1
|
Wang M, Wu N, Wang H, Liu C, Chen Q, Xu T, Chen Y, Zhao Y, Ma Z. Overproduction of mycotoxin biosynthetic enzymes triggers Fusarium toxisome-shaped structure formation via endoplasmic reticulum remodeling. PLoS Pathog 2024; 20:e1011913. [PMID: 38166144 PMCID: PMC10786393 DOI: 10.1371/journal.ppat.1011913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 01/12/2024] [Accepted: 12/19/2023] [Indexed: 01/04/2024] Open
Abstract
Mycotoxin deoxynivalenol (DON) produced by the Fusarium graminearum complex is highly toxic to animal and human health. During DON synthesis, the endoplasmic reticulum (ER) of F. graminearum is intensively reorganized, from thin reticular structure to thickened spherical and crescent structure, which was referred to as "DON toxisome". However, the underlying mechanism of how the ER is reorganized into toxisome remains unknown. In this study, we discovered that overproduction of ER-localized DON biosynthetic enzyme Tri4 or Tri1, or intrinsic ER-resident membrane proteins FgHmr1 and FgCnx was sufficient to induce toxisome-shaped structure (TSS) formation under non-toxin-inducing conditions. Moreover, heterologous overexpression of Tri1 and Tri4 proteins in non-DON-producing fungi F. oxysporum f. sp. lycopersici and F. fujikuroi also led to TSS formation. In addition, we found that the high osmolarity glycerol (HOG), but not the unfolded protein response (UPR) signaling pathway was involved in the assembly of ER into TSS. By using toxisome as a biomarker, we screened and identified a novel chemical which exhibited high inhibitory activity against toxisome formation and DON biosynthesis, and inhibited Fusarium growth species-specifically. Taken together, this study demonstrated that the essence of ER remodeling into toxisome structure is a response to the overproduction of ER-localized DON biosynthetic enzymes, providing a novel pathway for management of mycotoxin contamination.
Collapse
Affiliation(s)
- Minhui Wang
- State Key Laboratory of Rice Biology, Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, People’s Republic of China
| | - Ningjie Wu
- Zhejiang Research Institute of Chemical Industry, Hangzhou, People’s Republic of China
| | - Huiyuan Wang
- State Key Laboratory of Rice Biology, Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, People’s Republic of China
| | - Chang Liu
- State Key Laboratory of Rice Biology, Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, People’s Republic of China
| | - Qiaowan Chen
- State Key Laboratory of Rice Biology, Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, People’s Republic of China
| | - Tianming Xu
- Zhejiang Research Institute of Chemical Industry, Hangzhou, People’s Republic of China
| | - Yun Chen
- State Key Laboratory of Rice Biology, Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, People’s Republic of China
| | - Youfu Zhao
- Irrigated Agriculture Research and Extension Center, Department of Plant Pathology, Washington State University, Prosser, Washington, United States of America
| | - Zhonghua Ma
- State Key Laboratory of Rice Biology, Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, People’s Republic of China
| |
Collapse
|
2
|
Niwa M. A cell cycle checkpoint for the endoplasmic reticulum. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118825. [PMID: 32828757 DOI: 10.1016/j.bbamcr.2020.118825] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 02/07/2023]
Abstract
The generation of new cells is one of the most fundamental aspects of cell biology. Proper regulation of the cell cycle is critical for human health, as underscored by many diseases associated with errors in cell cycle regulation, including both cancer and hereditary diseases. A large body of work has identified regulatory mechanisms and checkpoints that ensure accurate and timely replication and segregation of chromosomal DNA. However, few studies have evaluated the extent to which similar checkpoints exist for the division of cytoplasmic components, including organelles. Such checkpoint mechanisms might be crucial for compartments that cannot be generated de novo, such as the endoplasmic reticulum (ER). In this review, we highlight recent work in the model organism Saccharomyces cerevisiae that led to the discovery of such a checkpoint that ensures that cells inherit functional ER into the daughter cell.
Collapse
Affiliation(s)
- Maho Niwa
- Division of Biological Sciences, Section of Molecular Biology, University of California San Diego, NSB#1, Rm 5328, 9500 Gilman Drive, La Jolla, CA 92093-0377, United States of America.
| |
Collapse
|
3
|
Abstract
RhoGDIs (Rho GDP-dissociation inhibitors) are the natural inhibitors of Rho GTPases. They interfere with Rho protein function by either blocking upstream activation or association with downstream signalling molecules. RhoGDIs can also extract membrane-bound Rho GTPases to form soluble cytosolic complexes. We have shown previously that purified yeast RhoGDI Rdi1p, can inhibit vacuole membrane fusion in vitro. In the present paper we functionally dissect Rdi1p to discover its mode of regulating membrane fusion. Overexpression of Rdi1p in vivo profoundly affected cell morphology including increased actin patches in mother cells indicative of polarity defects, delayed ALP (alkaline phosphatase) sorting and the presence of highly fragmented vacuoles indicative of membrane fusion defects. These defects were not caused by the loss of typical transport and fusion proteins, but rather were linked to the reduction of membrane localization and activation of Cdc42p and Rho1p. Subcellular fractionation showed that Rdi1p is predominantly a cytosolic monomer, free of bound Rho GTPases. Overexpression of endogenous Rdi1p, or the addition of exogenous Rdi1p, generated stable cytosolic complexes. Rdi1p structure-function analysis showed that membrane association via the C-terminal β-sheet domain was required for the functional inhibition of membrane fusion. Furthermore, Rdi1p inhibited membrane fusion through the binding of Rho GTPases independent from its extraction activity.
Collapse
|
4
|
Babour A, Bicknell AA, Tourtellotte J, Niwa M. A surveillance pathway monitors the fitness of the endoplasmic reticulum to control its inheritance. Cell 2010; 142:256-69. [PMID: 20619447 DOI: 10.1016/j.cell.2010.06.006] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 03/22/2010] [Accepted: 05/13/2010] [Indexed: 12/26/2022]
Abstract
The endoplasmic reticulum (ER) plays an essential role in the production of lipids and secretory proteins. Because the ER cannot be generated de novo, it must be faithfully transmitted or divided at each cell division. Little is known of how cells monitor the functionality of the ER during the cell cycle or how this regulates inheritance. We report here that ER stress in S. cerevisiae activates the MAP kinase Slt2 in a new ER stress surveillance (ERSU) pathway, independent of the unfolded protein response. Upon ER stress, ERSU alters the septin complex to delay ER inheritance and cytokinesis. In the absence of Slt2 kinase, the stressed ER is transmitted to the daughter cell, causing the death of both mother and daughter cells. Furthermore, Slt2 is activated via the cell surface receptor Wsc1 by a previously undescribed mechanism. We conclude that the ERSU pathway ensures inheritance of a functional ER.
Collapse
Affiliation(s)
- Anna Babour
- Division of Biological Sciences, Section of Molecular Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0377, USA
| | | | | | | |
Collapse
|
5
|
Guo J, Tian D, McKinney BA, Hartman JL. Recursive expectation-maximization clustering: a method for identifying buffering mechanisms composed of phenomic modules. CHAOS (WOODBURY, N.Y.) 2010; 20:026103. [PMID: 20590332 PMCID: PMC2909310 DOI: 10.1063/1.3455188] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Accepted: 05/26/2010] [Indexed: 05/29/2023]
Abstract
Interactions between genetic and/or environmental factors are ubiquitous, affecting the phenotypes of organisms in complex ways. Knowledge about such interactions is becoming rate-limiting for our understanding of human disease and other biological phenomena. Phenomics refers to the integrative analysis of how all genes contribute to phenotype variation, entailing genome and organism level information. A systems biology view of gene interactions is critical for phenomics. Unfortunately the problem is intractable in humans; however, it can be addressed in simpler genetic model systems. Our research group has focused on the concept of genetic buffering of phenotypic variation, in studies employing the single-cell eukaryotic organism, S. cerevisiae. We have developed a methodology, quantitative high throughput cellular phenotyping (Q-HTCP), for high-resolution measurements of gene-gene and gene-environment interactions on a genome-wide scale. Q-HTCP is being applied to the complete set of S. cerevisiae gene deletion strains, a unique resource for systematically mapping gene interactions. Genetic buffering is the idea that comprehensive and quantitative knowledge about how genes interact with respect to phenotypes will lead to an appreciation of how genes and pathways are functionally connected at a systems level to maintain homeostasis. However, extracting biologically useful information from Q-HTCP data is challenging, due to the multidimensional and nonlinear nature of gene interactions, together with a relative lack of prior biological information. Here we describe a new approach for mining quantitative genetic interaction data called recursive expectation-maximization clustering (REMc). We developed REMc to help discover phenomic modules, defined as sets of genes with similar patterns of interaction across a series of genetic or environmental perturbations. Such modules are reflective of buffering mechanisms, i.e., genes that play a related role in the maintenance of physiological homeostasis. To develop the method, 297 gene deletion strains were selected based on gene-drug interactions with hydroxyurea, an inhibitor of ribonucleotide reductase enzyme activity, which is critical for DNA synthesis. To partition the gene functions, these 297 deletion strains were challenged with growth inhibitory drugs known to target different genes and cellular pathways. Q-HTCP-derived growth curves were used to quantify all gene interactions, and the data were used to test the performance of REMc. Fundamental advantages of REMc include objective assessment of total number of clusters and assignment to each cluster a log-likelihood value, which can be considered an indicator of statistical quality of clusters. To assess the biological quality of clusters, we developed a method called gene ontology information divergence z-score (GOid_z). GOid_z summarizes total enrichment of GO attributes within individual clusters. Using these and other criteria, we compared the performance of REMc to hierarchical and K-means clustering. The main conclusion is that REMc provides distinct efficiencies for mining Q-HTCP data. It facilitates identification of phenomic modules, which contribute to buffering mechanisms that underlie cellular homeostasis and the regulation of phenotypic expression.
Collapse
Affiliation(s)
- Jingyu Guo
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | |
Collapse
|
6
|
Fang Y, Imagawa K, Zhou X, Kita A, Sugiura R, Jaiseng W, Kuno T. Pleiotropic phenotypes caused by an opal nonsense mutation in an essential gene encoding HMG-CoA reductase in fission yeast. Genes Cells 2009; 14:759-71. [PMID: 19486165 DOI: 10.1111/j.1365-2443.2009.01308.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Schizosaccharomyces pombe genome contains an essential gene hmg1(+) encoding the sterol biosynthetic enzyme, 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR). Here, we isolated an allele of the hmg1(+) gene, hmg1-1/its12, as a mutant that showed sensitivities to high temperature and to FK506, a calcineurin inhibitor. The hmg1-1 allele contained an opal nonsense mutation in its N-terminal transmembrane domain, yet in spite of the mutation a full-length protein was produced, suggesting a read-through termination codon. Consistently, overexpression of the hmg1-1 mutant gene suppressed the mutant phenotypes. The hmg1-1 mutant showed hypersensitivity to pravastatin, an HMGR inhibitor, suggesting a defective HMGR activity. The mutant treated with FK506 caused dramatic morphological changes and showed defects in cell wall integrity, as well as displayed synthetic growth phenotypes with the mutant alleles of genes involved in cytokinesis and cell wall integrity. The mutant exhibited different phenotypes from those of the disruption mutants of ergosterol biosynthesis genes, and it showed normal filipin staining as well as showed normal subcellular localization of small GTPases. These data suggest that the pleiotropic phenotypes reflect the integrated effects of the reduced availability of ergosterol and various intermediates of the mevalonate pathway.
Collapse
Affiliation(s)
- Yue Fang
- Division of Molecular Pharmacology and Pharmacogenomics, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan.
| | | | | | | | | | | | | |
Collapse
|
7
|
The temporal program of chromosome replication: genomewide replication in clb5{Delta} Saccharomyces cerevisiae. Genetics 2008; 180:1833-47. [PMID: 18832352 DOI: 10.1534/genetics.108.094359] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Temporal regulation of origin activation is widely thought to explain the pattern of early- and late-replicating domains in the Saccharomyces cerevisiae genome. Recently, single-molecule analysis of replication suggested that stochastic processes acting on origins with different probabilities of activation could generate the observed kinetics of replication without requiring an underlying temporal order. To distinguish between these possibilities, we examined a clb5Delta strain, where origin firing is largely limited to the first half of S phase, to ask whether all origins nonspecifically show decreased firing (as expected for disordered firing) or if only some origins ("late" origins) are affected. Approximately half the origins in the mutant genome show delayed replication while the remainder replicate largely on time. The delayed regions can encompass hundreds of kilobases and generally correspond to regions that replicate late in wild-type cells. Kinetic analysis of replication in wild-type cells reveals broad windows of origin firing for both early and late origins. Our results are consistent with a temporal model in which origins can show some heterogeneity in both time and probability of origin firing, but clustering of temporally like origins nevertheless yields a genome that is organized into blocks showing different replication times.
Collapse
|
8
|
Federovitch CM, Jones YZ, Tong AH, Boone C, Prinz WA, Hampton RY. Genetic and structural analysis of Hmg2p-induced endoplasmic reticulum remodeling in Saccharomyces cerevisiae. Mol Biol Cell 2008; 19:4506-20. [PMID: 18667535 DOI: 10.1091/mbc.e07-11-1188] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The endoplasmic reticulum (ER) is highly plastic, and increased expression of distinct single ER-resident membrane proteins, such as HMG-CoA reductase (HMGR), can induce a dramatic restructuring of ER membranes into highly organized arrays. Studies on the ER-remodeling behavior of the two yeast HMGR isozymes, Hmg1p and Hmg2p, suggest that they could be mechanistically distinct. We examined the features of Hmg2p required to generate its characteristic structures, and we found that the molecular requirements are similar to those of Hmg1p. However, the structures generated by Hmg1p and Hmg2p have distinct cell biological features determined by the transmembrane regions of the proteins. In parallel, we conducted a genetic screen to identify HER genes (required for Hmg2p-induced ER Remodeling), further confirming that the mechanisms of membrane reorganization by these two proteins are distinct because most of the HER genes were required for Hmg2p but not Hmg1p-induced ER remodeling. One of the HER genes identified was PSD1, which encodes the phospholipid biosynthetic enzyme phosphatidylserine decarboxylase. This direct connection to phospholipid biosynthesis prompted a more detailed examination of the effects of Hmg2p on phospholipid mutants and composition. Our analysis revealed that overexpression of Hmg2p caused significant and specific growth defects in nulls of the methylation pathway for phosphatidylcholine biosynthesis that includes the Psd1p enzyme. Furthermore, increased expression of Hmg2p altered the composition of cellular phospholipids in a manner that implied a role for PSD1. These phospholipid effects, unlike Hmg2p-induced ER remodeling, required the enzymatic activity of Hmg2p. Together, our results indicate that, although related, Hmg2p- and Hmg1p-induced ER remodeling are mechanistically distinct.
Collapse
Affiliation(s)
- Christine M Federovitch
- UCSD Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093-0347, USA
| | | | | | | | | | | |
Collapse
|
9
|
Zurita-Martinez SA, Puria R, Pan X, Boeke JD, Cardenas ME. Efficient Tor signaling requires a functional class C Vps protein complex in Saccharomyces cerevisiae. Genetics 2007; 176:2139-50. [PMID: 17565946 PMCID: PMC1950620 DOI: 10.1534/genetics.107.072835] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Accepted: 05/25/2007] [Indexed: 12/26/2022] Open
Abstract
The Tor kinases regulate responses to nutrients and control cell growth. Unlike most organisms that only contain one Tor protein, Saccharomyces cerevisiae expresses two, Tor1 and Tor2, which are thought to share all of the rapamycin-sensitive functions attributable to Tor signaling. Here we conducted a genetic screen that defined the global TOR1 synthetic fitness or lethal interaction gene network. This screen identified mutations in distinctive functional categories that impaired vacuolar function, including components of the EGO/Gse and PAS complexes that reduce fitness. In addition, tor1 is lethal in combination with mutations in class C Vps complex components. We find that Tor1 does not regulate the known function of the class C Vps complex in protein sorting. Instead class C vps mutants fail to recover from rapamycin-induced growth arrest or to survive nitrogen starvation and have low levels of amino acids. Remarkably, addition of glutamate or glutamine restores viability to a tor1 pep3 mutant strain. We conclude that Tor1 is more effective than Tor2 at providing rapamycin-sensitive Tor signaling under conditions of amino acid limitation, and that an intact class C Vps complex is required to mediate intracellular amino acid homeostasis for efficient Tor signaling.
Collapse
Affiliation(s)
- Sara A Zurita-Martinez
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
10
|
Lauwers E, André B. Association of Yeast Transporters with Detergent-Resistant Membranes Correlates with Their Cell-Surface Location. Traffic 2006; 7:1045-59. [PMID: 16734661 DOI: 10.1111/j.1600-0854.2006.00445.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Detergent-resistant membrane (DRM) fractions enriched in ergosterol and sphingolipids can be isolated from yeast cells and have been proposed to represent the biochemical equivalents of lipid rafts. Most yeast plasma membrane proteins studied for their detergent solubility have been found in DRMs, except for the Hxt1 and Gap1 permeases. We here compared Gap1 detergent solubility in wild-type and various mutant cells under conditions promoting cell surface accumulation or ubiquitin-dependent down-regulation of the permease. We show that Gap1 present at the plasma membrane is associated with DRMs. This association occurs at the Golgi level. In the absence of sphingolipid neosynthesis, Gap1 fails to accumulate at the plasma membrane and is missorted to the vacuolar lumen. Furthermore, the presence of Gap1 at the plasma membrane correlates perfectly with its association with DRMs, whatever the activity or ubiquitination state of the permease and regardless of whether it has reached the cell surface via normal secretion, after recycling, or upon missorting to the vacuole before rerouting to the plasma membrane. Finally, we show that Hxt1 present at the cell surface is also associated with DRMs. We discuss a model where yeast plasma membrane proteins are systematically associated with sphingolipid/ergosterol-enriched microdomains when located at the cell surface.
Collapse
Affiliation(s)
- Elsa Lauwers
- Laboratoire de Physiologie Moléculaire de la Cellule, Institut de Biologie et de Médecine Moléculaires (IBMM), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | | |
Collapse
|
11
|
Ando A, Tanaka F, Murata Y, Takagi H, Shima J. Identification and classification of genes required for tolerance to high-sucrose stress revealed by genome-wide screening of Saccharomyces cerevisiae. FEMS Yeast Res 2006; 6:249-67. [PMID: 16487347 DOI: 10.1111/j.1567-1364.2006.00035.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Yeasts used in bread making are exposed to high concentrations of sucrose during sweet dough fermentation. Despite its importance, tolerance to high-sucrose stress is poorly understood at the gene level. To clarify the genes required for tolerance to high-sucrose stress, genome-wide screening was undertaken using the complete deletion strain collection of diploid Saccharomyces cerevisiae. The screening identified 273 deletions that yielded high sucrose sensitivity, approximately 20 of which were previously uncharacterized. These 273 deleted genes were classified based on their cellular function and localization of their gene products. Cross-sensitivity of the high-sucrose-sensitive mutants to high concentrations of NaCl and sorbitol was studied. Among the 273 sucrose-sensitive deletion mutants, 269 showed cross-sensitivities to sorbitol or NaCl, and four (i.e. ade5,7, ade6, ade8, and pde2) were specifically sensitive to high sucrose. The general stress response pathways via high-osmolarity glycerol and stress response element pathways and the function of the invertase in the ade mutants were similar to those in the wild-type strain. In the presence of high-sucrose stress, intracellular contents of ATP in ade mutants were at least twofold lower than that of the wild-type cells, suggesting that depletion of ATP is a factor in sensitivity to high-sucrose stress. The genes identified in this study might be important for tolerance to high-sucrose stress, and therefore should be target genes in future research into molecular modification for breeding of yeast tolerant to high-sucrose stress.
Collapse
Affiliation(s)
- Akira Ando
- National Food Research Institute, Ibaraki, Japan
| | | | | | | | | |
Collapse
|
12
|
Loertscher J, Larson LL, Matson CK, Parrish ML, Felthauser A, Sturm A, Tachibana C, Bard M, Wright R. Endoplasmic reticulum-associated degradation is required for cold adaptation and regulation of sterol biosynthesis in the yeast Saccharomyces cerevisiae. EUKARYOTIC CELL 2006; 5:712-22. [PMID: 16607018 PMCID: PMC1459677 DOI: 10.1128/ec.5.4.712-722.2006] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Accepted: 01/16/2006] [Indexed: 11/20/2022]
Abstract
Endoplasmic reticulum-associated degradation (ERAD) mediates the turnover of short-lived and misfolded proteins in the ER membrane or lumen. In spite of its important role, only subtle growth phenotypes have been associated with defects in ERAD. We have discovered that the ERAD proteins Ubc7 (Qri8), Cue1, and Doa10 (Ssm4) are required for growth of yeast that express high levels of the sterol biosynthetic enzyme, 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR). Interestingly, the observed growth defect was exacerbated at low temperatures, producing an HMGR-dependent cold sensitivity. Yeast strains lacking UBC7, CUE1, or DOA10 also assembled aberrant karmellae (ordered arrays of membranes surrounding the nucleus that assemble when HMGR is expressed at high levels). However, rather than reflecting the accumulation of abnormal karmellae, the cold sensitivity of these ERAD mutants was due to increased HMGR catalytic activity. Mutations that compromise proteasomal function also resulted in cold-sensitive growth of yeast with elevated HMGR, suggesting that improper degradation of ERAD targets might be responsible for the observed cold-sensitive phenotype. However, the essential ERAD targets were not the yeast HMGR enzymes themselves. The sterol metabolite profile of ubc7Delta cells was altered relative to that of wild-type cells. Since sterol levels are known to regulate membrane fluidity, the viability of ERAD mutants expressing normal levels of HMGR was examined at low temperatures. Cells lacking UBC7, CUE1, or DOA10 were cold sensitive, suggesting that these ERAD proteins have a role in cold adaptation, perhaps through effects on sterol biosynthesis.
Collapse
|
13
|
Wagner MC, Molnar EE, Molitoris BA, Goebl MG. Loss of the homotypic fusion and vacuole protein sorting or golgi-associated retrograde protein vesicle tethering complexes results in gentamicin sensitivity in the yeast Saccharomyces cerevisiae. Antimicrob Agents Chemother 2006; 50:587-95. [PMID: 16436714 PMCID: PMC1366904 DOI: 10.1128/aac.50.2.587-595.2006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Gentamicin continues to be a primary antibiotic against gram-negative infections. Unfortunately, associated nephro- and ototoxicity limit its use. Our previous mammalian studies showed that gentamicin is trafficked to the endoplasmic reticulum in a retrograde manner and subsequently released into the cytosol. To better dissect the mechanism through which gentamicin induces toxicity, we have chosen to study its toxicity using the simple eukaryote Saccharomyces cerevisiae. A recent screen of the yeast deletion library identified multiple gentamicin-sensitive strains, many of which participate in intracellular trafficking. Our approach was to evaluate gentamicin sensitivity under logarithmic growth conditions. By quantifying growth inhibition in the presence of gentamicin, we determined that several of the sensitive strains were part of the Golgi-associated retrograde protein (GARP) and homotypic fusion and vacuole protein sorting (HOPS) complexes. Further evaluation of their other components showed that the deletion of any GARP member resulted in gentamicin-hypersensitive strains, while the deletion of other HOPS members resulted in less gentamicin sensitivity. Other genes whose deletion resulted in gentamicin hypersensitivity included ZUO1, SAC1, and NHX1. Finally, we utilized a Texas Red gentamicin conjugate to characterize gentamicin uptake and localization in both gentamicin-sensitive and -insensitive strains. These studies were consistent with our mammalian studies, suggesting that gentamicin toxicity in yeast results from alterations to intracellular trafficking pathways. The identification of genes whose absence results in gentamicin toxicity will help target specific pathways and mechanisms that contribute to gentamicin toxicity.
Collapse
Affiliation(s)
- Mark C Wagner
- Department of Medicine, Division of Nephrology, and the Indiana Center for Biological Microscopy, Indiana University School of Medicine, Indianapolis, Indiana 46202-5122, USA
| | | | | | | |
Collapse
|
14
|
Federovitch CM, Ron D, Hampton RY. The dynamic ER: experimental approaches and current questions. Curr Opin Cell Biol 2005; 17:409-14. [PMID: 15975777 DOI: 10.1016/j.ceb.2005.06.010] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2005] [Accepted: 06/08/2005] [Indexed: 11/28/2022]
Abstract
The endoplasmic reticulum (ER) is an extremely plastic and dynamic organelle. Its size and shape can undergo drastic changes to meet changing demands for ER-related functions, or as a response to drugs or pathogens. Because of the ER's key functions in protein and lipid synthesis, this organelle is a hotbed of detailed molecular analysis.
Collapse
Affiliation(s)
- Christine M Federovitch
- UCSD Division of Biological Sciences, Section of Cell and Developmental Biology, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | | | |
Collapse
|
15
|
Tedrick K, Trischuk T, Lehner R, Eitzen G. Enhanced membrane fusion in sterol-enriched vacuoles bypasses the Vrp1p requirement. Mol Biol Cell 2004; 15:4609-21. [PMID: 15254266 PMCID: PMC519153 DOI: 10.1091/mbc.e04-03-0194] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Organization of lipids into membrane microdomains is a vital mechanism of protein processing. Here we show that overexpression of ERG6, a gene involved in ergosterol synthesis, elevates sterol levels 1.5-fold on the vacuole membrane and enhances their homotypic fusion. The mechanism of sterol-enhanced fusion is not via more efficient sorting, but instead promotes increased kinetics of fusion subreactions. We initially isolated ERG6 as a suppressor of a vrp1Delta growth defect selective for vacuole function. VRP1 encodes verprolin, an actin-binding protein that colocalizes to vacuoles. The vrp1Delta mutant has fragmented vacuoles in vivo and isolated vacuoles do not fuse in vitro, indicative of a Vrp1p requirement for membrane fusion. ERG6 overexpression rescues vrp1Delta vacuole fusion in a cytosol-dependent manner. Cytosol prepared from the vrp1Delta strain remains active; therefore, cytosol is not resupplying Vrp1p. Las17p (Vrp1p functional partner) antibodies, which inhibit wild-type vacuole fusion, do not inhibit the fusion of vacuoles from the vrp1Delta-ERG6 overexpression strain. Vacuole-associated actin turnover is decreased in the vrp1Delta strain, but recovered by ERG6 overexpression linking sterol enrichment to actin remodeling. Therefore, the Vrp1p/Las17p requirement for membrane fusion is bypassed by increased sterols, which promotes actin remodeling as part the membrane fusion mechanism.
Collapse
Affiliation(s)
- Kelly Tedrick
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, T6G 2H7 Canada
| | | | | | | |
Collapse
|
16
|
Hartman JL, Tippery NP. Systematic quantification of gene interactions by phenotypic array analysis. Genome Biol 2004; 5:R49. [PMID: 15239834 PMCID: PMC463315 DOI: 10.1186/gb-2004-5-7-r49] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2004] [Revised: 05/12/2004] [Accepted: 05/19/2004] [Indexed: 11/24/2022] Open
Abstract
A phenotypic array method, developed for quantifying cell growth, was applied to the haploid and homozygous diploid yeast deletion strain sets. A growth index was developed to screen for non-additive interacting effects between gene deletion and induced perturbations. A phenotypic array method, developed for quantifying cell growth, was applied to the haploid and homozygous diploid yeast deletion strain sets. A growth index was developed to screen for non-additive interacting effects between gene deletion and induced perturbations. From a genome screen for hydroxyurea (HU) chemical-genetic interactions, 298 haploid deletion strains were selected for further analysis. The strength of interactions was quantified using a wide range of HU concentrations affecting reference strain growth. The selectivity of interaction was determined by comparison with drugs targeting other cellular processes. Bio-modules were defined as gene clusters with shared strength and selectivity of interaction profiles. The functions and connectivity of modules involved in processes such as DNA repair, protein secretion and metabolic control were inferred from their respective gene composition. The work provides an example of, and a general experimental framework for, quantitative analysis of gene interaction networks that buffer cell growth.
Collapse
Affiliation(s)
- John L Hartman
- Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA
| | - Nicholas P Tippery
- Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA
| |
Collapse
|
17
|
Kim BY, Ueda M, Kominami E, Akagawa K, Kohsaka S, Akazawa C. Identification of mouse Vps16 and biochemical characterization of mammalian class C Vps complex. Biochem Biophys Res Commun 2004; 311:577-82. [PMID: 14623309 DOI: 10.1016/j.bbrc.2003.10.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Many multiprotein complexes mediate the fusion of the intracellular membranes. The question how the specificity of the membrane fusion is controlled has not been fully elucidated. Here we report the identification of a mouse homologue Vps16p (mVps16), which exhibits a high homology to the yeast Vps16p, a component of Class C vacuolar protein sorting (Vps) complex implicated in the yeast vacuole membrane fusion. Northern and Western blot analyses reveal that mVps16 is ubiquitously expressed in the mouse peripheral tissues. Biochemical analyses show that mammalian Class C Vps proteins interact with multiple syntaxins and Vps45p, which localizes in the endosomal compartments. The internalization of transferrin (Tf) is not affected by the overexpression of mammalian class C Vps proteins, but the recycling was inhibited. Taken together, this study provides biochemical characteristics of mVps16p in mammalian cells and the potential roles of mammalian Class C Vps proteins in membrane trafficking.
Collapse
Affiliation(s)
- Bong Yoon Kim
- Department of Neurochemistry, National Institute of Neuroscience, NCNP, Kodaira, Tokyo 187-8502, Japan
| | | | | | | | | | | |
Collapse
|
18
|
Current awareness on yeast. Yeast 2002; 19:1183-90. [PMID: 12371408 DOI: 10.1002/yea.828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|