1
|
Sarkar A, S R A, K V BR. Characterization of alkaline protease enzyme produced from marine yeast Candida orthopsilosis AKB-1 and its applications. Folia Microbiol (Praha) 2024:10.1007/s12223-024-01216-6. [PMID: 39467987 DOI: 10.1007/s12223-024-01216-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 10/22/2024] [Indexed: 10/30/2024]
Abstract
The present study has undertaken the isolation of marine yeasts from mangrove sediment samples and their ability to produce alkaline protease enzymes. A total of 14 yeast isolates were recovered on yeast-malt agar (YMA) and yeast extract peptone dextrose (YEPD) agar medium. After screening for proteolytic activity on skim milk agar, marine yeast isolate, AKB-1 exhibited a hydrolysis zone of 18 mm. Optimal conditions for the enzyme production from yeast isolate AKB-1 were at 30 °C, pH 8, fructose as carbon source, potassium nitrate as nitrogen source, and 25% saline concentration. Under the optimal conditions, the protease enzyme activity of the isolate AKB-1 was observed to be 978 IU/mL. The structural and functional analysis was carried out through FTIR and HPLC analysis for the extracted protease enzyme. Furthermore, the enzyme produced was partially purified by solvent extraction using ethyl acetate and ammonium sulfate precipitation (3.4-fold) followed by dialysis (56.8-fold). The molecular weight of the purified enzyme was observed to be around 60 kDa using SDS-PAGE. The extracted protein showed good antibacterial activity against six different clinical bacterial pathogens and the highest against Bacillus cereus (16 ± 0.5 mm). The extracted protease enzyme was revealed to remove blood stains from cloth within 20 min of application similar to the commercial detergent. The marine yeast isolate was further identified as Candida orthopsilosis AKB-1 (Accession number KY348766) through 18S rRNA sequencing, and a phylogenetic tree was generated.
Collapse
Affiliation(s)
- Anwesha Sarkar
- Marine Biotechnology Laboratory, Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Anjukrishna S R
- Marine Biotechnology Laboratory, Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Bhaskara Rao K V
- Marine Biotechnology Laboratory, Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
2
|
Zhang X, Yang Y, Liu L, Sui X, Bermudez RS, Wang L, He W, Xu H. Insights into the efficient degradation mechanism of extracellular proteases mediated by Purpureocillium lilacinum. Front Microbiol 2024; 15:1404439. [PMID: 39040909 PMCID: PMC11260826 DOI: 10.3389/fmicb.2024.1404439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/17/2024] [Indexed: 07/24/2024] Open
Abstract
Protease secretion is crucial for degrading nematode cuticles using nematophagous fungus Purpureocillium lilacinum, but the secretion pattern of protease remains poorly understood. This study aimed to explore the degradation mechanism of proteases by investigating the characteristics of protease secretion under various carbon and nitrogen sources, and different carbon to nitrogen (C:N) ratios in P. lilacinum. The results showed that corn flour as a carbon source and yeast extract as a nitrogen source specifically induced protease secretion in P. lilacinum. P. lilacinum produced significant amounts of gelatinase and casein enzyme at C:N ratios of 10:1, 20:1, and 40:1, indicating that higher C:N ratios were more beneficial for secreting extracellular proteases. Proteomic analysis revealed 14 proteases, including 4 S8 serine endopeptidases and one M28 aminopeptidase. Among four S8 serine peptidases, Alp1 exhibited a high secretion level at C:N ratio less than 5:1, whereas PR1C, PR1D, and P32 displayed higher secretion levels at higher C:N ratios. In addition, the transcription levels of GATA transcription factors were investigated, revealing that Asd-4, A0A179G170, and A0A179HGL4 were more prevalent at a C:N ratio of 40:1. In contrast, the transcription levels of SREP, AreA, and NsdD were higher at lower C:N ratios. The putative regulatory profile of extracellular protease production in P. lilacinum, induced by different C:N ratios, was analyzed. The findings offered insights into the complexity of protease production and aided in the hydrolytic degradation of nematode cuticles.
Collapse
Affiliation(s)
- Xiujun Zhang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Yuhong Yang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Li Liu
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Xin Sui
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | | | - Lushan Wang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Wenxing He
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Huilian Xu
- School of Biological Science and Technology, University of Jinan, Jinan, China
| |
Collapse
|
3
|
Molecular Identification and Biochemical Characterization of Novel Marine Yeast Strains with Potential Application in Industrial Biotechnology. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8100538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cell-based agriculture is an emerging and attractive alternative to produce various food ingredients. In this study, five strains of marine yeast were isolated, molecularly identified and biochemically characterized. Molecular identification was realized by sequencing the DNA ITS1 and D1/D2 region, and sequences were registered in GenBank as Yarrowia lipolytica YlTun15, Rhodotorula mucilaginosa RmTun15, Candida tenuis CtTun15, Debaryomyces hansenii DhTun2015 and Trichosporon asahii TaTun15. Yeasts showed protein content varying from 26% (YlTun15) to 40% (CtTun15 and DhTun2015), and essential amino acids ranging from 38.1 to 64.4% of the total AAs (CtTun15-YlTun15, respectively). Lipid content varied from 11.15 to 37.57% with substantial amount of PUFA (>12% in RmTun15). All species had low levels of Na (<0.15 mg/100 g) but are a good source of Ca and K. Yeast cytotoxic effect was investigated against human embryonic kidney cells (HEK 293); results showed improved cell viability with all added strains, indicating safety of the strains used. Based on thorough literature investigation and yeast composition, the five identified strains could be classified not only as oleaginous yeasts but also as single cell protein (SCP) (DhTun2015 and CtTun15) and single cell oil (SCO) (RmTun15, YlTun15 and TaTun15) producers; and therefore, they represent a source of alternative ingredients for food, feed and other sectors.
Collapse
|
4
|
Delfau-Bonnet G, Imatoukene N, Clément T, Lopez M, Allais F, Hantson AL. Evaluation of the Potential of Lipid-Extracted Chlorella vulgaris Residue for Yarrowia lipolytica Growth at Different pH Levels. Mar Drugs 2022; 20:md20040264. [PMID: 35447937 PMCID: PMC9024751 DOI: 10.3390/md20040264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/25/2022] [Accepted: 04/11/2022] [Indexed: 11/16/2022] Open
Abstract
Projections show that the cultivation of microalgae will extend to the production of bio-based compounds, such as biofuels, cosmetics, and medicines. This will generate co-products or residues that will need to be valorized to reduce the environmental impact and the cost of the process. This study explored the ability of lipid-extracted Chlorella vulgaris residue as a sole carbon and nitrogen source for growing oleaginous yeasts without any pretreatment. Both wild-type Yarrowia lipolytica W29 and mutant JMY3501 (which was designed to accumulate more lipids without their remobilization or degradation) showed a similar growth rate of 0.28 h−1 at different pH levels (3.5, 5.5, and 7.5). However, the W29 cell growth had the best cell number on microalgal residue at a pH of 7.5, while three times fewer cells were produced at all pH levels when JMY3501 was grown on microalgal residue. The JMY3501 growth curves were similar at pH 3.5, 5.5, and 7.5, while the fatty-acid composition differed significantly, with an accumulation of α-linolenic acid on microalgal residue at a pH of 7.5. Our results demonstrate the potential valorization of Chlorella vulgaris residue for Yarrowia lipolytica growth and the positive effect of a pH of 7.5 on the fatty acid profile.
Collapse
Affiliation(s)
- Guillaume Delfau-Bonnet
- Chemical and Biochemical Process Engineering Unit, Faculty of Engineering, University of Mons, 7000 Mons, Belgium;
- Unite Recherche et Developpement Agro-Biotechnologies Industrielles (URD ABI), Centre Europeen de Biotechnologie et Bieconomie (CEBB), AgroParisTech, 51110 Pomacle, France; (N.I.); (T.C.); (M.L.); (F.A.)
| | - Nabila Imatoukene
- Unite Recherche et Developpement Agro-Biotechnologies Industrielles (URD ABI), Centre Europeen de Biotechnologie et Bieconomie (CEBB), AgroParisTech, 51110 Pomacle, France; (N.I.); (T.C.); (M.L.); (F.A.)
| | - Tiphaine Clément
- Unite Recherche et Developpement Agro-Biotechnologies Industrielles (URD ABI), Centre Europeen de Biotechnologie et Bieconomie (CEBB), AgroParisTech, 51110 Pomacle, France; (N.I.); (T.C.); (M.L.); (F.A.)
| | - Michel Lopez
- Unite Recherche et Developpement Agro-Biotechnologies Industrielles (URD ABI), Centre Europeen de Biotechnologie et Bieconomie (CEBB), AgroParisTech, 51110 Pomacle, France; (N.I.); (T.C.); (M.L.); (F.A.)
| | - Florent Allais
- Unite Recherche et Developpement Agro-Biotechnologies Industrielles (URD ABI), Centre Europeen de Biotechnologie et Bieconomie (CEBB), AgroParisTech, 51110 Pomacle, France; (N.I.); (T.C.); (M.L.); (F.A.)
| | - Anne-Lise Hantson
- Chemical and Biochemical Process Engineering Unit, Faculty of Engineering, University of Mons, 7000 Mons, Belgium;
- Correspondence: ; Tel.: +32-65374419
| |
Collapse
|
5
|
Liu J, Zhang X, Liu G, Zhao G, Fang X, Song X. A Cumulative Effect by Multiple-Gene Knockout Strategy Leads to a Significant Increase in the Production of Sophorolipids in Starmerella Bombicola CGMCC 1576. Front Bioeng Biotechnol 2022; 10:818445. [PMID: 35356780 PMCID: PMC8959766 DOI: 10.3389/fbioe.2022.818445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/16/2022] [Indexed: 11/13/2022] Open
Abstract
Sophorolipids (SLs), an important biosurfactant produced by S. bombicola, were one of the most potential substitutes for chemical surfactants. Few reports on the transcriptional regulation of SLs synthesis and the engineered strains with high-yield SLs were available. In this study, a Rim9-like protein (Rlp) and three transcription factors (ztf1, leu3, gcl) were mined and analyzed, and a progressive enhancement of SLs production was achieved through cumulative knockouts of three genes. The sophorolipid production of ΔrlpΔleu3Δztf1 reached 97.44 g/L, increased by 50.51% than that of the wild-type strain. Compared with the wild-type strain, the flow of glucose to SLs synthesis pathways was increased, and the synthesis of branched-chain amino acids was reduced in ΔrlpΔleu3Δztf1. The amount of UDP-glucose, the substrate for two glycosyltransferases, also increased, and the expression level of the key genes sble and UGPase for SLs synthesis increased by 2.2 times, respectively. The multiple-gene knockout strategy was proved to be highly effective to construct the engineered strain with high-yield SLs production, and this strain was a superior strain for industrial fermentation of SLs and reduced SLs production costs.
Collapse
Affiliation(s)
- Jun Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xinyu Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Guodong Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Guoqin Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xiaoran Fang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xin Song
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- National Glycoengineering Research Center, Shandong University, Qingdao, China
- *Correspondence: Xin Song,
| |
Collapse
|
6
|
Lorrine OE, Raja Abd. Rahman RNZ, Tan JS, Raja Khairuddin RF, Salleh AB, Oslan SN. Determination of Putative Vacuolar Proteases, PEP4 and PRB1 in a Novel Yeast Expression Host Meyerozyma guilliermondii Strain SO Using Bioinformatics Tools. PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY 2022. [DOI: 10.47836/pjst.30.1.42] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Meyerozyma guilliermondii strain SO, a newly isolated yeast species from spoilt orange, has been used as a host to express the recombinant proteins using methylotrophic yeast promoters. However, as a novel yeast expression system, the vacuolar proteases of this yeast have not been determined, which may have contributed to the low level of heterologous protein secretions. Thus, this study aimed to determine intra- and extracellular proteolytic activity and identify the putative vacuolar proteases using bioinformatics techniques. A clear zone was observed from the nutrient agar skimmed milk screening plate. Proteolytic activity of 117.30 U/ml and 75 U/ml were obtained after 72 h of cultivation for both extracellular and intracellular proteins, respectively. Next, the Hidden Markov model (HMM) was used to detect the presence of the vacuolar proteases (PEP4 and PRB1) from the strain SO proteome. Aspartyl protease (PEP4) with 97.55% identity to Meyerozyma sp. JA9 and a serine protease (PRB1) with 70.91% identity to Candida albicans were revealed. The homology with other yeast vacuolar proteases was confirmed via evolutionary analysis. PROSPER tool prediction of cleavage sites postulated that PEP4 and PRB1 might have caused proteolysis of heterologous proteins in strain SO. In conclusion, two putative vacuolar proteases (PEP4 and PRB1) were successfully identified in strain SO. Further characterization can be done to understand their specific properties, and their effects on heterologous protein expression can be conducted via genome editing.
Collapse
|
7
|
Farh MEA, Abdellaoui N, Seo JA. pH Changes Have a Profound Effect on Gene Expression, Hydrolytic Enzyme Production, and Dimorphism in Saccharomycopsis fibuligera. Front Microbiol 2021; 12:672661. [PMID: 34248880 PMCID: PMC8265565 DOI: 10.3389/fmicb.2021.672661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/25/2021] [Indexed: 11/21/2022] Open
Abstract
Saccharomycopsis fibuligera is an amylolytic yeast that plays an important role within nuruk (a traditional Korean fermentation starter) used for the production of makgeolli (Korean rice wine), which is characterized by high acidity. However, the effect of pH change (neutral to acidic) on the yeast cell to hyphal transition and carbohydrate-hydrolyzing enzyme activities for S. fibuligera has not been investigated yet. In this study, S. fibuligera strains were cultured under the different pH conditions, and the effect on the enzyme production and gene expression were investigated. An acidic pH induced a hyphal transition from yeast cell of S. fibuligera KPH12 and the hybrid strain KJJ81. In addition, both strains showed a gradual decrease in the ability to degrade starch and cellulose as the pH went down. Furthermore, a transcriptome analysis demonstrated that the pH decline caused global expression changes in genes, which were classified into five clusters. Among the differentially expressed genes (DEGs) under acidic pH, the downregulated genes were involved in protein synthesis, carbon metabolism, and RIM101 and cAMP-PKA signaling transduction pathways for the yeast-hyphal transition. A decrease in pH induced a dimorphic lifestyle switch from yeast cell formation to hyphal growth in S. fibuligera and caused a decrease in carbohydrate hydrolyzing enzyme production, as well as marked changes in the expression of genes related to enzyme production and pH adaptation. This study will help to elucidate the mechanism of adaptation of S. fibuligera to acidification that occur during the fermentation process of makgeolli using nuruk.
Collapse
Affiliation(s)
| | - Najib Abdellaoui
- School of Systems Biomedical Science, Soongsil University, Seoul, South Korea
| | - Jeong-Ah Seo
- School of Systems Biomedical Science, Soongsil University, Seoul, South Korea
| |
Collapse
|
8
|
The pH-Responsive Transcription Factors YlRim101 and Mhy1 Regulate Alkaline pH-Induced Filamentation in the Dimorphic Yeast Yarrowia lipolytica. mSphere 2021; 6:6/3/e00179-21. [PMID: 34011684 PMCID: PMC8265631 DOI: 10.1128/msphere.00179-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Environmental pH influences cell growth and differentiation. In the dimorphic yeast Yarrowia lipolytica, neutral-alkaline pH strongly induces the yeast-to-filament transition. However, the regulatory mechanism that governs alkaline pH-induced filamentation has been unclear. Here, we show that the pH-responsive transcription factor Y. lipolytica Rim101 (YlRim101) is a major regulator of alkaline-induced filamentation, since the deletion of YlRIM101 severely impaired filamentation at alkaline pH, whereas the constitutively active YlRIM1011-330 mutant mildly induced filamentation at acidic pH. YlRim101 controls the expression of the majority of alkaline-regulated cell wall protein genes. One of these, the cell surface glycosidase gene YlPHR1, plays a critical role in growth, cell wall function, and filamentation at alkaline pH. This finding suggests that YlRim101 promotes filamentation at alkaline pH via controlling the expression of these genes. We also show that, in addition to YlRim101, the Msn2/Msn4-like transcription factor Mhy1 is highly upregulated at alkaline pH and is essential for filamentation. However, unlike YlRim101, which specifically regulates alkaline-induced filamentation, Mhy1 regulates both alkaline- and glucose-induced filamentation, since the deletion of MHY1 abolished them both, whereas the overexpression of MHY1 induced strong filamentation irrespective of the pH or the presence of glucose. Finally, we show that YlRim101 and Mhy1 positively coregulate seven cell wall protein genes at alkaline pH, including YlPHR1 and five cell surface adhesin-like genes, three of which appear to promote filamentation. Together, these results reveal a conserved role of YlRim101 and a novel role of Mhy1 in the regulation of alkaline-induced filamentation in Y. lipolytica IMPORTANCE The regulatory mechanism that governs pH-regulated filamentation is not clear in dimorphic fungi except in Candida albicans Here, we investigated the regulation of alkaline pH-induced filamentation in Yarrowia lipolytica, a dimorphic yeast distantly related to C. albicans Our results show that the transcription factor YlRim101 and the Msn2/Msn4-like transcription factor Mhy1 are the major regulators that promote filamentation at alkaline pH. They control the expression of a number of cell wall protein genes important for cell wall organization and filamentation. Our results suggest that the Rim101/PacC homologs play a conserved role in pH-regulated filamentation in dimorphic fungi.
Collapse
|
9
|
Brinkrolf K, Shukla SP, Griep S, Rupp O, Heise P, Goesmann A, Heckel DG, Vogel H, Vilcinskas A. Genomic analysis of novel Yarrowia-like yeast symbionts associated with the carrion-feeding burying beetle Nicrophorus vespilloides. BMC Genomics 2021; 22:323. [PMID: 33941076 PMCID: PMC8091737 DOI: 10.1186/s12864-021-07597-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 04/11/2021] [Indexed: 11/23/2022] Open
Abstract
Background Mutualistic interactions with microbes can help insects adapt to extreme environments and unusual diets. An intriguing example is the burying beetle Nicrophorus vespilloides, which feeds and reproduces on small vertebrate carcasses. Its fungal microbiome is dominated by yeasts that potentially facilitate carcass utilization by producing digestive enzymes, eliminating cadaver-associated toxic volatiles (that would otherwise attract competitors), and releasing antimicrobials to sanitize the microenvironment. Some of these yeasts are closely related to the biotechnologically important species Yarrowia lipolytica. Results To investigate the roles of these Yarrowia-like yeast (YLY) strains in more detail, we selected five strains from two different phylogenetic clades for third-generation sequencing and genome analysis. The first clade, represented by strain B02, has a 20-Mb genome containing ~ 6400 predicted protein-coding genes. The second clade, represented by strain C11, has a 25-Mb genome containing ~ 6300 predicted protein-coding genes, and extensive intraspecific variability within the ITS–D1/D2 rDNA region commonly used for species assignments. Phenotypic microarray analysis revealed that both YLY strains were able to utilize a diverse range of carbon and nitrogen sources (including microbial metabolites associated with putrefaction), and can grow in environments with extreme pH and salt concentrations. Conclusions The genomic characterization of five yeast strains isolated from N. vespilloides resulted in the identification of strains potentially representing new YLY species. Given their abundance in the beetle hindgut, and dominant growth on beetle-prepared carcasses, the analysis of these strains has revealed the genetic basis of a potential symbiotic relationship between yeasts and burying beetles that facilitates carcass digestion and preservation. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07597-z.
Collapse
Affiliation(s)
- Karina Brinkrolf
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392, Giessen, Germany. .,Bioinformatics and Systems Biology, Justus Liebig University Giessen, Heinrich-Buff-Ring 58, 35302, Giessen, Germany.
| | - Shantanu P Shukla
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Sven Griep
- Bioinformatics and Systems Biology, Justus Liebig University Giessen, Heinrich-Buff-Ring 58, 35302, Giessen, Germany
| | - Oliver Rupp
- Bioinformatics and Systems Biology, Justus Liebig University Giessen, Heinrich-Buff-Ring 58, 35302, Giessen, Germany
| | - Philipp Heise
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392, Giessen, Germany
| | - Alexander Goesmann
- Bioinformatics and Systems Biology, Justus Liebig University Giessen, Heinrich-Buff-Ring 58, 35302, Giessen, Germany
| | - David G Heckel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Heiko Vogel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Andreas Vilcinskas
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392, Giessen, Germany.,Institute for Insect Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| |
Collapse
|
10
|
Cogo AJD, Façanha AR, da Silva Teixeira LR, de Souza SB, da Rocha JG, Figueira FF, Eutrópio FJ, Bertolazi AA, de Rezende CE, Krohling CA, Okorokov LA, Cruz C, Ramos AC, Okorokova-Façanha AL. Plasma membrane H + pump at a crossroads of acidic and iron stresses in yeast-to-hypha transition. Metallomics 2020; 12:2174-2185. [PMID: 33320152 DOI: 10.1039/d0mt00179a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Iron is an essential nutrient but is toxic in excess mainly under acidic conditions. Yeasts have emerged as low cost, highly efficient soil inoculants for the decontamination of metal-polluted areas, harnessing an increasing understanding of their metal tolerance mechanisms. Here, we investigated the effects of extracellular iron and acid pH stress on the dimorphism of Yarrowia lipolytica. Its growth was unaffected by 1 or 2 mM FeSO4, while a strong cellular iron accumulation was detected. However, the iron treatments decreased the hyphal length and number, mainly at 2 mM FeSO4 and pH 4.5. Inward cell membrane H+ fluxes were found at pH 4.5 and 6.0 correlated with a pH increase at the cell surface and a conspicuous yeast-to-hypha transition activity. Conversely, a remarkable H+ efflux was detected at pH 3.0, related to the extracellular microenvironment acidification and inhibition of yeast-to-hypha transition. Iron treatments intensified H+ influxes at pH 4.5 and 6.0 and inhibited H+ efflux at pH 3.0. Moreover, iron treatments inhibited the expression and activities of the plasma membrane H+-ATPase, with the H+ transport inhibited to a greater extent than the ATP hydrolysis, suggesting an iron-induced uncoupling of the pump. Our data indicate that Y. lipolytica adaptations to high iron and acidic environments occur at the expense of remodelling the yeast morphogenesis through a cellular pH modulation by H+-ATPases and H+ coupled transporters, highlighting the capacity of this non-conventional yeast to accumulate high amounts of iron and its potential application for bioremediation.
Collapse
Affiliation(s)
- Antônio Jesus Dorighetto Cogo
- Laboratório de Bioquímica e Fisiologia de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Xie XL, Wei Y, Song YY, Pan GM, Chen LN, Wang G, Zhang SH. Genetic Analysis of Four Sexual Differentiation Process Proteins (isp4/SDPs) in Chaetomium thermophilum and Thermomyces lanuginosus Reveals Their Distinct Roles in Development. Front Microbiol 2020; 10:2994. [PMID: 31969873 PMCID: PMC6956688 DOI: 10.3389/fmicb.2019.02994] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 12/10/2019] [Indexed: 12/29/2022] Open
Abstract
Fungal sexual development requires the involvement of a large number of functional genes. Fungal genes encoding sexual differentiation process proteins (SDPs), isps, have been known for decades. isp4/SDP and its homologs function as oligopeptide transporters (OPTs), yet their roles in reproduction are unknown. Here, we genetically analyzed all four isp4/SDP homologs in the sexual species Chaetomium thermophilum and asexual species Thermomyces lanuginosus. Using single gene deletion mutants, we found that T. lanuginosus SDP (TlSDP) participated in asexual sporulation, whereas the other homologs participated in sexual morphogenesis. In complementary tests, C. thermophilum SDPs (CtSDP1-3) restored sporulation defects in TlSDP deletion strains (ΔTlSDP), and their translated proteins, which were localized onto the cytomembrane, possessed OPT activity. Interestingly, CtSDP2 accumulated at the top of the hyphae played a distinct role in determining the sexual cycle, glutathione transport, and lifespan shortening. A unique 72nt-insertion fragment (72INS) was discovered in CtSDP2. Biological analysis of the 72INS deletion and DsRED-tagged fusion strains implied the involvement of 72INS in fungal growth and development. In contrast to TlSDP, which only contributes to conidial production, the three CtSDPs play important roles in sexual and asexual reproduction, and CtSDP2 harbors a unique functional 72INS that initiates sexual morphogenesis.
Collapse
Affiliation(s)
- Xiang-Li Xie
- College of Plant Sciences, Jilin University, Changchun, China
| | - Yi Wei
- College of Plant Sciences, Jilin University, Changchun, China
| | - Yan-Yue Song
- College of Plant Sciences, Jilin University, Changchun, China
| | - Guan-Ming Pan
- College of Plant Sciences, Jilin University, Changchun, China
| | - Li-Na Chen
- College of Plant Sciences, Jilin University, Changchun, China
| | - Gang Wang
- School of Life Sciences, Henan University, Kaifeng, China
| | - Shi-Hong Zhang
- College of Plant Sciences, Jilin University, Changchun, China
| |
Collapse
|
12
|
Snyman C, Theron LW, Divol B. Understanding the regulation of extracellular protease gene expression in fungi: a key step towards their biotechnological applications. Appl Microbiol Biotechnol 2019; 103:5517-5532. [PMID: 31129742 DOI: 10.1007/s00253-019-09902-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/07/2019] [Accepted: 05/07/2019] [Indexed: 12/20/2022]
Abstract
The secretion of proteases by certain species of yeast and filamentous fungi is of importance not only for their biological function and survival, but also for their biotechnological application to various processes in the food, beverage, and bioprocessing industries. A key step towards understanding the role that these organisms play in their environment, and how their protease-secreting ability may be optimally utilised through industrial applications, involves an evaluation of those factors which influence protease production. The objective of this review is to provide an overview of the findings from investigations directed at elucidating the regulatory mechanisms underlying extracellular protease secretion in yeast and filamentous fungi, and the environmental stimuli that elicit these responses. The influence of nitrogen-, carbon-, and sulphur-containing compounds, as well as proteins, temperature, and pH, on extracellular protease regulation, which is frequently exerted at the transcriptional level, is discussed in particular depth. Protease-secreting organisms of biotechnological interest are also presented in this context, in an effort to explore the areas of industrial significance that could possibly benefit from such knowledge. In this way, the establishment of a platform of existing knowledge regarding fungal protease regulation is attempted, with the particular goal of aiding in the practical application of these organisms to processes that require secretion of this enzyme.
Collapse
Affiliation(s)
- C Snyman
- Department of Viticulture and Oenology, Institute for Wine Biotechnology, Private Bag X1, Matieland, 7602, South Africa
| | - L W Theron
- Department of Viticulture and Oenology, Institute for Wine Biotechnology, Private Bag X1, Matieland, 7602, South Africa
| | - B Divol
- Department of Viticulture and Oenology, Institute for Wine Biotechnology, Private Bag X1, Matieland, 7602, South Africa.
| |
Collapse
|
13
|
Abstract
Many yeasts undergo a morphological transition from yeast-to-hyphal growth in response to environmental conditions. We used forward and reverse genetic techniques to identify genes regulating this transition in Yarrowia lipolytica. We confirmed that the transcription factor Ylmsn2 is required for the transition to hyphal growth and found that signaling by the histidine kinases Ylchk1 and Ylnik1 as well as the MAP kinases of the HOG pathway (Ylssk2, Ylpbs2, and Ylhog1) regulates the transition to hyphal growth. These results suggest that Y. lipolytica transitions to hyphal growth in response to stress through multiple kinase pathways. Intriguingly, we found that a repetitive portion of the genome containing telomere-like and rDNA repeats may be involved in the transition to hyphal growth, suggesting a link between this region and the general stress response. The yeast Yarrowia lipolytica undergoes a morphological transition from yeast-to-hyphal growth in response to environmental conditions. A forward genetic screen was used to identify mutants that reliably remain in the yeast phase, which were then assessed by whole-genome sequencing. All the smooth mutants identified, so named because of their colony morphology, exhibit independent loss of DNA at a repetitive locus made up of interspersed ribosomal DNA and short 10- to 40-mer telomere-like repeats. The loss of repetitive DNA is associated with downregulation of genes with stress response elements (5′-CCCCT-3′) and upregulation of genes with cell cycle box (5′-ACGCG-3′) motifs in their promoter region. The stress response element is bound by the transcription factor Msn2p in Saccharomyces cerevisiae. We confirmed that the Y. lipolyticamsn2 (Ylmsn2) ortholog is required for hyphal growth and found that overexpression of Ylmsn2 enables hyphal growth in smooth strains. The cell cycle box is bound by the Mbp1p/Swi6p complex in S. cerevisiae to regulate G1-to-S phase progression. We found that overexpression of either the Ylmbp1 or Ylswi6 homologs decreased hyphal growth and that deletion of either Ylmbp1 or Ylswi6 promotes hyphal growth in smooth strains. A second forward genetic screen for reversion to hyphal growth was performed with the smooth-33 mutant to identify additional genetic factors regulating hyphal growth in Y. lipolytica. Thirteen of the mutants sequenced from this screen had coding mutations in five kinases, including the histidine kinases Ylchk1 and Ylnik1 and kinases of the high-osmolarity glycerol response (HOG) mitogen-activated protein (MAP) kinase cascade Ylssk2, Ylpbs2, and Ylhog1. Together, these results demonstrate that Y. lipolytica transitions to hyphal growth in response to stress through multiple signaling pathways. IMPORTANCE Many yeasts undergo a morphological transition from yeast-to-hyphal growth in response to environmental conditions. We used forward and reverse genetic techniques to identify genes regulating this transition in Yarrowia lipolytica. We confirmed that the transcription factor Ylmsn2 is required for the transition to hyphal growth and found that signaling by the histidine kinases Ylchk1 and Ylnik1 as well as the MAP kinases of the HOG pathway (Ylssk2, Ylpbs2, and Ylhog1) regulates the transition to hyphal growth. These results suggest that Y. lipolytica transitions to hyphal growth in response to stress through multiple kinase pathways. Intriguingly, we found that a repetitive portion of the genome containing telomere-like and rDNA repeats may be involved in the transition to hyphal growth, suggesting a link between this region and the general stress response.
Collapse
|
14
|
Cervantes-Montelongo JA, Ruiz-Herrera J. Identification of a novel member of the pH responsive pathway Pal/Rim in Ustilago maydis. J Basic Microbiol 2018; 59:14-23. [PMID: 30357888 DOI: 10.1002/jobm.201800180] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 09/25/2018] [Accepted: 09/29/2018] [Indexed: 11/05/2022]
Abstract
The most important signal transduction mechanism related to environmental pH responses in fungi is the Pal/Rim pathway. Our knowledge of this pathway came initially from studies on Ascomycota species where it is made by seven members divided into two complexes, one located at the plasma membrane, and other at the endosomal membrane. In Basidiomycota sepecies only the homologs of the endosomal membrane complex (genes PalA/Rim20, PalB/ Rim13, and PalC/ Rim23), plus the transcription factor PacC/Rim101 have been identified. In this study, we describe the identification in Ustilago maydis of a gene encoding a Rho-like protein (tentatively named RHO4) as a novel member of this pathway. The RHO4 gene possibly plays, among other functions, a role in the second proteolytic cleavage that leads to the activation of the transcription factor PacC/Rim101. Mutants in this gene showed a pleiotropic phenotype, displaying similar characteristics to the Pal/Rim mutants, such as a lower growth rate at alkaline pH, high sensitivity to ionic and osmotic stresses, and impairment in protease secretion, but no alteration of the yeast-to-mycelium dimorphic transition induced by acid pH whereas it has a function in the dimorphic transition induced by fatty acids.
Collapse
Affiliation(s)
- Juan A Cervantes-Montelongo
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato Gto., México
| | - José Ruiz-Herrera
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato Gto., México
| |
Collapse
|
15
|
Yun EJ, Lee J, Kim DH, Kim J, Kim S, Jin YS, Kim KH. Metabolomic elucidation of the effects of media and carbon sources on fatty acid production by Yarrowia lipolytica. J Biotechnol 2018; 272-273:7-13. [PMID: 29499237 DOI: 10.1016/j.jbiotec.2018.02.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/16/2018] [Accepted: 02/27/2018] [Indexed: 12/17/2022]
Abstract
Lipid production by oleaginous Yarrowia lipolytica depends highly on culture environments, such as carbon sources, carbon/nitrogen (C/N) ratios, types of media, and cellular growth phases. In this study, the effects of media and carbon sources on lipid and metabolite production were investigated by profiling fatty acids and intracellular metabolites of Y. lipolytica grown in various media. The highest total fatty acid yield 114.04 ± 6.23 mg/g dry cell weight was achieved by Y. lipolytica grown in minimal medium with glycerol (SCG) in the exponential phase. The high lipid production by Y. lipolytica in SCG was presumed to be due to the higher C/N ratio in SCG than in the complex media. Moreover, glycerol promoted lipid production better than glucose in both complex and minimal media because glycerol can easily incorporate into the core of triglycerides. Metabolite profiling revealed that levels of long-chain fatty acids, such as stearic acid, palmitic acid, and arachidic acid, increased in SCG medium. Meanwhile, in complex media supplemented with either glucose or glycerol, levels of amino acids, such as cysteine, methionine, and glycine, highly increased. This metabolomic approach could be applied to modulate the global metabolic network of Y. lipolytica for producing lipids and other valuable products.
Collapse
Affiliation(s)
- Eun Ju Yun
- Department of Biotechnology, Graduate School, Korea University, Seoul, 02841, South Korea
| | - James Lee
- Department of Biotechnology, Graduate School, Korea University, Seoul, 02841, South Korea
| | - Do Hyoung Kim
- Department of Biotechnology, Graduate School, Korea University, Seoul, 02841, South Korea
| | - Jungyeon Kim
- Department of Biotechnology, Graduate School, Korea University, Seoul, 02841, South Korea
| | - Sooah Kim
- Department of Biotechnology, Graduate School, Korea University, Seoul, 02841, South Korea
| | - Yong-Su Jin
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Kyoung Heon Kim
- Department of Biotechnology, Graduate School, Korea University, Seoul, 02841, South Korea.
| |
Collapse
|
16
|
Marsalek L, Gruber C, Altmann F, Aleschko M, Mattanovich D, Gasser B, Puxbaum V. Disruption of genes involved in CORVET complex leads to enhanced secretion of heterologous carboxylesterase only in protease deficient Pichia pastoris. Biotechnol J 2017; 12. [PMID: 28230321 DOI: 10.1002/biot.201600584] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 02/20/2017] [Accepted: 02/22/2017] [Indexed: 11/10/2022]
Abstract
The methylotrophic yeast Pichia pastoris (Komagataella spp.) is a popular microbial host for the production of recombinant proteins. Previous studies have shown that mis-sorting to the vacuole can be a bottleneck during production of recombinant secretory proteins in yeast, however, no information was available for P. pastoris. In this work the authors have therefore generated vps (vacuolar protein sorting) mutant strains disrupted in genes involved in the CORVET (class C core vacuole/endosome tethering) complex at the early stages of endosomal sorting. Both Δvps8 and Δvps21 strains contained lower extracellular amounts of heterologous carboxylesterase (CES) compared to the control strain, which could be attributed to a high proteolytic activity present in the supernatants of CORVET engineered strains due to rerouting of vacuolar proteases. Serine proteases were identified to be responsible for this proteolytic degradation by liquid chromatography-mass spectrometry and protease inhibitor assays. Deletion of the major cellular serine protease Prb1 in Δvps8 and Δvps21 strains did not only rescue the extracellular CES levels, but even outperformed the parental CES strain (56 and 80% higher yields, respectively). Further deletion of Ybr139W, another serine protease, did not show a further increase in secretion levels. Higher extracellular CES activity and low proteolytic activity were detected also in fed batch cultivation of Δvps21Δprb1 strains, thus confirming that modifying early steps in the vacuolar pathway has a positive impact on heterologous protein secretion.
Collapse
Affiliation(s)
- Lukas Marsalek
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), Vienna, Austria.,Department of Biotechnology, University of Natural Resources and Life Sciences Vienna (BOKU), Vienna, Austria
| | - Clemens Gruber
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), Vienna, Austria.,Department of Chemistry, University of Natural Resources and Life Sciences Vienna (BOKU), Vienna, Austria
| | - Friedrich Altmann
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), Vienna, Austria.,Department of Chemistry, University of Natural Resources and Life Sciences Vienna (BOKU), Vienna, Austria
| | - Markus Aleschko
- BIOMIN Research Center, Technologiezentrum Tulln, Tulln, Austria
| | - Diethard Mattanovich
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), Vienna, Austria.,Department of Biotechnology, University of Natural Resources and Life Sciences Vienna (BOKU), Vienna, Austria
| | - Brigitte Gasser
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), Vienna, Austria.,Department of Biotechnology, University of Natural Resources and Life Sciences Vienna (BOKU), Vienna, Austria
| | - Verena Puxbaum
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), Vienna, Austria.,Department of Biotechnology, University of Natural Resources and Life Sciences Vienna (BOKU), Vienna, Austria
| |
Collapse
|
17
|
Lopes VRO, Farias MA, Belo IMP, Coelho MAZ. NITROGEN SOURCES ON TPOMW VALORIZATION THROUGH SOLID STATE FERMENTATION PERFORMED BY Yarrowia lipolytica. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2016. [DOI: 10.1590/0104-6632.20160332s20150146] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Ang RP, Teoh LS, Chan MK, Miswan N, Khoo BY. Comparing the expression of human DNA topoisomerase I in KM71H and X33 strains of Pichia pastoris. ELECTRON J BIOTECHN 2016. [DOI: 10.1016/j.ejbt.2016.01.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
19
|
Lee KJ, Gil JY, Kim SY, Kwon O, Ko K, Kim DI, Kim DK, Kim HH, Oh DB. Molecular characterization of acidic peptide:N-glycanase from the dimorphic yeast Yarrowia lipolytica. J Biochem 2014; 157:35-43. [PMID: 25147194 DOI: 10.1093/jb/mvu051] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Peptide:N-glycanase (PNGase) A is used preferentially to cleave the glycans from plant and insect glycopeptides. Although many putative PNGase A homologous genes have been found in the plant and fungus kingdoms through sequence similarity analyses, only several PNGases from plants and one from a filamentous fungus have been characterized. In this study, we identified and characterized a PNGase A-like enzyme, PNGase Yl, in the dimorphic yeast Yarrowia lipolytica. The corresponding gene was cloned and recombinantly expressed in Pichia pastoris. The purified enzyme cleaved glycans from glycopeptides with the maximum activity at pH 5. No metal ions were required for full activity, and rather it was repressed by three metal ions (Fe(3+), Cu(2+) and Zn(2+)). Using glycopeptide substrates, PNGase Yl was shown to release various types of N-glycans including high-mannose and complex-type glycans as well as glycans containing core-linked α(1,3)-fucose that are frequently found in plants and insects. Moreover, in comparison with PNGase A, PNGase Yl was able to cleave with higher efficiency the glycans from some denatured glycoproteins. Taken together, our results suggest that PNGase Yl, the first biochemically characterized yeast PNGase A homologue, can be developed through protein engineering as a useful deglycosylation tool for N-glycosylation study.
Collapse
Affiliation(s)
- Kyung Jin Lee
- Biochemicals and Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahakro, Yuseong-Gu, Daejeon 305-806, Korea; Department of Medicine, Chung-Ang University, Seoul 156-756, Korea; Biosystems and Bioengineering Program, University of Science and Technology (UST), Daejeon 305-350, Korea; Department of Biological Engineering, Inha University, Incheon 402-751, Korea; and College of Pharmacy, Chung-Ang University, Seoul 156-756, Korea Biochemicals and Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahakro, Yuseong-Gu, Daejeon 305-806, Korea; Department of Medicine, Chung-Ang University, Seoul 156-756, Korea; Biosystems and Bioengineering Program, University of Science and Technology (UST), Daejeon 305-350, Korea; Department of Biological Engineering, Inha University, Incheon 402-751, Korea; and College of Pharmacy, Chung-Ang University, Seoul 156-756, Korea
| | - Jin Young Gil
- Biochemicals and Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahakro, Yuseong-Gu, Daejeon 305-806, Korea; Department of Medicine, Chung-Ang University, Seoul 156-756, Korea; Biosystems and Bioengineering Program, University of Science and Technology (UST), Daejeon 305-350, Korea; Department of Biological Engineering, Inha University, Incheon 402-751, Korea; and College of Pharmacy, Chung-Ang University, Seoul 156-756, Korea
| | - Sang-Yoon Kim
- Biochemicals and Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahakro, Yuseong-Gu, Daejeon 305-806, Korea; Department of Medicine, Chung-Ang University, Seoul 156-756, Korea; Biosystems and Bioengineering Program, University of Science and Technology (UST), Daejeon 305-350, Korea; Department of Biological Engineering, Inha University, Incheon 402-751, Korea; and College of Pharmacy, Chung-Ang University, Seoul 156-756, Korea
| | - Ohsuk Kwon
- Biochemicals and Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahakro, Yuseong-Gu, Daejeon 305-806, Korea; Department of Medicine, Chung-Ang University, Seoul 156-756, Korea; Biosystems and Bioengineering Program, University of Science and Technology (UST), Daejeon 305-350, Korea; Department of Biological Engineering, Inha University, Incheon 402-751, Korea; and College of Pharmacy, Chung-Ang University, Seoul 156-756, Korea Biochemicals and Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahakro, Yuseong-Gu, Daejeon 305-806, Korea; Department of Medicine, Chung-Ang University, Seoul 156-756, Korea; Biosystems and Bioengineering Program, University of Science and Technology (UST), Daejeon 305-350, Korea; Department of Biological Engineering, Inha University, Incheon 402-751, Korea; and College of Pharmacy, Chung-Ang University, Seoul 156-756, Korea
| | - Kisung Ko
- Biochemicals and Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahakro, Yuseong-Gu, Daejeon 305-806, Korea; Department of Medicine, Chung-Ang University, Seoul 156-756, Korea; Biosystems and Bioengineering Program, University of Science and Technology (UST), Daejeon 305-350, Korea; Department of Biological Engineering, Inha University, Incheon 402-751, Korea; and College of Pharmacy, Chung-Ang University, Seoul 156-756, Korea
| | - Dong-Il Kim
- Biochemicals and Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahakro, Yuseong-Gu, Daejeon 305-806, Korea; Department of Medicine, Chung-Ang University, Seoul 156-756, Korea; Biosystems and Bioengineering Program, University of Science and Technology (UST), Daejeon 305-350, Korea; Department of Biological Engineering, Inha University, Incheon 402-751, Korea; and College of Pharmacy, Chung-Ang University, Seoul 156-756, Korea
| | - Dae Kyong Kim
- Biochemicals and Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahakro, Yuseong-Gu, Daejeon 305-806, Korea; Department of Medicine, Chung-Ang University, Seoul 156-756, Korea; Biosystems and Bioengineering Program, University of Science and Technology (UST), Daejeon 305-350, Korea; Department of Biological Engineering, Inha University, Incheon 402-751, Korea; and College of Pharmacy, Chung-Ang University, Seoul 156-756, Korea
| | - Ha Hyung Kim
- Biochemicals and Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahakro, Yuseong-Gu, Daejeon 305-806, Korea; Department of Medicine, Chung-Ang University, Seoul 156-756, Korea; Biosystems and Bioengineering Program, University of Science and Technology (UST), Daejeon 305-350, Korea; Department of Biological Engineering, Inha University, Incheon 402-751, Korea; and College of Pharmacy, Chung-Ang University, Seoul 156-756, Korea
| | - Doo-Byoung Oh
- Biochemicals and Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahakro, Yuseong-Gu, Daejeon 305-806, Korea; Department of Medicine, Chung-Ang University, Seoul 156-756, Korea; Biosystems and Bioengineering Program, University of Science and Technology (UST), Daejeon 305-350, Korea; Department of Biological Engineering, Inha University, Incheon 402-751, Korea; and College of Pharmacy, Chung-Ang University, Seoul 156-756, Korea Biochemicals and Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahakro, Yuseong-Gu, Daejeon 305-806, Korea; Department of Medicine, Chung-Ang University, Seoul 156-756, Korea; Biosystems and Bioengineering Program, University of Science and Technology (UST), Daejeon 305-350, Korea; Department of Biological Engineering, Inha University, Incheon 402-751, Korea; and College of Pharmacy, Chung-Ang University, Seoul 156-756, Korea
| |
Collapse
|
20
|
pH signaling in human fungal pathogens: a new target for antifungal strategies. EUKARYOTIC CELL 2014; 13:342-52. [PMID: 24442891 DOI: 10.1128/ec.00313-13] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Fungi are exposed to broadly fluctuating environmental conditions, to which adaptation is crucial for their survival. An ability to respond to a wide pH range, in particular, allows them to cope with rapid changes in their extracellular settings. PacC/Rim signaling elicits the primary pH response in both model and pathogenic fungi and has been studied in multiple fungal species. In the predominant human pathogenic fungi, namely, Candida albicans, Aspergillus fumigatus, and Cryptococcus neoformans, this pathway is required for many functions associated with pathogenesis and virulence. Aspects of this pathway are fungus specific and do not exist in mammalian cells. In this review, we highlight recent advances in our understanding of PacC/Rim-mediated functions and discuss the growing interest in this cascade and its factors as potential drug targets for antifungal strategies. We focus on both conserved and distinctive features in model and pathogenic fungi, highlighting the specificities of PacC/Rim signaling in C. albicans, A. fumigatus, and C. neoformans. We consider the role of this pathway in fungal virulence, including modulation of the host immune response. Finally, as now recognized for other signaling cascades, we highlight the role of pH in adaptation to antifungal drug pressure. By acting on the PacC/Rim pathway, it may therefore be possible (i) to ensure fungal specificity and to limit the side effects of drugs, (ii) to ensure broad-spectrum efficacy, (iii) to attenuate fungal virulence, (iv) to obtain additive or synergistic effects with existing antifungal drugs through tolerance inhibition, and (v) to slow the emergence of resistant mutants.
Collapse
|
21
|
Darvishi Harzevili F. Yarrowia lipolytica in Biotechnological Applications. SPRINGERBRIEFS IN MICROBIOLOGY 2014. [DOI: 10.1007/978-3-319-06437-6_2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
22
|
|
23
|
Pan P, Hua Q. Reconstruction and in silico analysis of metabolic network for an oleaginous yeast, Yarrowia lipolytica. PLoS One 2012; 7:e51535. [PMID: 23236514 PMCID: PMC3518092 DOI: 10.1371/journal.pone.0051535] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 11/08/2012] [Indexed: 11/19/2022] Open
Abstract
With the emergence of energy scarcity, the use of renewable energy sources such as biodiesel is becoming increasingly necessary. Recently, many researchers have focused their minds on Yarrowia lipolytica, a model oleaginous yeast, which can be employed to accumulate large amounts of lipids that could be further converted to biodiesel. In order to understand the metabolic characteristics of Y. lipolytica at a systems level and to examine the potential for enhanced lipid production, a genome-scale compartmentalized metabolic network was reconstructed based on a combination of genome annotation and the detailed biochemical knowledge from multiple databases such as KEGG, ENZYME and BIGG. The information about protein and reaction associations of all the organisms in KEGG and Expasy-ENZYME database was arranged into an EXCEL file that can then be regarded as a new useful database to generate other reconstructions. The generated model iYL619_PCP accounts for 619 genes, 843 metabolites and 1,142 reactions including 236 transport reactions, 125 exchange reactions and 13 spontaneous reactions. The in silico model successfully predicted the minimal media and the growing abilities on different substrates. With flux balance analysis, single gene knockouts were also simulated to predict the essential genes and partially essential genes. In addition, flux variability analysis was applied to design new mutant strains that will redirect fluxes through the network and may enhance the production of lipid. This genome-scale metabolic model of Y. lipolytica can facilitate system-level metabolic analysis as well as strain development for improving the production of biodiesels and other valuable products by Y. lipolytica and other closely related oleaginous yeasts.
Collapse
Affiliation(s)
- Pengcheng Pan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Qiang Hua
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- * E-mail:
| |
Collapse
|
24
|
New insights into sulfur metabolism in yeasts as revealed by studies of Yarrowia lipolytica. Appl Environ Microbiol 2012; 79:1200-11. [PMID: 23220962 DOI: 10.1128/aem.03259-12] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Yarrowia lipolytica, located at the frontier of hemiascomycetous yeasts and fungi, is an excellent candidate for studies of metabolism evolution. This yeast, widely recognized for its technological applications, in particular produces volatile sulfur compounds (VSCs) that fully contribute to the flavor of smear cheese. We report here a relevant global vision of sulfur metabolism in Y. lipolytica based on a comparison between high- and low-sulfur source supplies (sulfate, methionine, or cystine) by combined approaches (transcriptomics, metabolite profiling, and VSC analysis). The strongest repression of the sulfate assimilation pathway was observed in the case of high methionine supply, together with a large accumulation of sulfur intermediates. A high sulfate supply seems to provoke considerable cellular stress via sulfite production, resulting in a decrease of the availability of the glutathione pathway's sulfur intermediates. The most limited effect was observed for the cystine supply, suggesting that the intracellular cysteine level is more controlled than that of methionine and sulfate. Using a combination of metabolomic profiling and genetic experiments, we revealed taurine and hypotaurine metabolism in yeast for the first time. On the basis of a phylogenetic study, we then demonstrated that this pathway was lost by some of the hemiascomycetous yeasts during evolution.
Collapse
|
25
|
|
26
|
Fonseca-García C, León-Ramírez CG, Ruiz-Herrera J. The regulation of different metabolic pathways through the Pal/Rim pathway in Ustilago maydis. FEMS Yeast Res 2012; 12:547-56. [DOI: 10.1111/j.1567-1364.2012.00805.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 03/20/2012] [Accepted: 03/21/2012] [Indexed: 11/30/2022] Open
Affiliation(s)
- Citlali Fonseca-García
- Departamento de Ingeniería Genética; Unidad Irapuato; Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional; Irapuato; Guanajuato; México
| | - Claudia G. León-Ramírez
- Departamento de Ingeniería Genética; Unidad Irapuato; Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional; Irapuato; Guanajuato; México
| | - José Ruiz-Herrera
- Departamento de Ingeniería Genética; Unidad Irapuato; Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional; Irapuato; Guanajuato; México
| |
Collapse
|
27
|
Hartmann T, Cairns TC, Olbermann P, Morschhäuser J, Bignell EM, Krappmann S. Oligopeptide transport and regulation of extracellular proteolysis are required for growth of Aspergillus fumigatus on complex substrates but not for virulence. Mol Microbiol 2011; 82:917-35. [DOI: 10.1111/j.1365-2958.2011.07868.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
Blanchin-Roland S. Identical domains of Yarrowia lipolytica Vps23 are required for both ESCRT and Rim pathways, but the latter needs an interaction between the Vps23 UEV domain and Rim8/PalF. FEMS Yeast Res 2011; 11:473-86. [DOI: 10.1111/j.1567-1364.2011.00735.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
29
|
Idiris A, Tohda H, Kumagai H, Takegawa K. Engineering of protein secretion in yeast: strategies and impact on protein production. Appl Microbiol Biotechnol 2010; 86:403-17. [DOI: 10.1007/s00253-010-2447-0] [Citation(s) in RCA: 195] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Revised: 01/07/2010] [Accepted: 01/09/2010] [Indexed: 01/08/2023]
|
30
|
Kurucová A, Farkasová E, Varecka L, Simkovic M. Spontaneous and protein-induced secretion of proteinases from Saccharomyces cerevisiae. J Basic Microbiol 2010; 49:545-52. [PMID: 19810045 DOI: 10.1002/jobm.200900068] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Many fungi are capable of secreting the wide spectrum of hydrolytic enzymes. We characterized an inducible proteinase secretion in yeasts, Saccharomyces cerevisiae. The proteinase secretion by S. cerevisiae was induced in the presence of yeast extract, or of purified proteins, such as bovine serum albumin, casein, or ovalbumin, and some proteolytic activity was present also without protein inducer. We found that properties of proteinases induced under cultivation conditions were different in various aspects (temperature- and pH-dependencies, substrate specificities, sensitivities to proteinase inhibitors). Proteinase activities were also characterized by gelatin zymography. Multiple proteinase bands with wide-molecular weights (ranging from 45 to 240 kDa) were detected and patterns of proteinase bands were different. S. cerevisiae cells were able to retain the information about previous contacts with protein inducer resulting in faster and more intensive proteinase secretion response after repeated induction.
Collapse
Affiliation(s)
- Anita Kurucová
- Department of Biochemistry and Microbiology, Institute of Biochemistry, Nutrition and Health Protection, Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37 Bratislava, Slovak Republic
| | | | | | | |
Collapse
|
31
|
Pimprikar P, Joshi S, Kumar A, Zinjarde S, Kulkarni S. Influence of biomass and gold salt concentration on nanoparticle synthesis by the tropical marine yeast Yarrowia lipolytica NCIM 3589. Colloids Surf B Biointerfaces 2009; 74:309-16. [DOI: 10.1016/j.colsurfb.2009.07.040] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 07/10/2009] [Accepted: 07/29/2009] [Indexed: 10/20/2022]
|
32
|
Idiris A, Tohda H, Sasaki M, Okada K, Kumagai H, Giga-Hama Y, Takegawa K. Enhanced protein secretion from multiprotease-deficient fission yeast by modification of its vacuolar protein sorting pathway. Appl Microbiol Biotechnol 2009; 85:667-77. [PMID: 19669754 DOI: 10.1007/s00253-009-2151-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 07/13/2009] [Accepted: 07/14/2009] [Indexed: 10/20/2022]
Abstract
Previously, we achieved approximately 30-fold enhanced secretion of the protease-sensitive model protein human growth hormone (hGH) by multiple gene deletion of seven obstructive proteases in the fission yeast Schizosaccharomyces pombe. However, intracellular retention of secretory hGH was found in the resultant multiprotease-deficient strains. As a solution, genetic modification of the intracellular trafficking pathway that is related to intracellular retention of hGH was attempted on a protease octuple deletant strain. Vacuolar accumulation of the intracellularly retained hGH was identified by secretory expression of hGH fused with EGFP, and three vacuolar protein sorting (vps)-deficient strains, vps10Delta, vps22Delta, and vps34Delta, were determined on account of their hGH secretion efficiency. The mutant vps10Delta was found to be effective for hGH secretion, which suggested a role for vps10 in the vacuolar accumulation of the intracellularly retained hGH. Finally, vps10 deletion was performed on the protease octuple deletant strain, which led to an approximately 2-fold increase in hGH secretion. This indicated the possible application of secretory-pathway modification and multiple protease deletion for improving heterologous protein secretion from the fission yeast S. pombe.
Collapse
Affiliation(s)
- Alimjan Idiris
- R&D Group, ASPEX Division, Research Center, Asahi Glass Co., Ltd., 1150 Hazawa-cho, Kanagawa-ku, Yokohama, Japan.
| | | | | | | | | | | | | |
Collapse
|
33
|
Bankar AV, Kumar AR, Zinjarde SS. Environmental and industrial applications of Yarrowia lipolytica. Appl Microbiol Biotechnol 2009; 84:847-65. [DOI: 10.1007/s00253-009-2156-8] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Revised: 07/17/2009] [Accepted: 07/18/2009] [Indexed: 02/06/2023]
|
34
|
Chi Z, Chi Z, Zhang T, Liu G, Li J, Wang X. Production, characterization and gene cloning of the extracellular enzymes from the marine-derived yeasts and their potential applications. Biotechnol Adv 2009; 27:236-55. [DOI: 10.1016/j.biotechadv.2009.01.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 12/28/2008] [Accepted: 01/08/2009] [Indexed: 10/21/2022]
|
35
|
Cornet M, Richard ML, Gaillardin C. The homologue of the Saccharomyces cerevisiae RIM9 gene is required for ambient pH signalling in Candida albicans. Res Microbiol 2009; 160:219-23. [PMID: 19230847 DOI: 10.1016/j.resmic.2009.02.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Revised: 01/31/2009] [Accepted: 02/06/2009] [Indexed: 11/20/2022]
Abstract
In fungi, ambient pH sensing relies on the conserved Rim101 signalling pathway. All components of the pathway have been shown to be functionally conserved in the pathogenic yeast Candida albicans except for Rim9p which, in other fungi, has been suggested to be involved in this process. Here we report that, in C. albicans, the RIM9 homologue is required for Rim-dependent signalling. We also show that overexpressing Vps32p, an endosomal component required for transduction of the pH signal, does not bypass defects in upstream components such as Rim9p, Rim21p and Rim8p.
Collapse
Affiliation(s)
- Muriel Cornet
- Microbiologie et Génétique Moléculaire, AgroParisTech, Institut National de la Recherche Agronomique UMR1238, Centre National de la Recherche Scientifique UMR2585, Thiverval-Grignon, France.
| | | | | |
Collapse
|
36
|
Cloning and Characterization of a Novel Aspartic Protease Gene from Marine-Derived Metschnikowia reukaufii and its Expression in E. coli. Appl Biochem Biotechnol 2008; 159:119-32. [DOI: 10.1007/s12010-008-8400-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2008] [Accepted: 10/14/2008] [Indexed: 10/21/2022]
|
37
|
Blanchin-Roland S, Da Costa G, Gaillardin C. Ambient pH signalling in the yeast Yarrowia lipolytica involves YlRim23p/PalC, which interacts with Snf7p/Vps32p, but does not require the long C terminus of YlRim9p/PalI. MICROBIOLOGY-SGM 2008; 154:1668-1676. [PMID: 18524921 DOI: 10.1099/mic.0.2008/017046-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A conserved ambient pH signal transduction pathway has been evidenced in both ascomycetous yeasts and filamentous fungi, called the Rim or Pal pathway, respectively. However, closely related PalC orthologues are found only in Yarrowia lipolytica and in filamentous fungi, where the Rim9p/PalI factor has a much longer C-terminal tail than in other yeasts. We show here that, like Aspergillus nidulans palI mutants, a Ylrim9Delta mutant has a less extreme phenotype than other mutants of the pathway, whereas rim9 mutants in Saccharomyces cerevisiae and Candida albicans reportedly exhibit a tight Rim phenotype. Deletion of the long C-terminal tail of YlRim9p/PalI had no phenotypic effect on ambient pH signalling. We also show that the Y. lipolytica PalC orthologue, named YlRim23p, is absolutely required for the alkaline pH response. Its only interactant identified in a genome-wide two-hybrid screen is YlSnf7/Vps32p, confirming the link between the Rim and the Vps pathways. YlRim13p and YlRim20p both interact with YlSnf7/Vps32p but not with YlRim23p. The long C-terminal tail of YlRim9p/PalI interacts neither with YlRim23p nor with YlSnf7/Vps32p. These results show that YlRim23p is a bona fide component of the Rim pathway in Y. lipolytica and that it participates in the complexes linking pH signalling and endocytosis.
Collapse
Affiliation(s)
- Sylvie Blanchin-Roland
- Laboratoire de Microbiologie et Génétique Moléculaire, AgroParisTech, INRA, UMR1238, CNRS, UMR2585, F-78850 Thiverval-Grignon, France
| | - Grégory Da Costa
- Laboratoire de Microbiologie et Génétique Moléculaire, AgroParisTech, INRA, UMR1238, CNRS, UMR2585, F-78850 Thiverval-Grignon, France
| | - Claude Gaillardin
- Laboratoire de Microbiologie et Génétique Moléculaire, AgroParisTech, INRA, UMR1238, CNRS, UMR2585, F-78850 Thiverval-Grignon, France
| |
Collapse
|
38
|
Galindo A, Hervás-Aguilar A, Rodríguez-Galán O, Vincent O, Arst HN, Tilburn J, Peñalva MA. PalC, one of two Bro1 domain proteins in the fungal pH signalling pathway, localizes to cortical structures and binds Vps32. Traffic 2007; 8:1346-64. [PMID: 17696968 PMCID: PMC2171039 DOI: 10.1111/j.1600-0854.2007.00620.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PalC, distantly related to Saccharomyces cerevisiaeperipheral endosomal sorting complexes required for transport III (ESCRT-III) component Bro1p and one of six Aspergillus nidulanspH signalling proteins, contains a Bro1 domain. Green fluorescent protein (GFP)-tagged PalC is recruited to plasma membrane-associated punctate structures upon alkalinization, when pH signalling is active. PalC recruitment to these structures is dependent on the seven transmembrane domain (7-TMD) receptor and likely pH sensor PalH. PalC is a two-hybrid interactor of the ESCRT-III Vps20/Vps32 subcomplex and binds Vps32 directly. This binding is largely impaired by Pro439Phe, Arg442Ala and Arg442His substitutions in a conserved region mediating interaction of Bro1p with Vps32p, but these substitutions do not prevent cortical punctate localization, indicating Vps32 independence. In contrast, Arg442Δ impairs Vps32 binding and prevents PalC-GFP recruitment to cortical structures. pH signalling involves a plasma membrane complex including the 7-TMD receptor PalH and the arrestin-like PalF and an endosomal membrane complex involving the PalB protease, the transcription factor PacC and the Vps32 binding, Bro1-domain-containing protein PalA. PalC, which localizes to cortical structures and can additionally bind a component of ESCRT-III, has the features required to bridge these two entities. A likely S. cerevisiaeorthologue of PalC has been identified, providing the basis for a unifying hypothesis of gene regulation by ambient pH in ascomycetes.
Collapse
Affiliation(s)
- Antonio Galindo
- Departamento de Microbiología Molecular, Centro de Investigaciones Biológicas CSICRamiro de Maeztu 9, Madrid 28040, Spain
| | - América Hervás-Aguilar
- Departamento de Microbiología Molecular, Centro de Investigaciones Biológicas CSICRamiro de Maeztu 9, Madrid 28040, Spain
| | - Olga Rodríguez-Galán
- Departamento de Microbiología Molecular, Centro de Investigaciones Biológicas CSICRamiro de Maeztu 9, Madrid 28040, Spain
| | - Olivier Vincent
- Departamento de Microbiología Molecular, Centro de Investigaciones Biológicas CSICRamiro de Maeztu 9, Madrid 28040, Spain
- Departamento de Bioquímica y Genética de Levaduras, Instituto de Investigaciones Biomédicas CSICArturo Duperier 4, 28029 Madrid, Spain
| | - Herbert N Arst
- Department of Molecular Microbiology and Infection, Imperial College LondonFlowers Building, Armstrong Road, London SW7 2AZ, UK
| | - Joan Tilburn
- Department of Molecular Microbiology and Infection, Imperial College LondonFlowers Building, Armstrong Road, London SW7 2AZ, UK
| | - Miguel A Peñalva
- Departamento de Microbiología Molecular, Centro de Investigaciones Biológicas CSICRamiro de Maeztu 9, Madrid 28040, Spain
- Miguel A. Peñalva,
| |
Collapse
|
39
|
Hernández-Montañez Z, Araujo-Osorio J, Noriega-Reyes Y, Chávez-Camarillo G, Villa-Tanaca L. The intracellular proteolytic system of Yarrowia lipolytica and characterization of an aminopeptidase. FEMS Microbiol Lett 2007; 268:178-86. [PMID: 17227470 DOI: 10.1111/j.1574-6968.2006.00578.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Intracellular proteases of Yarrowia lipolytica have been scarcely studied. These enzymes may play an important role in nitrogen metabolism, posttranslational processing, nutritional stress, dimorphism, etc.; biochemical and genetic control of these enzymes can help in obtaining high-level expression of recombinant proteins in heterologous systems. In this study, we report the presence of three proteases: aminopeptidase yylAPE, carboxypeptidase yylCP and dipeptidyl aminopeptidase yylDAP, measured under several nutritional conditions. Yarrowia lipolytica produced the highest level of intracellular proteolytic enzymes, i.e. yylAPE, yylCP and yylDAP, in media with peptone during stationary growth phase. When soluble extracts were subjected to PAGE, and the three activities were revealed in gels with the corresponding substrates, only one band of activity was detected for each one. The three enzymes were affected by serine protease inhibitors. Chelating agents affected mainly APE activity. The aminopeptidase was purified by selective fractionation with ammonium sulfate and three chromatographic steps (anion exchange, hydrophobic interaction and gel filtration chromatography). The enzyme had a molecular mass of 97 kDa; optimal pH and temperature were 7.0 and 37 degrees C, respectively. The aminopeptidase showed a preference for lysine in the N-position. The K(m) value was 0.86 microM and V(max) value was 990.8 micromoL min(-1) mg(-1) for Lys-pNA.
Collapse
|
40
|
González-López CI, Ortiz-Castellanos L, Ruiz-Herrera J. The Ambient pH Response Rim Pathway in Yarrowia lipolytica: Identification of YlRIM9 and Characterization of Its Role in Dimorphism. Curr Microbiol 2006; 53:8-12. [PMID: 16775780 DOI: 10.1007/s00284-005-0070-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2005] [Accepted: 06/07/2005] [Indexed: 11/25/2022]
Abstract
Yarrowia lipolytica is a dimorphic fungus that secretes either an acidic or an alkaline protease depending on the environmental pH. Previous results have indicated that secretion of the alkaline protease is under control of the pH signaling Pal/Rim pathway originally described in Aspergillus nidulans. Several Y. lipolytica mutants defective in some Rim components of this pathway have been previously isolated and the RIM genes characterized. In the present study, Y. lipolytica RIM9 (palI) gene (YlRIM9) was sequenced from a plasmid (AL414126) of the Genolevures project (the DNA sequence data for YlRIM9 gene has been deposited at EMBL with accession number AJ566902). The derived translation product contains 724 amino acids with a predicted signal peptide and four transmembrane domains in its N-terminal region. We demonstrated that mutation in YlRIM9, as well as in other genes encoding members of the Pal/Rim pathway, did not affect the pH-dependent dimorphic transition of Y. lipolytica. A different pathway must exist in this fungus that controls the effect of pH on dimorphism.
Collapse
Affiliation(s)
- Claudia Isela González-López
- Departamento de Ingeniería Genética, Unidad de Biotecnología e Ingeniería Genética de Plantas, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Gto., México
| | | | | |
Collapse
|
41
|
Idiris A, Bi K, Tohda H, Kumagai H, Giga-Hama Y. Construction of a protease-deficient strain set for the fission yeast Schizosaccharomyces pombe, useful for effective production of protease-sensitive heterologous proteins. Yeast 2006; 23:83-99. [PMID: 16491466 DOI: 10.1002/yea.1342] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
One of the major problems hindering effective production and purification of heterologous proteins from the fission yeast Schizosaccharomyces pombe is proteolytic degradation of the recombinant gene products by host-specific proteases. As an initial solution to this problem, we constructed a protease-deficient disruptant set by respective disruption of 52 Sz. pombe protease genes. Functional screening of the resultant set was performed by observing secretory production of a proteolytically sensitive model protein, human growth hormone (hGH). The results indicated that some of the resultant disruptants were effective in reducing hGH degradation, as observed during the hGH expression procedure and mainly as a result of unknown serine- and/or cysteine-type proteases in the culture medium. These findings also demonstrated that construction of a protease-deficient strain set is not only useful for practical application in protein production, but also for functional screening, specification and modification of proteases in Sz. pombe, where further investigations of proteolytic processes and improvement through multiple gene manipulations are required.
Collapse
Affiliation(s)
- Alimjan Idiris
- ASPEX Division, Research Centre, Asahi Glass Co. Ltd, 1150 Hazawa-cho, Kanagawa-ku, Yokohama 221-8755, Japan
| | | | | | | | | |
Collapse
|
42
|
Cornet M, Bidard F, Schwarz P, Da Costa G, Blanchin-Roland S, Dromer F, Gaillardin C. Deletions of endocytic components VPS28 and VPS32 affect growth at alkaline pH and virulence through both RIM101-dependent and RIM101-independent pathways in Candida albicans. Infect Immun 2006; 73:7977-87. [PMID: 16299290 PMCID: PMC1307034 DOI: 10.1128/iai.73.12.7977-7987.2005] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ambient pH signaling involves a cascade of conserved Rim or Pal products in ascomycetous yeasts or filamentous fungi, respectively. Recent evidences in the fungi Aspergillus nidulans, Saccharomyces cerevisiae, Yarrowia lipolytica, and Candida albicans suggested that components of endosomal sorting complexes required for transport (ESCRT) involved in endocytic trafficking were needed for signal transduction along the Rim pathway. In this study, we confirm these findings with C. albicans and show that Vps28p (ESCRT-I) and Vps32p/Snf7p (ESCRT-III) are required for the transcriptional regulation of known targets of the Rim pathway, such as the PHR1 and PHR2 genes encoding cell surface proteins, which are expressed at alkaline and acidic pH, respectively. We additionally show that deletion of these two VPS genes, particularly VPS32, has a more drastic effect than a RIM101 deletion on growth at alkaline pH and that this effect is only partially suppressed by expression of a constitutively active form of Rim101p. Finally, in an in vivo mouse model, both vps null mutants were significantly less virulent than a rim101 mutant, suggesting that VPS28 and VPS32 gene products affect virulence both through Rim-dependent and Rim-independent pathways.
Collapse
Affiliation(s)
- Muriel Cornet
- Laboratoire de Microbiologie et Génétique Moléculaire, INRA, CBAI, 78850 Thiverval-Grignon, France
| | | | | | | | | | | | | |
Collapse
|
43
|
Massart S, Jijakli MH. Identification of Differentially Expressed Genes by cDNA-Amplified Fragment Length Polymorphism in the Biocontrol Agent Pichia anomala (Strain Kh5). PHYTOPATHOLOGY 2006; 96:80-86. [PMID: 18944207 DOI: 10.1094/phyto-96-0080] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
ABSTRACT cDNA-amplified fragment length polymorphism (cDNA-AFLP) analysis was used to identify genes potentially involved in biological control, by strain Kh5 (Pichia anomala), of Botrytis cinerea, an important post-harvest pathogen on apples. Strain Kh5 was grown in yeast nitrogen base (YNB) plus glucose (G medium) or YNB plus cell walls of B. cinerea (B medium). Thirty-five primer pairs were used in AFLP amplifications, resulting in a total of more than 2,450 bands derived from the mRNA of strain Kh5 grown in B medium. Eighty-six bands (3.5%) corresponded to genes upregulated in B medium compared with G medium. Of these 86 bands, 28 were selected, cloned, sequenced, and subjected to real-time reverse transcription-polymerase chain reaction (RT-PCR) to confirm their differential expression. An appropriate housekeeping gene, G2, was selected and used to normalize the results of RT-PCR. Eleven genes presented an increased gene expression in the presence of B. cinerea cell walls (expression >1). Statistical analysis showed a significant increase for 5 of these 11 genes. The overexpressed genes show homologies to yeast genes with various functions, including beta-glucosidase, transmembrane transport, citrate synthase, and external amino acid sensing and transport. Some of these functions could be related to cell wall metabolism and potentially involved in mycoparasitic properties.
Collapse
Affiliation(s)
- Sébastien Massart
- Plant Pathology Unit, FacultéUniversitaire des Sciences Agronomiques de Gembloux, Belgium
| | | |
Collapse
|
44
|
Lubkowitz M. The OPT family functions in long-distance peptide and metal transport in plants. GENETIC ENGINEERING 2006; 27:35-55. [PMID: 16382870 DOI: 10.1007/0-387-25856-6_3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The OPT family was first described six years ago, and much progress has been made in understanding the role these transporters play in their respective organisms. Plants are the only organisms in which both YS- and PT-type transporters have been characterized, and all of these OPTs appear to be plasma membrane-bound proteins, suggesting that they import substrates from the apoplasm or the environment. YS1 is the only OPT known to translocate substrates from the rhizosphere, whereas all the other OPTs seem to function in long-distance transport of peptides or metals. The sum of all the studies covered in this review suggest the model for OPT function in plants depicted in Figure 4. Peptides, metal-NA, and metal-MAs complexes (Strategy II plants only) are loaded into the xylem stream in the root for long-distance transport. OPTs unload the xylem by importing substrates into sink tissues such as leaves and by transloading the phloem. Peptides and metal-NA complexes exit the leaf symplasmically or by importation into the phloem from the apoplasm by OPTs. The filial tissues (endosperm and embryo) are apoplasmically separated from the maternal tissues, and OPTs may also function in loading the developing seed. Similarly, seedlings are symplasmically disconnected from the endosperm and OPTs may help move nutrients to the growing plant. Much progress has been made in the last two years toward understanding OPTs in plants, although several fundamental questions remain unanswered. Namely, what is the level of redundancy? Is there any substrate overlap between YS and PT OPTs? How crucial are their respective roles? Are there additional functions beyond peptide and metal transport? Given the recent pace of discovery, we may not have to wait long to find out the answers.
Collapse
Affiliation(s)
- Mark Lubkowitz
- Biology Department, Saint Michael's College, Colchester, Vermont 05477, USA
| |
Collapse
|
45
|
Hayashi M, Fukuzawa T, Sorimachi H, Maeda T. Constitutive activation of the pH-responsive Rim101 pathway in yeast mutants defective in late steps of the MVB/ESCRT pathway. Mol Cell Biol 2005; 25:9478-90. [PMID: 16227598 PMCID: PMC1265799 DOI: 10.1128/mcb.25.21.9478-9490.2005] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In many fungi, transcriptional responses to alkaline pH are mediated by conserved signal transduction machinery. In the homologous system in Saccharomyces cerevisiae, the zinc-finger transcription factor Rim101 is activated under alkaline conditions to regulate transcription of target genes. The activation of Rim101 is exerted through proteolytic processing of its C-terminal inhibitory domain. Regulated processing of Rim101 requires several proteins, including the calpain-like protease Rim13/Cpl1, a putative protease scaffold Rim20, putative transmembrane proteins Rim9, and Rim21/Pal2, and Rim8/Pal3 of unknown biochemical function. To identify new regulatory components and thereby determine the order of action among the components in the pathway, we screened for suppressors of rim9Delta and rim21Delta mutations. Three identified suppressors-did4/vps2, vps24, and vps4-all belonged to "class E" vps mutants, which are commonly defective in multivesicular body sorting. These mutations suppress rim8, rim9, and rim21 but not rim13 or rim20, indicating that Rim8, Rim9, and Rim21 act upstream of Rim13 and Rim20 in the pathway. Disruption of DID4, VPS24, or VPS4, by itself, uncouples pH sensing from Rim101 processing, leading to constitutive Rim101 activation. Based on extensive epistasis analysis between pathway-activating and -inactivating mutations, a model for architecture and regulation of the Rim101 pathway is proposed.
Collapse
Affiliation(s)
- Michio Hayashi
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | | | | | | |
Collapse
|
46
|
Blanchin-Roland S, Costa GD, Gaillardin C. ESCRT-I components of the endocytic machinery are required for Rim101-dependent ambient pH regulation in the yeast Yarrowia lipolytica. MICROBIOLOGY-SGM 2005; 151:3627-3637. [PMID: 16272384 DOI: 10.1099/mic.0.28196-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Ambient pH signalling involves a cascade of conserved Rim or Pal products in ascomycetous yeasts or filamentous fungi, respectively. Insertional mutagenesis in the yeast Yarrowia lipolytica identified two components of the endosome-associated ESCRT-I complex involved in multivesicular body (MVB) vesicle formation, YlVps28p and YlVps23p. They were shown to be required at alkaline pH, like Rim factors, for transcriptional activation of alkaline-induced genes and repression of acid-induced genes. The constitutively active YlRIM101-1119 allele, which suppresses the pH-signalling defects of Ylrim mutations, also suppresses Ylvps defects in pH response, but not in endocytosis. The contribution of the ESCRT-III component Snf7p could not be assessed due to the essential nature of this component in Y. lipolytica. Unlike Rim factors, YlVps4p, a component of the MVB pathway acting downstream from ESCRT complexes, seems not to be required for the alkaline response. In Y. lipolytica, all vps mutations including those affecting YlVPS4, affected growth at acidic pH, a feature not exhibited by Ylrim mutations. These results suggest that Rim and Vps pathways cooperate in ambient pH signalling and that this relation is conserved across the full range of hemiascomycetous yeasts.
Collapse
Affiliation(s)
- Sylvie Blanchin-Roland
- Microbiologie et Génétique Moléculaire, Institut National Agronomique Paris-Grignon, Institut National de la Recherche Agronomique UMR1238, Centre National de la Recherche Scientifique UMR2585, 78850 Thiverval-Grignon, France
| | - Grégory Da Costa
- Microbiologie et Génétique Moléculaire, Institut National Agronomique Paris-Grignon, Institut National de la Recherche Agronomique UMR1238, Centre National de la Recherche Scientifique UMR2585, 78850 Thiverval-Grignon, France
| | - Claude Gaillardin
- Microbiologie et Génétique Moléculaire, Institut National Agronomique Paris-Grignon, Institut National de la Recherche Agronomique UMR1238, Centre National de la Recherche Scientifique UMR2585, 78850 Thiverval-Grignon, France
| |
Collapse
|
47
|
Barwell KJ, Boysen JH, Xu W, Mitchell AP. Relationship of DFG16 to the Rim101p pH response pathway in Saccharomyces cerevisiae and Candida albicans. EUKARYOTIC CELL 2005; 4:890-9. [PMID: 15879523 PMCID: PMC1140096 DOI: 10.1128/ec.4.5.890-899.2005] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Many fungal pH responses depend upon conserved Rim101p/PacC transcription factors, which are activated by C-terminal proteolytic processing. The means by which environmental pH is sensed by this pathway are not known. Here, we report a screen of the Saccharomyces cerevisiae viable deletion mutant library that has yielded a new gene required for processed Rim101p accumulation, DFG16. An S. cerevisiae dfg16Delta mutant expresses Rim101p-repressed genes at elevated levels. In addition, Candida albicans dfg16Delta/dfg16Delta mutants are defective in alkaline pH-induced filamentation, and their defect is suppressed by expression of truncated Rim101-405p. Thus, Dfg16p is a functionally conserved Rim101p pathway member. Many proteins required for processed Rim101p accumulation are members of the ESCRT complex, which functions in the formation of multivesicular bodies (MVBs). Staining with the dye FM4-64 indicates that the S. cerevisiae dfg16Delta mutant does not have an MVB defect. We find that two transcripts, PRY1 and ASN1, respond to mutations that affect both the Rim101p and MVB pathways but not to mutations that affect only one pathway. The S. cerevisiae dfg16Delta mutation does not affect PRY1 and ASN1 expression, thus confirming that Dfg16p function is restricted to the Rim101p pathway. Dfg16p is homologous to Aspergillus nidulans PalH, a component of the well-characterized PacC processing pathway. We verify that the previously recognized PalH homolog, Rim21p, also functions in the S. cerevisiae Rim101p pathway. Dfg16p is predicted to have seven membrane-spanning segments and a long hydrophilic C-terminal region, as expected if Dfg16p were a G-protein-coupled receptor.
Collapse
Affiliation(s)
- Karen J Barwell
- Department of Microbiology, Columbia University, 701 West 168th Street, New York, NY 10032, USA
| | | | | | | |
Collapse
|
48
|
Tilburn J, Sánchez-Ferrero JC, Reoyo E, Arst HN, Peñalva MA. Mutational analysis of the pH signal transduction component PalC of Aspergillus nidulans supports distant similarity to BRO1 domain family members. Genetics 2005; 171:393-401. [PMID: 15944343 PMCID: PMC1456523 DOI: 10.1534/genetics.105.044644] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The alkaline ambient pH signal transduction pathway component PalC has no assigned molecular role. Therefore we attempted a gene-specific mutational analysis and obtained 55 new palC loss-of-function alleles including 24 single residue substitutions. Refined similarity searches reveal conserved PalC regions including one with convincing similarity to the BRO1 domain, denoted PCBROH, where clustering of mutational changes, including PCBROH key residue substitutions, supports its structural and/or functional importance. Since the BRO1 domain occurs in the multivesicular body (MVB) pathway protein Bro1/Vps31 and also the pH signal transduction protein PalA (Rim20), both of which interact with MVB component (ESCRT-III protein) Vps32/Snf7, this might reflect a further link between the pH response and endocytosis.
Collapse
Affiliation(s)
- Joan Tilburn
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, United Kingdom.
| | | | | | | | | |
Collapse
|
49
|
Aréchiga-Carvajal ET, Ruiz-Herrera J. The RIM101/pacC homologue from the basidiomycete Ustilago maydis is functional in multiple pH-sensitive phenomena. EUKARYOTIC CELL 2005; 4:999-1008. [PMID: 15947192 PMCID: PMC1151993 DOI: 10.1128/ec.4.6.999-1008.2005] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2004] [Accepted: 04/18/2005] [Indexed: 11/20/2022]
Abstract
A homologue of the gene encoding the transcription factor Rim101 (PacC), involved in pH signal transduction in fungi, was identified in the pathogenic basidiomycete Ustilago maydis. The gene (RIM101) encodes a protein of 827 amino acid residues, which shows highest similarity to PacC proteins from Fusarium oxysporum and Aspergillus niger. The gene had the capacity to restore protease activity to rim101 mutants from Yarrowia lipolytica, confirming its homologous function, and was expressed at both acid and neutral pH. Null Deltarim101 mutants were not affected in the in vitro pH-induced dimorphic transition, their growth rate, resistance to hypertonic sorbitol or KCl stress, and pathogenicity. However, similar to pacC (rim101) mutants in other fungi, they displayed a pleiotropic phenotype with alterations in morphogenesis, impairment in protease secretion, and increased sensitivity to Na+ and Li+ ions. Other phenotypic characteristics not previously reported in fungal pacC (rim101) mutants (morphological changes, increased sensitivity to lytic enzymes, and augmented polysaccharide secretion) were also observed in U. maydis mutants. All these modifications were alleviated by transformation with the wild-type gene, confirming that all were the result of mutation in RIM101. These data indicate that the Pal/Rim pathway is functional in U. maydis (and probably in other basidiomycetes) and plays complex roles in pH-sensing phenomena, as occurs in ascomycetes and deuteromycetes.
Collapse
Affiliation(s)
- Elva T Aréchiga-Carvajal
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN Unidad Irapuato, Km. 9.6 Libramiento Norte, Carretera Irapuato-León, 36500 Irapuato, Gto., México
| | | |
Collapse
|
50
|
Peñalva MA, Arst HN. Recent advances in the characterization of ambient pH regulation of gene expression in filamentous fungi and yeasts. Annu Rev Microbiol 2004; 58:425-51. [PMID: 15487944 DOI: 10.1146/annurev.micro.58.030603.123715] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
All microorganisms must adapt to the pH of their environment. One aspect of this adaptation, particularly important for organisms that grow over a wide pH range, is the ability to express appropriately genes whose roles ultimately involve functions at the cell surface or in the environment. Genes encoding permeases, secreted enzymes, enzymes involved in synthesis of exported metabolites such as toxins and antibiotics, and probably enzymes modifying secreted proteins posttranslationally all fall into this category. Here we discuss the most recent findings on the transcriptional regulatory system in fungi that enables such genes to be expressed only when the ambient pH is conducive to their ultimate functions. The intriguing issue of how pH is sensed and how the resulting signal is transmitted to the transcription factor involves at least one late endosome component. Proper functioning of the regulatory system responding to ambient pH is essential for fungal pathogenicity of both animals and plants.
Collapse
Affiliation(s)
- Miguel A Peñalva
- Centro de Investigaciones Biológicas CSIC, Ramiro de Maeztu 9, Madrid 28040, Spain.
| | | |
Collapse
|