpm2p also increases the level of Tom40p, as well as Hsp60p, but not Atp2p, suggesting that some, but not all, nucleus-encoded mitochondrial components are affected.
Collapse
Affiliation(s)
- Vilius Stribinskis
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Louisville, Louisville, KY 40292, USA
| | | | | | | | | |
Collapse
|
8
|
Vaena de Avalos S, Su X, Zhang M, Okamoto Y, Dowhan W, Hannun YA. The phosphatidylglycerol/cardiolipin biosynthetic pathway is required for the activation of inositol phosphosphingolipid phospholipase C, Isc1p, during growth of Saccharomyces cerevisiae. J Biol Chem 2004; 280:7170-7. [PMID: 15611094 DOI: 10.1074/jbc.m411058200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Inositolsphingolipid phospholipase C (Isc1p) is the Saccharomyces cerevisiae member of the extended family of neutral sphingomyelinases that regulates the generation of bioactive ceramides. Recently, we reported that Isc1p is post-translationally activated in the post-diauxic phase of growth and that it localizes to mitochondria (Vaena de Avalos, S., Okamoto, Y., and Hannun, Y. A. (2004) J. Biol. Chem. 279, 11537-11545). In this study the in vivo mechanisms of activation and function of Isc1p were investigated. Deletion of ISC1 resulted in markedly lower growth in non-fermentable carbon sources. Interestingly, the growth defect of isc1Delta strains resembled that of pgs1Delta strains, lacking the committed step in the synthesis of phosphatidylglycerol (PG) and cardiolipin (CL), which were shown to activate Isc1p in vitro. Therefore, the role of Pgs1p in activation of Isc1p in vivo was investigated. The results showed that in the pgs1Delta strain, the growth-dependent activation of Isc1p was impaired as was the ISC1-dependent increase in the levels of phytoceramide during the post-diauxic phase, demonstrating that the activation of Isc1p in vivo is dependent on PGS1 and on the mitochondrial phospholipids PG/CL. Mechanistically, loss of Isc1p resulted in lower levels of mitochondrial cytochrome c oxidase subunits cox3p and cox4p, previously established targets of both PG and CL (Ostrander, D. B., Zhang, M., Mileykovskaya, E., Rho, M., and Dowhan, W. (2001) J. Biol. Chem. 276, 25262-25272), thus suggesting that Isc1p mediates at least some functions downstream of PG/CL. This study provides the first evidence for the mechanism of in vivo activation and function of Isc1p. A model with endogenous PG/CL as the in vivo activator of Isc1p is proposed.
Collapse
Affiliation(s)
- Silvia Vaena de Avalos
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | | | |
Collapse
|
9
|
Towpik J, Chaciñska A, Ciesla M, Ginalski K, Boguta M. Mutations in the yeast mrf1 gene encoding mitochondrial release factor inhibit translation on mitochondrial ribosomes. J Biol Chem 2004; 279:14096-103. [PMID: 14734569 DOI: 10.1074/jbc.m312856200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although the control of mitochondrial translation in the yeast Saccharomyces cerevisiae has been studied extensively, the mechanism of termination remains obscure. Ten mutations isolated in a genetic screen for read-through of premature stop codons in mitochondrial genes were localized in the chromosomal gene encoding the mitochondrial release factor mRF1. The mrf1-13 and mrf1-780 mutant genes, in contrast to other alleles, caused a non-respiratory phenotype that correlated with decreased expression of mitochondrial genes as well as a reporter ARG8(m) gene inserted into mitochondrial DNA. The steady-state levels of several mitochondrially encoded proteins, but not their mRNAs, were dramatically decreased in mrf1-13 and mrf1-780 cells. Structural models of mRF1 were constructed, allowing localization of residues substituted in the mrf1 mutants and offering an insight into the possible mechanism by which these mutations change the mitochondrial translation termination fidelity. Inhibition of mitochondrial translation in mrf1-13 and mrf1-780 correlated with the three-dimensional localization of the mutated residues close to the PST motif presumably involved in the recognition of stop codons in mitochondrial mRNA.
Collapse
Affiliation(s)
- Joanna Towpik
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawiñskiego 5A, 02-106 Warsaw, Poland
| | | | | | | | | |
Collapse
|
10
|
Seif ER, Forget L, Martin NC, Lang BF. Mitochondrial RNase P RNAs in ascomycete fungi: lineage-specific variations in RNA secondary structure. RNA (NEW YORK, N.Y.) 2003; 9:1073-83. [PMID: 12923256 PMCID: PMC1370472 DOI: 10.1261/rna.5880403] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2003] [Accepted: 06/18/2003] [Indexed: 05/19/2023]
Abstract
The RNA subunit of mitochondrial RNase P (mtP-RNA) is encoded by a mitochondrial gene (rnpB) in several ascomycete fungi and in the protists Reclinomonas americana and Nephroselmis olivacea. By searching for universally conserved structural elements, we have identified previously unknown rnpB genes in the mitochondrial DNAs (mtDNAs) of two fission yeasts, Schizosaccharomyces pombe and Schizosaccharomyces octosporus; in the budding yeast Pichia canadensis; and in the archiascomycete Taphrina deformans. The expression of mtP-RNAs of the predicted size was experimentally confirmed in the two fission yeasts, and their precise 5' and 3' ends were determined by sequencing of cDNAs generated from circularized mtP-RNAs. Comparative RNA secondary structure modeling shows that in contrast to mtP-RNAs of the two protists R. americana and N. olivacea, those of ascomycete fungi all have highly reduced secondary structures. In certain budding yeasts, such as Saccharomycopsis fibuligera, we find only the two most conserved pairings, P1 and P4. A P18 pairing is conserved in Saccharomyces cerevisiae and its close relatives, whereas nearly half of the minimum bacterial consensus structure is retained in the RNAs of fission yeasts, Aspergillus nidulans and Taphrina deformans. The evolutionary implications of the reduction of mtP-RNA structures in ascomycetes will be discussed.
Collapse
Affiliation(s)
- Elias R Seif
- Program in Evolutionary Biology, Canadian Institute for Advanced Research, Département de Biochimie, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | | | | | | |
Collapse
|
11
|
Senapin S, Clark-Walker GD, Chen XJ, Séraphin B, Daugeron MC. RRP20, a component of the 90S preribosome, is required for pre-18S rRNA processing in Saccharomyces cerevisiae. Nucleic Acids Res 2003; 31:2524-33. [PMID: 12736301 PMCID: PMC156047 DOI: 10.1093/nar/gkg366] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A strain of Saccharomyces cerevisiae, defective in small subunit ribosomal RNA processing, has a mutation in YOR145c ORF that converts Gly235 to Asp. Yor145c is a nucleolar protein required for cell viability and has been reported recently to be present in 90S pre-ribosomal particles. The Gly235Asp mutation in YOR145c is found in a KH-type RNA-binding domain and causes a marked deficiency in 18S rRNA production. Detailed studies by northern blotting and primer extension analyses show that the mutant strain impairs the early pre-rRNA processing cleavage essentially at sites A1 and A2, leading to accumulation of a 22S dead-end processing product that is found in only a few rRNA processing mutants. Furthermore, U3, U14, snR10 and snR30 snoRNAs, involved in early pre-rRNA cleavages, are not destabilized by the YOR145c mutation. As the protein encoded by YOR145c is found in pre-ribosomal particles and the mutant strain is defective in ribosomal RNA processing, we have renamed it as RRP20.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Conserved Sequence/genetics
- DNA, Fungal/chemistry
- DNA, Fungal/genetics
- Genetic Complementation Test
- Humans
- Molecular Sequence Data
- Mutation
- Nuclear Proteins/metabolism
- RNA Precursors/genetics
- RNA Precursors/metabolism
- RNA Processing, Post-Transcriptional
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- RNA, Ribosomal, 18S/genetics
- RNA, Ribosomal, 18S/metabolism
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Ribosomal Proteins/genetics
- Ribosomal Proteins/metabolism
- Ribosomes/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/growth & development
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae Proteins/metabolism
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Saengchan Senapin
- Molecular Genetics and Evolution Group, Research School of Biological Sciences, The Australian National University, GPO Box 475, Canberra ACT 2601, Australia
| | | | | | | | | |
Collapse
|
12
|
Rehling P, Pfanner N, Meisinger C. Insertion of hydrophobic membrane proteins into the inner mitochondrial membrane--a guided tour. J Mol Biol 2003; 326:639-57. [PMID: 12581629 DOI: 10.1016/s0022-2836(02)01440-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Only a few mitochondrial proteins are encoded by the organellar genome. The majority of mitochondrial proteins are nuclear encoded and thus have to be transported into the organelle from the cytosol. Within the mitochondrion proteins have to be sorted into one of the four sub-compartments: the outer or inner membranes, the intermembrane space or the matrix. These processes are mediated by complex protein machineries within the different compartments that act alone or in concert with each other. The translocation machinery of the outer membrane is formed by a multi-subunit protein complex (TOM complex), that is built up by signal receptors and the general import pore (GIP). The inner membrane houses two multi-subunit protein complexes that each handles special subsets of mitochondrial proteins on their way to their final destination. According to their primary function these two complexes have been termed the pre-sequence translocase (or TIM23 complex) and the protein insertion complex (or TIM22 complex). The identification of components of these complexes and the analysis of the molecular mechanisms underlying their function are currently an exciting and fast developing field of molecular cell biology.
Collapse
Affiliation(s)
- Peter Rehling
- Institut für Biochemie und Molekularbiologie, Universität Freiburg, Hermann-Herder-Str. 7, D-79104 Freiburg, Germany.
| | | | | |
Collapse
|
13
|
Jarrous N. Human ribonuclease P: subunits, function, and intranuclear localization. RNA (NEW YORK, N.Y.) 2002; 8:1-7. [PMID: 11871657 PMCID: PMC1370226 DOI: 10.1017/s1355838202011184] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Catalytic complexes of nuclear ribonuclease P (RNase P) ribonucleoproteins are composed of several protein subunits that appear to have specific roles in enzyme function in tRNA processing. This review describes recent progress made in the characterization of human RNase P, its relationship with the ribosomal RNA processing ribonucleoprotein RNase MRP, and the unexpected evolutionary conservation of its subunits. A new model for the biosynthesis of human RNase P is presented, in which this process is dynamic, transcription-dependent, and implicates functionally distinct nuclear compartments in tRNA biogenesis.
Collapse
Affiliation(s)
- Nayef Jarrous
- Department of Molecular Biology, The Hebrew University-Hadassah Medical School, Jerusalem, Israel.
| |
Collapse
|
14
|
Current awareness on yeast. Yeast 2001; 18:1357-64. [PMID: 11571760 DOI: 10.1002/yea.690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
15
|
Stribinskis V, Gao GJ, Sulo P, Ellis SR, Martin NC. Rpm2p: separate domains promote tRNA and Rpm1r maturation in Saccharomyces cerevisiae mitochondria. Nucleic Acids Res 2001; 29:3631-7. [PMID: 11522833 PMCID: PMC55890 DOI: 10.1093/nar/29.17.3631] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Rpm2p is a protein subunit of yeast mitochondrial RNase P and is also required for the maturation of Rpm1r, the mitochondrially-encoded RNA subunit of the enzyme. Previous work demonstrated that an insertional disruption of RPM2, which produces the C-terminally truncated protein Rpm2-DeltaCp, supports growth on glucose but cells lose some or all of their mitochondrial genome and become petite. These petites, even if they retain the RPM1 locus, lose their ability to process the 5'-ends of mitochondrial tRNA. We report here that if strains containing the truncated RPM2 allele are created and maintained on respiratory carbon sources they have wild-type mitochondrial genomes, and a significant portion of tRNA transcripts are processed. In contrast, precursor Rpm1r transcripts accumulate and mature Rpm1r is not made. These data show that one function of the deleted C-terminal region is in the maturation of Rpm1r, and that this region and mature Rpm1r are not absolutely required for RNase P activity. Finally, we demonstrate that full activity can be restored if the N-terminal and C-terminal domains of Rpm2p are supplied in trans.
Collapse
Affiliation(s)
- V Stribinskis
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Louisville, Health Sciences Center, Louisville, KY 40292, USA
| | | | | | | | | |
Collapse
|