1
|
Krauchunas AR, Marcello MR, Looper A, Mei X, Putiri E, Singaravelu G, Ahmed II, Singson A. The EGF-motif-containing protein SPE-36 is a secreted sperm protein required for fertilization in C. elegans. Curr Biol 2023; 33:3056-3064.e5. [PMID: 37453426 PMCID: PMC10529607 DOI: 10.1016/j.cub.2023.06.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 03/17/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023]
Abstract
Identified through forward genetics, spe-9 was the first gene to be identified in C. elegans as necessary for fertilization.1 Since then, genetic screens in C. elegans have led to the identification of nine additional sperm genes necessary for fertilization (including spe-51 reported by Mei et al.2 and the spe-36 gene reported here).3,4,5,6,7,8,9 This includes spe-45, which encodes an immunoglobulin-containing protein similar to the mammalian protein IZUMO1, and spe-42 and spe-49, which are homologous to vertebrate DCST2 and DCST1, respectively.4,7,8,10,11,12,13 Mutations in any one of these genes result in healthy adult animals that are sterile. Sperm from these mutants have normal morphology, migrate to and maintain their position at the site of fertilization in the reproductive tract, and make contact with eggs but fail to fertilize the eggs. This same phenotype is observed in mammals lacking Izumo1, Spaca6, Tmem95, Sof1, FIMP, or Dcst1 and Dcst2.10,14,15,16,17,18,19 Here we report the discovery of SPE-36 as a sperm-derived secreted protein that is necessary for fertilization. Mutations in the Caenorhabditis elegans spe-36 gene result in a sperm-specific fertilization defect. Sperm from spe-36 mutants look phenotypically normal, are motile, and can migrate to the site of fertilization. However, sperm that do not produce SPE-36 protein cannot fertilize. Surprisingly, spe-36 encodes a secreted EGF-motif-containing protein that functions cell autonomously. The genetic requirement for secreted sperm-derived proteins for fertilization sheds new light on the complex nature of fertilization and represents a paradigm-shifting discovery in the molecular understanding of fertilization.
Collapse
Affiliation(s)
- Amber R Krauchunas
- Waksman Institute and Department of Genetics, Rutgers University, Piscataway, NJ 08854, USA; Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA.
| | | | - A'Maya Looper
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Xue Mei
- Waksman Institute and Department of Genetics, Rutgers University, Piscataway, NJ 08854, USA
| | - Emily Putiri
- Waksman Institute and Department of Genetics, Rutgers University, Piscataway, NJ 08854, USA
| | | | - Iqra I Ahmed
- Department of Biology, Pace University, New York, NY 11231, USA
| | - Andrew Singson
- Waksman Institute and Department of Genetics, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
2
|
Shimada Y, Kanazawa-Takino N, Nishimura H. Spermiogenesis in Caenorhabditis elegans: An Excellent Model to Explore the Molecular Basis for Sperm Activation. Biomolecules 2023; 13:biom13040657. [PMID: 37189404 DOI: 10.3390/biom13040657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/28/2023] [Accepted: 04/04/2023] [Indexed: 05/17/2023] Open
Abstract
C. elegans spermiogenesis converts non-motile spermatids into motile, fertilization-competent spermatozoa. Two major events include the building of a pseudopod required for motility and fusion of membranous organelles (MOs)-intracellular secretory vesicles-with the spermatid plasma membrane required for the proper distribution of sperm molecules in mature spermatozoa. The mouse sperm acrosome reaction-a sperm activation event occurring during capacitation-is similar to MO fusion in terms of cytological features and biological significance. Moreover, C. elegans fer-1 and mouse Fer1l5, both encoding members of the ferlin family, are indispensable for MO fusion and acrosome reaction, respectively. Genetics-based studies have identified many C. elegans genes involved in spermiogenesis pathways; however, it is unclear whether mouse orthologs of these genes are involved in the acrosome reaction. One significant advantage of using C. elegans for studying sperm activation is the availability of in vitro spermiogenesis, which enables combining pharmacology and genetics for the assay. If certain drugs can activate both C. elegans and mouse spermatozoa, these drugs would be useful probes to explore the mechanism underlying sperm activation in these two species. By analyzing C. elegans mutants whose spermatids are insensitive to the drugs, genes functionally relevant to the drugs' effects can be identified.
Collapse
Affiliation(s)
- Yoshihiro Shimada
- Department of Life Science, Faculty of Science and Engineering, Setsunan University, Osaka 572-8508, Japan
| | - Nana Kanazawa-Takino
- Department of Life Science, Faculty of Science and Engineering, Setsunan University, Osaka 572-8508, Japan
| | - Hitoshi Nishimura
- Department of Life Science, Faculty of Science and Engineering, Setsunan University, Osaka 572-8508, Japan
| |
Collapse
|
3
|
Ragle JM, Morrison KN, Vo AA, Johnson ZE, Hernandez Lopez J, Rechtsteiner A, Shakes DC, Ward JD. NHR-23 and SPE-44 regulate distinct sets of genes during Caenorhabditis elegans spermatogenesis. G3 (BETHESDA, MD.) 2022; 12:jkac256. [PMID: 36135804 PMCID: PMC9635660 DOI: 10.1093/g3journal/jkac256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/19/2022] [Indexed: 11/28/2022]
Abstract
Spermatogenesis is the process through which mature male gametes are formed and is necessary for the transmission of genetic information. While much work has established how sperm fate is promoted and maintained, less is known about how the sperm morphogenesis program is executed. We previously identified a novel role for the nuclear hormone receptor transcription factor, NHR-23, in promoting Caenorhabditis elegans spermatogenesis. The depletion of NHR-23 along with SPE-44, another transcription factor that promotes spermatogenesis, caused additive phenotypes. Through RNA-seq, we determined that NHR-23 and SPE-44 regulate distinct sets of genes. The depletion of both NHR-23 and SPE-44 produced yet another set of differentially regulated genes. NHR-23-regulated genes are enriched in phosphatases, consistent with the switch from genome quiescence to post-translational regulation in spermatids. In the parasitic nematode Ascaris suum, MFP1 and MFP2 control the polymerization of Major Sperm Protein, the molecule that drives sperm motility and serves as a signal to promote ovulation. NHR-23 and SPE-44 regulate several MFP2 paralogs, and NHR-23 depletion from the male germline caused defective localization of MSD/MFP1 and NSPH-2/MFP2. Although NHR-23 and SPE-44 do not transcriptionally regulate the casein kinase gene spe-6, a key regulator of sperm development, SPE-6 protein is lost following NHR-23+SPE-44 depletion. Together, these experiments provide the first mechanistic insight into how NHR-23 promotes spermatogenesis and an entry point to understanding the synthetic genetic interaction between nhr-23 and spe-44.
Collapse
Affiliation(s)
- James Matthew Ragle
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| | | | - An A Vo
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| | - Zoe E Johnson
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| | - Javier Hernandez Lopez
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| | - Andreas Rechtsteiner
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| | - Diane C Shakes
- Department of Biology, William & Mary, Williamsburg, VA 23185, USA
| | - Jordan D Ward
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| |
Collapse
|
4
|
Banerjee RP, Srayko M. Sperm-specific glycogen synthase kinase 3 is required for sperm motility and the post-fertilization signal for female meiosis II in Caenorhabditis elegans. Development 2022; 149:275553. [DOI: 10.1242/dev.200229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 04/12/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
In most sexually reproducing animals, sperm entry provides the signal to initiate the final stages of female meiosis. In Caenorhabditis elegans, this signal is required for completion of female anaphase I and entry into meiosis II (MII). memi-1/2/3 (meiosis-to-mitosis) encode maternal components that facilitate this process; memi-1/2/3(RNAi) results in a skipped-MII phenotype. Previously, we used a gain-of-function mutation, memi-1(sb41), to identify genetic suppressors that represent candidates for the sperm-delivered signal. Herein, we characterize two suppressors of memi-1(sb41): gskl-1 and gskl-2. Both genes encode functionally redundant sperm glycogen synthase kinase, type 3 (GSK3) protein kinases. Loss of both genes causes defects in male spermatogenesis, sperm pseudopod treadmilling and paternal-effect embryonic lethality. The two kinases locate within the pseudopod of activated sperm, suggesting that they directly or indirectly regulate the sperm cytoskeletal polymer major sperm protein (MSP). The GSK3 genes genetically interact with another memi-1(sb41) suppressor, gsp-4, which encodes a sperm-specific PP1 phosphatase, previously proposed to regulate MSP dynamics. Moreover, gskl-2 gsp-4; gskl-1 triple mutants often skip female MII, similar to memi-1/2/3(RNAi). The GSK3 kinases and PP1 phosphatases perform similar sperm-related functions and work together for post-fertilization functions in the oocyte that involve MEMI.
Collapse
Affiliation(s)
| | - Martin Srayko
- University of Alberta Department of Biological Sciences , , Edmonton, AB T6G 2E9 , Canada
| |
Collapse
|
5
|
Tan CH, Kornfeld K. Zinc is an intracellular signal during sperm activation in Caenorhabditis elegans. Development 2021; 148:273336. [PMID: 34739028 DOI: 10.1242/dev.199836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 09/28/2021] [Indexed: 11/20/2022]
Abstract
Sperm activation is a rapid and dramatic cell differentiation event that does not involve changes in transcription, and the signaling cascades that mediate this process have not been fully defined. zipt-7.1 encodes a zinc transporter, and zipt-7.1(lf) mutants display sperm-activation defects, leading to the hypothesis that zinc signaling mediates sperm activation in Caenorhabditis elegans. Here, we describe the development of a method for dynamic imaging of labile zinc during sperm activation using the zinc-specific fluorescence probe FluoZin-3 AM and time-lapse confocal imaging. Two phases of dynamic changes in labile zinc levels were observed during sperm activation. Forced zinc entry using the zinc ionophore pyrithione activated sperm in vitro, and it suppressed the defects of zipt-7.1(lf) mutants, indicating that high levels of cytosolic zinc are sufficient for sperm activation. We compared activation by zinc pyrithione to activation by extracellular zinc, the Na+/H+ antiporter monensin and the protease cocktail pronase in multiple mutant backgrounds. These results indicate that the protease pathway does not require zinc signaling, suggesting that zinc signaling is sufficient to activate sperm but is not always necessary.
Collapse
Affiliation(s)
- Chieh-Hsiang Tan
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kerry Kornfeld
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
6
|
Peterson JJ, Tocheny CE, Prajapati G, LaMunyon CW, Shakes DC. Subcellular patterns of SPE-6 localization reveal unexpected complexities in Caenorhabditis elegans sperm activation and sperm function. G3 (BETHESDA, MD.) 2021; 11:jkab288. [PMID: 34849789 PMCID: PMC8527485 DOI: 10.1093/g3journal/jkab288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/06/2021] [Indexed: 11/12/2022]
Abstract
To acquire and maintain directed cell motility, Caenorhabditis elegans sperm must undergo extensive, regulated cellular remodeling, in the absence of new transcription or translation. To regulate sperm function, nematode sperm employ large numbers of protein kinases and phosphatases, including SPE-6, a member of C. elegans' highly expanded casein kinase 1 superfamily. SPE-6 functions during multiple steps of spermatogenesis, including functioning as a "brake" to prevent premature sperm activation in the absence of normal extracellular signals. Here, we describe the subcellular localization patterns of SPE-6 during wild-type C. elegans sperm development and in various sperm activation mutants. While other members of the sperm activation pathway associate with the plasma membrane or localize to the sperm's membranous organelles, SPE-6 surrounds the chromatin mass of unactivated sperm. During sperm activation by either of two semiautonomous signaling pathways, SPE-6 redistributes to the front, central region of the sperm's pseudopod. When disrupted by reduction-of-function alleles, SPE-6 protein is either diminished in a temperature-sensitive manner (hc187) or is mislocalized in a stage-specific manner (hc163). During the multistep process of sperm activation, SPE-6 is released from its perinuclear location after the spike stage in a process that does not require the fusion of membranous organelles with the plasma membrane. After activation, spermatozoa exhibit variable proportions of perinuclear and pseudopod-localized SPE-6, depending on their location within the female reproductive tract. These findings provide new insights regarding SPE-6's role in sperm activation and suggest that extracellular signals during sperm migration may further modulate SPE-6 localization and function.
Collapse
Affiliation(s)
| | - Claire E Tocheny
- Department of Biology, William & Mary, Williamsburg, VA 23187, USA
| | - Gaurav Prajapati
- Department of Biological Science, California State Polytechnic University, Pomona, CA 91768, USA
| | - Craig W LaMunyon
- Department of Biological Science, California State Polytechnic University, Pomona, CA 91768, USA
| | - Diane C Shakes
- Department of Biology, William & Mary, Williamsburg, VA 23187, USA
| |
Collapse
|
7
|
Price KL, Presler M, Uyehara CM, Shakes DC. The intrinsically disordered protein SPE-18 promotes localized assembly of MSP in Caenorhabditis elegans spermatocytes. Development 2021; 148:dev195875. [PMID: 33558389 PMCID: PMC7938801 DOI: 10.1242/dev.195875] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 02/02/2021] [Indexed: 01/26/2023]
Abstract
Many specialized cells use unconventional strategies of cytoskeletal control. Nematode spermatocytes discard their actin and tubulin following meiosis, and instead employ the regulated assembly/disassembly of the Major Sperm Protein (MSP) to drive sperm motility. However, prior to the meiotic divisions, MSP is sequestered through its assembly into paracrystalline structures called fibrous bodies (FBs). The accessory proteins that direct this sequestration process have remained mysterious. This study reveals SPE-18 as an intrinsically disordered protein that is essential for MSP assembly within FBs. In spe-18 mutant spermatocytes, MSP forms disorganized cortical fibers, and the cells arrest in meiosis without forming haploid sperm. In wild-type spermatocytes, SPE-18 localizes to pre-FB complexes and functions with the kinase SPE-6 to localize MSP assembly. Changing patterns of SPE-18 localization uncover previously unappreciated complexities in FB maturation. Later, within newly individualized spermatids, SPE-18 is rapidly lost, yet SPE-18 loss alone is insufficient for MSP disassembly. Our findings reveal an alternative strategy for sequestering cytoskeletal elements, not as monomers but in localized, bundled polymers. Additionally, these studies provide an important example of disordered proteins promoting ordered cellular structures.
Collapse
Affiliation(s)
- Kari L Price
- Department of Biology, William & Mary, Williamsburg, VA 23187, USA
| | - Marc Presler
- Department of Biology, William & Mary, Williamsburg, VA 23187, USA
| | | | - Diane C Shakes
- Department of Biology, William & Mary, Williamsburg, VA 23187, USA
| |
Collapse
|
8
|
Clark JN, Prajapati G, Aldaco FK, Sokolich TJ, Keung SS, Austin SP, Valdés ÁA, LaMunyon CW. Functionally non-redundant paralogs spe-47 and spe-50 encode FB-MO associated proteins and interact with him-8. PLoS One 2020; 15:e0230939. [PMID: 33382704 PMCID: PMC7774929 DOI: 10.1371/journal.pone.0230939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 12/10/2020] [Indexed: 11/25/2022] Open
Abstract
The activation of C. elegans spermatids to crawling spermatozoa is affected by a number of genes including spe-47. Here, we investigate a paralog to spe-47: spe-50, which has a highly conserved sequence and expression, but which is not functionally redundant to spe-47. Phylogenetic analysis indicates that the duplication event that produced the paralogs occurred prior to the radiation of the Caenorhabditis species included in the analysis, allowing a long period for the paralogs to diverge in function. Furthermore, we observed that knockout mutations in both genes, either alone or together, have little effect on sperm function. However, hermaphrodites harboring both knockout mutations combined with a third mutation in the him-8 gene are nearly self-sterile due to a sperm defect, even though they have numerous apparently normal sperm within their spermathecae. We suggest that the sperm in these triple mutants are defective in fusing with oocytes, and that the effect of the him-8 mutation is unclear but likely due to its direct or indirect effect on local chromatin structure and function.
Collapse
Affiliation(s)
- Jessica N. Clark
- Department of Biological Sciences, Cal Poly Pomona, Pomona, California, United States of America
| | - Gaurav Prajapati
- Department of Biological Sciences, Cal Poly Pomona, Pomona, California, United States of America
| | - Fermina K. Aldaco
- Department of Biological Sciences, Cal Poly Pomona, Pomona, California, United States of America
| | - Thomas J. Sokolich
- Department of Biological Sciences, Cal Poly Pomona, Pomona, California, United States of America
| | - Steven S. Keung
- Department of Biological Sciences, Cal Poly Pomona, Pomona, California, United States of America
| | - Sarojani P. Austin
- Department of Biological Sciences, Cal Poly Pomona, Pomona, California, United States of America
| | - Ángel A. Valdés
- Department of Biological Sciences, Cal Poly Pomona, Pomona, California, United States of America
| | - Craig W. LaMunyon
- Department of Biological Sciences, Cal Poly Pomona, Pomona, California, United States of America
| |
Collapse
|
9
|
Ragle JM, Aita AL, Morrison KN, Martinez-Mendez R, Saeger HN, Ashley GA, Johnson LC, Schubert KA, Shakes DC, Ward JD. The conserved molting/circadian rhythm regulator NHR-23/NR1F1 serves as an essential co-regulator of C. elegans spermatogenesis. Development 2020; 147:dev193862. [PMID: 33060131 PMCID: PMC7710015 DOI: 10.1242/dev.193862] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/12/2020] [Indexed: 12/21/2022]
Abstract
In sexually reproducing metazoans, spermatogenesis is the process by which uncommitted germ cells give rise to haploid sperm. Work in model systems has revealed mechanisms controlling commitment to the sperm fate, but how this fate is subsequently executed remains less clear. While studying the well-established role of the conserved nuclear hormone receptor transcription factor, NHR-23/NR1F1, in regulating C. elegans molting, we discovered that NHR-23/NR1F1 is also constitutively expressed in developing primary spermatocytes and is a critical regulator of spermatogenesis. In this novel role, NHR-23/NR1F1 functions downstream of the canonical sex-determination pathway. Degron-mediated depletion of NHR-23/NR1F1 within hermaphrodite or male germlines causes sterility due to an absence of functional sperm, as depleted animals produce arrested primary spermatocytes rather than haploid sperm. These spermatocytes arrest in prometaphase I and fail to either progress to anaphase or attempt spermatid-residual body partitioning. They make sperm-specific membranous organelles but fail to assemble their major sperm protein into fibrous bodies. NHR-23/NR1F1 appears to function independently of the known SPE-44 gene regulatory network, revealing the existence of an NHR-23/NR1F1-mediated module that regulates the spermatogenesis program.
Collapse
Affiliation(s)
- James Matthew Ragle
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - Abigail L Aita
- Department of Biology, William & Mary, Williamsburg, VA 23187, USA
| | | | - Raquel Martinez-Mendez
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - Hannah N Saeger
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - Guinevere A Ashley
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - Londen C Johnson
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - Katherine A Schubert
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - Diane C Shakes
- Department of Biology, William & Mary, Williamsburg, VA 23187, USA
| | - Jordan D Ward
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| |
Collapse
|
10
|
The Role of Zinc in Male Fertility. Int J Mol Sci 2020; 21:ijms21207796. [PMID: 33096823 PMCID: PMC7589359 DOI: 10.3390/ijms21207796] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/14/2020] [Accepted: 10/20/2020] [Indexed: 12/18/2022] Open
Abstract
Several studies proposed the importance of zinc ion in male fertility. Here, we describe the properties, roles and cellular mechanisms of action of Zn2+ in spermatozoa, focusing on its involvement in sperm motility, capacitation and acrosomal exocytosis, three functions that are crucial for successful fertilization. The impact of zinc supplementation on assisted fertilization techniques is also described. The impact of zinc on sperm motility has been investigated in many vertebrate and invertebrate species. It has been reported that Zn2+ in human seminal plasma decreases sperm motility and that Zn2+ removal enhances motility. Reduction in the intracellular concentration of Zn2+ during epididymal transit allows the development of progressive motility and the subsequent hyper activated motility during sperm capacitation. Extracellular Zn2+ affects intracellular signaling pathways through its interaction with the Zn2+ sensing receptor (ZnR), also named GPR39. This receptor was found in the sperm tail and the acrosome, suggesting the possible involvement of Zn2+ in sperm motility and acrosomal exocytosis. Our studies showed that Zn2+ stimulates bovine sperm acrosomal exocytosis, as well as human sperm hyper-activated motility, were both mediated by GPR39. Zn2+ binds and activates GPR39, which activates the trans-membrane-adenylyl-cyclase (tmAC) to catalyze cAMP production. The NHE (Na+/H+-exchanger) is activated by cAMP, leading in increased pHi and activation of the sperm-specific Ca2+ channel CatSper, resulting in an increase in [Ca2+]i, which, together with HCO3−, activates the soluble adenylyl-cyclase (sAC). The increase in [cAMP]i activates protein kinase A (PKA), followed by activation of the Src-epidermal growth factor receptor-Pphospholipase C (Src-EGFR-PLC) cascade, resulting in inositol-triphosphate (IP3) production, which mobilizes Ca2+ from the acrosome, causing a further increase in [Ca2+]i and the development of hyper-activated motility. PKA also activates phospholipase D1 (PLD1), leading to F-actin formation during capacitation. Prior to the acrosomal exocytosis, PLC induces phosphadidylinositol-4,5-bisphosphate (PIP2) hydrolysis, leading to the release of the actin-severing protein gelsolin to the cytosol, which is activated by Ca2+, resulting in F-actin breakdown and the occurrence of acrosomal exocytosis.
Collapse
|
11
|
Huang YL, Zhang PF, Fu Q, He WT, Xiao K, Zhang M. Novel targets identified by integrated proteomic and phosphoproteomic analysis in spermatogenesis of swamp buffalo (Bubalus bubalis). Sci Rep 2020; 10:15659. [PMID: 32973212 PMCID: PMC7515895 DOI: 10.1038/s41598-020-72353-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 08/28/2020] [Indexed: 02/04/2023] Open
Abstract
To understand mechanisms of spermatogenesis, the proteome and the phosphoproteome in prepubertal and pubertal swamp buffalo (Bubalus bubalis) testes were analyzed using tandem mass tag (TMT) coupled with liquid chromatography-tandem mass spectrometry (LC–MS/MS). In prepubertal testes, 80 proteins were overexpressed, 148 proteins were underexpressed, and 139 and 142 protein sites had higher and lower phosphorylation, respectively, compared to the levels in pubertal testes. Several of these proteins were associated with reproductive processes such as sexual reproduction, spermatogenesis, fertilization, and spermatid development. In particular, outer dense fiber protein 1 (ODF1), protein maelstrom homolog (MAEL), actin-like protein 7B (ACTL7B), tyrosine-(Y)-phosphorylation regulated (CABYR), and tripartite motif containing 36 (TRIM36) were upregulated with age at both the proteome and phosphoproteome levels. Combining proteome and phosphoproteome analysis can be effectively applied to study the protein/phosphorylation patterns of buffalo testes. These data provide new regulatory candidates and evidence for a complex network in spermatogenesis in buffalo testes, and serve as an important resource for exploring the physiological mechanism of spermatogenesis in mammals.
Collapse
Affiliation(s)
- Yu-Lin Huang
- Department of Cell and Genetics, College of Basic Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Peng-Fei Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, Guangxi, China
| | - Qiang Fu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, Guangxi, China
| | - Weng-Tan He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, Guangxi, China
| | - Kai Xiao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, Guangxi, China
| | - Ming Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, Guangxi, China.
| |
Collapse
|
12
|
Tajima T, Ogawa F, Nakamura S, Hashimoto M, Omote M, Nishimura H. Proteinase K is an activator for the male-dependent spermiogenesis pathway in Caenorhabditis elegans: Its application to pharmacological dissection of spermiogenesis. Genes Cells 2019; 24:244-258. [PMID: 30656805 DOI: 10.1111/gtc.12670] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 12/22/2018] [Accepted: 01/08/2019] [Indexed: 11/30/2022]
Abstract
Caenorhabditis elegans spermiogenesis involves spermatid activation into spermatozoa. Activation occurs through either SPE-8 class-dependent or class-independent pathways. Pronase (Pron) activates the SPE-8 class-dependent pathway, whereas no in vitro tools are available to stimulate the SPE-8 class-independent pathway. Thus, whether there is a functional relationship between these two pathways is currently unclear. In this study, we found that proteinase K (ProK) can activate the SPE-8 class-independent pathway. In vitro spermiogenesis assays using Pron and ProK suggested that SPE-8 class proteins act in the hermaphrodite- and male-dependent spermiogenesis pathways and that some spermatid proteins presumably working downstream of spermiogenesis pathways, including MAP kinases, are preferentially involved in the SPE-8 class-dependent pathway. We screened a library of chemicals, and a compound that we named DDI-1 inhibited both Pron- and ProK-induced spermiogenesis. To our surprise, several DDI-1 analogues that are structurally similar to DDI-1 blocked Pron, but not ProK, induced spermiogenesis. Although the mechanism by which DDI-1 blocks spermiogenesis is yet unknown, we have begun to address this issue by selecting two DDI-1-resistant mutants. Collectively, our data support a model in which C. elegans male and hermaphrodite spermiogenesis each has its own distinct, parallel pathway.
Collapse
Affiliation(s)
- Tatsuya Tajima
- Department of Life Science, Setsunan University, Neyagawa, Osaka, Japan
| | - Futa Ogawa
- Department of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka, Japan
| | - Shogo Nakamura
- Department of Life Science, Setsunan University, Neyagawa, Osaka, Japan
| | - Masaharu Hashimoto
- Department of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka, Japan
| | - Masaaki Omote
- Department of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka, Japan
| | - Hitoshi Nishimura
- Department of Life Science, Setsunan University, Neyagawa, Osaka, Japan
| |
Collapse
|
13
|
Chavez DR, Snow AK, Smith JR, Stanfield GM. Soma-germ line interactions and a role for muscle in the regulation of C. elegans sperm motility. Development 2018; 145:dev.167734. [PMID: 30470702 DOI: 10.1242/dev.167734] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 11/12/2018] [Indexed: 12/13/2022]
Abstract
The development of highly differentiated sperm cells that are specialized for navigating to and fusing with an oocyte is essential for sexual reproduction. As a major part of differentiation, sperm undergo extensive post-meiotic maturation en route to the oocyte. This is regulated largely by soma-derived cues. In Caenorhabditis elegans, this process is called sperm activation, and it transforms immotile spermatids into migratory fertilization-competent cells. Here, we show that the negative regulator of sperm activation, SWM-1, is produced in an unexpected cell type: body wall muscle. SWM-1 is secreted into the body cavity and enters the gonad; there, it is present with its likely target, TRY-5, a spermiogenesis activator. We show that, in addition to SWM-1, the somatic gonad and body fluid can exchange other factors, suggesting that soma-germ line transfer could affect other reproductive processes. In addition, we show that SWM-1 may have a separate role in the sperm migratory environment, to which it is contributed by both males and hermaphrodites. These findings reveal that late stages in gamete differentiation can be regulated at the whole-organism level by broadly secreted factors.This article has an associated 'The people behind the papers' interview.
Collapse
Affiliation(s)
- Daniela R Chavez
- Department of Human Genetics, University of Utah, 15 North 2030 East, Salt Lake City, UT 84112, USA.,Smithsonian Conservation Biology Institute, National Zoological Park, 3001 Connecticut Ave. NW, Washington, DC 20008, USA
| | - Angela K Snow
- Department of Human Genetics, University of Utah, 15 North 2030 East, Salt Lake City, UT 84112, USA
| | - Joseph R Smith
- Department of Human Genetics, University of Utah, 15 North 2030 East, Salt Lake City, UT 84112, USA
| | - Gillian M Stanfield
- Department of Human Genetics, University of Utah, 15 North 2030 East, Salt Lake City, UT 84112, USA
| |
Collapse
|
14
|
Zhao Y, Tan CH, Krauchunas A, Scharf A, Dietrich N, Warnhoff K, Yuan Z, Druzhinina M, Gu SG, Miao L, Singson A, Ellis RE, Kornfeld K. The zinc transporter ZIPT-7.1 regulates sperm activation in nematodes. PLoS Biol 2018; 16:e2005069. [PMID: 29879108 PMCID: PMC5991658 DOI: 10.1371/journal.pbio.2005069] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 04/24/2018] [Indexed: 02/06/2023] Open
Abstract
Sperm activation is a fascinating example of cell differentiation, in which immotile spermatids undergo a rapid and dramatic transition to become mature, motile sperm. Because the sperm nucleus is transcriptionally silent, this transition does not involve transcriptional changes. Although Caenorhabditis elegans is a leading model for studies of sperm activation, the mechanisms by which signaling pathways induce this transformation remain poorly characterized. Here we show that a conserved transmembrane zinc transporter, ZIPT-7.1, regulates the induction of sperm activation in Caenorhabditis nematodes. The zipt-7.1 mutant hermaphrodites cannot self-fertilize, and males reproduce poorly, because mutant spermatids are defective in responding to activating signals. The zipt-7.1 gene is expressed in the germ line and functions in germ cells to promote sperm activation. When expressed in mammalian cells, ZIPT-7.1 mediates zinc transport with high specificity and is predominantly located on internal membranes. Finally, genetic epistasis places zipt-7.1 at the end of the spe-8 sperm activation pathway, and ZIPT-7.1 binds SPE-4, a presenilin that regulates sperm activation. Based on these results, we propose a new model for sperm activation. In spermatids, inactive ZIPT-7.1 is localized to the membranous organelles, which contain higher levels of zinc than the cytoplasm. When sperm activation is triggered, ZIPT-7.1 activity increases, releasing zinc from internal stores. The resulting increase in cytoplasmic zinc promotes the phenotypic changes characteristic of activation. Thus, zinc signaling is a key step in the signal transduction process that mediates sperm activation, and we have identified a zinc transporter that is central to this activation process. Sperm are specialized cells with transcriptionally silent DNA that has been packaged for delivery into the egg. In their final step of development, immature sperm undergo a rapid transition from nonmotile cells to mature, motile sperm capable of fertilization. The signals that trigger this change are not clearly understood. By identifying mutants in the roundworm Caenorhabditis elegans that are defective in sperm activation, we discovered a conserved transmembrane protein, ZIPT-7.1, that transports zinc and promotes sperm activation in both sexes. ZIPT-7.1 is expressed in the germ line and functions there to control sperm activation. When expressed ectopically in mammalian cells, the protein specifically transports zinc across membranes and localizes primarily to membranes within the cell. Previous genetic studies had identified two pathways that mediate sperm activation in C. elegans, and our results suggest that zipt-7.1 acts at the end of one of these two, the spe-8 pathway. We propose that when this pathway triggers sperm activation, it acts through ZIPT-7.1, which mediates the release of zinc from internal stores in the immature sperm. This released zinc functions as a second messenger to promote the differentiation of mature, motile sperm.
Collapse
Affiliation(s)
- Yanmei Zhao
- Key Laboratory of RNA Biology, Institute of Biophysics, CAS Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Department of Molecular Biology, Rowan University SOM, Stratford, New Jersey, United States of America
| | - Chieh-Hsiang Tan
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Amber Krauchunas
- Waksman Institute, Rutgers University, Piscataway, New Jersey, United States of America
| | - Andrea Scharf
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Nicholas Dietrich
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Kurt Warnhoff
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Zhiheng Yuan
- Key Laboratory of RNA Biology, Institute of Biophysics, CAS Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Marina Druzhinina
- Waksman Institute, Rutgers University, Piscataway, New Jersey, United States of America
| | - Sam Guoping Gu
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey, United States of America
| | - Long Miao
- Key Laboratory of RNA Biology, Institute of Biophysics, CAS Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Andrew Singson
- Waksman Institute, Rutgers University, Piscataway, New Jersey, United States of America
| | - Ronald E. Ellis
- Department of Molecular Biology, Rowan University SOM, Stratford, New Jersey, United States of America
- * E-mail: (REE); (KK)
| | - Kerry Kornfeld
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail: (REE); (KK)
| |
Collapse
|
15
|
Abstract
Zinc is an essential mineral, but our understanding of its uses in the body is limited. Capitalizing on approaches available in the model system Caenorhabditis elegans, Zhao and colleagues show that zinc transduces a signal that induces sperm to become motile. This is an enigmatic process because sperm in all sexually-reproducing animals are transcriptionally inactive. Zinc levels inside sperm are regulated by an evolutionarily conserved zinc transporter called Zrt- and Irt-like Protein Transporter 7.1 (ZIPT-7.1). This zinc transporter localizes to intracellular organelles, suggesting that it primarily controls zinc levels by releasing zinc into the cytoplasm from internal stores rather than importing it from the external environment. The zinc released within cells acts as a messenger in a signaling pathway to promote mobility acquisition. These studies reveal an important role for zinc as an intracellular second messenger that generates physiological changes vital for sperm motility and fertility.
Collapse
Affiliation(s)
- Diana S. Chu
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| |
Collapse
|
16
|
Krauchunas AR, Mendez E, Ni JZ, Druzhinina M, Mulia A, Parry J, Gu SG, Stanfield GM, Singson A. spe-43 is required for sperm activation in C. elegans. Dev Biol 2018; 436:75-83. [PMID: 29477340 DOI: 10.1016/j.ydbio.2018.02.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 01/23/2018] [Accepted: 02/21/2018] [Indexed: 01/06/2023]
Abstract
Successful fertilization requires that sperm are activated prior to contacting an oocyte. In C. elegans, this activation process, called spermiogenesis, transforms round immobile spermatids into motile, fertilization-competent spermatozoa. We describe the phenotypic and genetic characterization of spe-43, a new component of the spe-8 pathway, which is required for spermiogenesis in hermaphrodites; spe-43 hermaphrodites are self-sterile, while spe-43 males show wild-type fertility. When exposed to Pronase to activate sperm in vitro, spe-43 spermatids form long rigid spikes radiating outward from the cell periphery instead of forming a motile pseudopod, indicating that spermiogenesis initiates but is not completed. Using a combination of recombinant and deletion mapping and whole genome sequencing, we identified F09E8.1 as spe-43. SPE-43 is predicted to exist in two isoforms; one isoform appears to be a single-pass transmembrane protein while the other is predicted to be a secreted protein. SPE-43 can bind to other known sperm proteins, including SPE-4 and SPE-29, which are known to impact spermiogenesis. In summary, we have identified a membrane protein that is present in C. elegans sperm and is required for sperm activation via the hermaphrodite activation signal.
Collapse
Affiliation(s)
- Amber R Krauchunas
- Waksman Institute of Microbiology and Department of Genetics, 190 Frelinghuysen Road, Rutgers University, Piscataway, NJ, USA.
| | - Ernesto Mendez
- Waksman Institute of Microbiology and Department of Genetics, 190 Frelinghuysen Road, Rutgers University, Piscataway, NJ, USA
| | - Julie Zhouli Ni
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ, USA
| | - Marina Druzhinina
- Waksman Institute of Microbiology and Department of Genetics, 190 Frelinghuysen Road, Rutgers University, Piscataway, NJ, USA
| | - Amanda Mulia
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Jean Parry
- Waksman Institute of Microbiology and Department of Genetics, 190 Frelinghuysen Road, Rutgers University, Piscataway, NJ, USA
| | - Sam Guoping Gu
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ, USA
| | | | - Andrew Singson
- Waksman Institute of Microbiology and Department of Genetics, 190 Frelinghuysen Road, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
17
|
Stroehlein AJ, Young ND, Korhonen PK, Chang BCH, Nejsum P, Pozio E, La Rosa G, Sternberg PW, Gasser RB. Whipworm kinomes reflect a unique biology and adaptation to the host animal. Int J Parasitol 2017; 47:857-866. [PMID: 28606697 DOI: 10.1016/j.ijpara.2017.04.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/14/2017] [Accepted: 04/20/2017] [Indexed: 01/19/2023]
Abstract
Roundworms belong to a diverse phylum (Nematoda) which is comprised of many parasitic species including whipworms (genus Trichuris). These worms have adapted to a biological niche within the host and exhibit unique morphological characteristics compared with other nematodes. Although these adaptations are known, the underlying molecular mechanisms remain elusive. The availability of genomes and transcriptomes of some whipworms now enables detailed studies of their molecular biology. Here, we defined and curated the full complement of an important class of enzymes, the protein kinases (kinomes) of two species of Trichuris, using an advanced and integrated bioinformatic pipeline. We investigated the transcription of Trichuris suis kinase genes across developmental stages, sexes and tissues, and reveal that selectively transcribed genes can be linked to central roles in developmental and reproductive processes. We also classified and functionally annotated the curated kinomes by integrating evidence from structural modelling and pathway analyses, and compared them with other curated kinomes of phylogenetically diverse nematode species. Our findings suggest unique adaptations in signalling processes governing worm morphology and biology, and provide an important resource that should facilitate experimental investigations of kinases and the biology of signalling pathways in nematodes.
Collapse
Affiliation(s)
- Andreas J Stroehlein
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia.
| | - Neil D Young
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia
| | - Pasi K Korhonen
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia
| | - Bill C H Chang
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia; Yourgene Bioscience, New Taipei City, Taiwan
| | - Peter Nejsum
- Department of Clinical Medicine, Department of Infectious Diseases, Aarhus University, Aarhus, Denmark
| | | | | | - Paul W Sternberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Robin B Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
18
|
Poley JD, Sutherland BJG, Jones SRM, Koop BF, Fast MD. Sex-biased gene expression and sequence conservation in Atlantic and Pacific salmon lice (Lepeophtheirus salmonis). BMC Genomics 2016; 17:483. [PMID: 27377915 PMCID: PMC4932673 DOI: 10.1186/s12864-016-2835-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 06/13/2016] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Salmon lice, Lepeophtheirus salmonis (Copepoda: Caligidae), are highly important ectoparasites of farmed and wild salmonids, and cause multi-million dollar losses to the salmon aquaculture industry annually. Salmon lice display extensive sexual dimorphism in ontogeny, morphology, physiology, behavior, and more. Therefore, the identification of transcripts with differential expression between males and females (sex-biased transcripts) may help elucidate the relationship between sexual selection and sexually dimorphic characteristics. RESULTS Sex-biased transcripts were identified from transcriptome analyses of three L. salmonis populations, including both Atlantic and Pacific subspecies. A total of 35-43 % of all quality-filtered transcripts were sex-biased in L. salmonis, with male-biased transcripts exhibiting higher fold change than female-biased transcripts. For Gene Ontology and functional analyses, a consensus-based approach was used to identify concordantly differentially expressed sex-biased transcripts across the three populations. A total of 127 male-specific transcripts (i.e. those without detectable expression in any female) were identified, and were enriched with reproductive functions (e.g. seminal fluid and male accessory gland proteins). Other sex-biased transcripts involved in morphogenesis, feeding, energy generation, and sensory and immune system development and function were also identified. Interestingly, as observed in model systems, male-biased L. salmonis transcripts were more frequently without annotation compared to female-biased or unbiased transcripts, suggesting higher rates of sequence divergence in male-biased transcripts. CONCLUSIONS Transcriptome differences between male and female L. salmonis described here provide key insights into the molecular mechanisms controlling sexual dimorphism in L. salmonis. This analysis offers targets for parasite control and provides a foundation for further analyses exploring critical topics such as the interaction between sex and drug resistance, sex-specific factors in host-parasite relationships, and reproductive roles within L. salmonis.
Collapse
Affiliation(s)
- Jordan D Poley
- Department of Pathology & Microbiology, Atlantic Veterinary College, University of Prince Edward Island, 550 University Ave, Charlottetown, PE, C1A 4P3, Canada
| | - Ben J G Sutherland
- Department of Biology, Centre for Biomedical Research, University of Victoria, 3800 Finnerty Rd, Victoria, BC, V8W 3 N5, Canada.,Present address: Département de biologie, Institut de Biologie Intégrative et des Systèms (IBIS), Université Laval, 1030 Avenue de la Medecine, Québec, QC, Canada
| | - Simon R M Jones
- Pacific Biological Station, 3190 Hammond Bay Road, Nanaimo, BC, V9T 6 N7, Canada
| | - Ben F Koop
- Department of Biology, Centre for Biomedical Research, University of Victoria, 3800 Finnerty Rd, Victoria, BC, V8W 3 N5, Canada
| | - Mark D Fast
- Department of Pathology & Microbiology, Atlantic Veterinary College, University of Prince Edward Island, 550 University Ave, Charlottetown, PE, C1A 4P3, Canada.
| |
Collapse
|
19
|
Ellis RE. "The persistence of memory"-Hermaphroditism in nematodes. Mol Reprod Dev 2016; 84:144-157. [PMID: 27291983 DOI: 10.1002/mrd.22668] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 06/01/2016] [Indexed: 12/13/2022]
Abstract
Self-fertility has evolved many times in nematodes. This transition often produces an androdioecious species, with XX hermaphrodites and XO males. Although these hermaphrodites resemble females in most respects, early germ cells differentiate as sperm, and late ones as oocytes. The sperm then receive an activation signal, populate the spermathecae, and are stored for later use in self-fertilization. These traits are controlled by complex modifications to the sex-determination and sperm activation pathways, which have arisen independently during the evolution of each hermaphroditic species. This transformation in reproductive strategy then promotes other major changes in the development, evolution, and population structure of these animals. Mol. Reprod. Dev. 84: 144-157, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ronald E Ellis
- Department of Molecular Biology, Rowan University SOM, Stratford, New Jersey
| |
Collapse
|
20
|
LaMunyon CW, Nasri U, Sullivan NG, Shaw MA, Prajapati G, Christensen M, Elmatari D, Clark JN. A New Player in the Spermiogenesis Pathway of Caenorhabditis elegans. Genetics 2015; 201:1103-16. [PMID: 26333688 PMCID: PMC4649638 DOI: 10.1534/genetics.115.181172] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 09/01/2015] [Indexed: 12/12/2022] Open
Abstract
Precise timing of sperm activation ensures the greatest likelihood of fertilization. Precision in Caenorhabditis elegans sperm activation is ensured by external signaling, which induces the spherical spermatid to reorganize and extend a pseudopod for motility. Spermatid activation, also called spermiogenesis, is prevented from occurring prematurely by the activity of SPE-6 and perhaps other proteins, termed "the brake model." Here, we identify the spe-47 gene from the hc198 mutation that causes premature spermiogenesis. The mutation was isolated in a suppressor screen of spe-27(it132ts), which normally renders worms sterile, due to defective transduction of the activation signal. In a spe-27(+) background, spe-47(hc198) causes a temperature-sensitive reduction of fertility, and in addition to premature spermiogenesis, many mutant sperm fail to activate altogether. The hc198 mutation is semidominant, inducing a more severe loss of fertility than do null alleles generated by CRISPR-associated protein 9 (Cas9) technology. The hc198 mutation affects an major sperm protein (MSP) domain, altering a conserved amino acid residue in a β-strand that mediates MSP-MSP dimerization. Both N- and C-terminal SPE-47 reporters associate with the forming fibrous body (FB)-membranous organelle, a specialized sperm organelle that packages MSP and other components during spermatogenesis. Once the FB is fully formed, the SPE-47 reporters dissociate and disappear. SPE-47 reporter localization is not altered by either the hc198 mutation or a C-terminal truncation deleting the MSP domain. The disappearance of SPE-47 reporters prior to the formation of spermatids requires a reevaluation of the brake model for prevention of premature spermatid activation.
Collapse
Affiliation(s)
- Craig W LaMunyon
- Department of Biological Science, California State Polytechnic University, Pomona, California 91768
| | - Ubaydah Nasri
- Department of Biological Science, California State Polytechnic University, Pomona, California 91768
| | - Nicholas G Sullivan
- Department of Biological Science, California State Polytechnic University, Pomona, California 91768
| | - Misa A Shaw
- Department of Biological Science, California State Polytechnic University, Pomona, California 91768
| | - Gaurav Prajapati
- Department of Biological Science, California State Polytechnic University, Pomona, California 91768
| | - Matthew Christensen
- Department of Biological Science, California State Polytechnic University, Pomona, California 91768
| | - Daniel Elmatari
- Department of Biological Science, California State Polytechnic University, Pomona, California 91768
| | - Jessica N Clark
- Department of Biological Science, California State Polytechnic University, Pomona, California 91768
| |
Collapse
|
21
|
Co-option of alternate sperm activation programs in the evolution of self-fertile nematodes. Nat Commun 2014; 5:5888. [PMID: 25523309 DOI: 10.1038/ncomms6888] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 11/18/2014] [Indexed: 12/19/2022] Open
Abstract
Self-fertility evolved independently in three species of Caenorhabditis, yet the underlying genetic changes remain unclear. This transition required that XX animals acquire the ability to produce sperm and then signal those sperm to activate and fertilise oocytes. Here, we show that all genes that regulate sperm activation in C. elegans are conserved throughout the genus, even in male/female species. By using gene editing, we show that C. elegans and C. briggsae hermaphrodites use the SPE-8 tyrosine kinase pathway to activate sperm, whereas C. tropicalis hermaphrodites use a TRY-5 serine protease pathway. Finally, our analysis of double mutants shows that these pathways were redundant in ancestral males. Thus, newly evolving hermaphrodites became self-fertile by co-opting either of the two redundant male programs. The existence of these alternatives helps explain the frequent origin of self-fertility in nematode lineages. This work also demonstrates that the new genome-editing techniques allow unprecedented power and precision in evolutionary studies.
Collapse
|
22
|
Muhlrad PJ, Clark JN, Nasri U, Sullivan NG, LaMunyon CW. SPE-8, a protein-tyrosine kinase, localizes to the spermatid cell membrane through interaction with other members of the SPE-8 group spermatid activation signaling pathway in C. elegans. BMC Genet 2014; 15:83. [PMID: 25022984 PMCID: PMC4105102 DOI: 10.1186/1471-2156-15-83] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 07/03/2014] [Indexed: 01/04/2023] Open
Abstract
Background The SPE-8 group gene products transduce the signal for spermatid activation initiated by extracellular zinc in C. elegans. Mutations in the spe-8 group genes result in hermaphrodite-derived spermatids that cannot activate to crawling spermatozoa, although spermatids from mutant males activate through a pathway induced by extracellular TRY-5 protease present in male seminal fluid. Results Here, we identify SPE-8 as a member of a large family of sperm-expressed non-receptor-like protein-tyrosine kinases. A rescuing SPE-8::GFP translational fusion reporter localizes to the plasma membrane in all spermatogenic cells from the primary spermatocyte stage through spermatids. Once spermatids become activated to spermatozoa, the reporter moves from the plasma membrane to the cytoplasm. Mutations in the spe-8 group genes spe-12, spe-19, and spe-27 disrupt localization of the reporter to the plasma membrane, while localization appears near normal in a spe-29 mutant background. Conclusions These results suggest that the SPE-8 group proteins form a functional complex localized at the plasma membrane, and that SPE-8 is correctly positioned only when all members of the SPE-8 group are present, with the possible exception of SPE-29. Further, SPE-8 is released from the membrane when the activation signal is transduced into the spermatid.
Collapse
Affiliation(s)
| | | | | | | | - Craig W LaMunyon
- Department of Biological Science, California State Polytechnic University, 3801 W, Temple Ave, Pomona, CA 91768, USA.
| |
Collapse
|
23
|
Fenker KE, Hansen AA, Chong CA, Jud MC, Duffy BA, Norton JP, Hansen JM, Stanfield GM. SLC6 family transporter SNF-10 is required for protease-mediated activation of sperm motility in C. elegans. Dev Biol 2014; 393:171-82. [PMID: 24929237 DOI: 10.1016/j.ydbio.2014.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 05/28/2014] [Accepted: 06/03/2014] [Indexed: 11/18/2022]
Abstract
Motility of sperm is crucial for their directed migration to the egg. The acquisition and modulation of motility are regulated to ensure that sperm move when and where needed, thereby promoting reproductive success. One specific example of this phenomenon occurs during differentiation of the ameboid sperm of Caenorhabditis elegans as they activate from a round spermatid to a mature, crawling spermatozoon. Sperm activation is regulated by redundant pathways to occur at a specific time and place for each sex. Here, we report the identification of the solute carrier 6 (SLC6) transporter protein SNF-10 as a key regulator of C. elegans sperm activation in response to male protease activation signals. We find that SNF-10 is present in sperm and is required for activation by the male but not by the hermaphrodite. Loss of both snf-10 and a hermaphrodite activation factor render sperm completely insensitive to activation. Using in vitro assays, we find that snf-10 mutant sperm show a specific deficit in response to protease treatment but not to other activators. Prior to activation, SNF-10 is present in the plasma membrane, where it represents a strong candidate to receive signals that lead to subcellular morphogenesis. After activation, it shows polarized localization to the cell body region that is dependent on membrane fusions mediated by the dysferlin FER-1. Our discovery of snf-10 offers insight into the mechanisms differentially employed by the two sexes to accomplish the common goal of producing functional sperm, as well as how the physiology of nematode sperm may be regulated to control motility as it is in mammals.
Collapse
Affiliation(s)
- Kristin E Fenker
- Department of Human Genetics, University of Utah, 15 North 2030 East, Room 6110B, Salt Lake City, UT 84112, USA
| | - Angela A Hansen
- Department of Human Genetics, University of Utah, 15 North 2030 East, Room 6110B, Salt Lake City, UT 84112, USA
| | - Conrad A Chong
- Department of Human Genetics, University of Utah, 15 North 2030 East, Room 6110B, Salt Lake City, UT 84112, USA
| | - Molly C Jud
- Department of Human Genetics, University of Utah, 15 North 2030 East, Room 6110B, Salt Lake City, UT 84112, USA
| | - Brittany A Duffy
- Department of Human Genetics, University of Utah, 15 North 2030 East, Room 6110B, Salt Lake City, UT 84112, USA
| | - J Paul Norton
- Department of Human Genetics, University of Utah, 15 North 2030 East, Room 6110B, Salt Lake City, UT 84112, USA
| | - Jody M Hansen
- Department of Human Genetics, University of Utah, 15 North 2030 East, Room 6110B, Salt Lake City, UT 84112, USA
| | - Gillian M Stanfield
- Department of Human Genetics, University of Utah, 15 North 2030 East, Room 6110B, Salt Lake City, UT 84112, USA.
| |
Collapse
|
24
|
Ellis RE, Stanfield GM. The regulation of spermatogenesis and sperm function in nematodes. Semin Cell Dev Biol 2014; 29:17-30. [PMID: 24718317 PMCID: PMC4082717 DOI: 10.1016/j.semcdb.2014.04.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 04/01/2014] [Indexed: 12/12/2022]
Abstract
In the nematode C. elegans, both males and self-fertile hermaphrodites produce sperm. As a result, researchers have been able to use a broad range of genetic and genomic techniques to dissect all aspects of sperm development and function. Their results show that the early stages of spermatogenesis are controlled by transcriptional and translational processes, but later stages are dominated by protein kinases and phosphatases. Once spermatids are produced, they participate in many interactions with other cells - signals from the somatic gonad determine when sperm activate and begin to crawl, signals from the female reproductive tissues guide the sperm, and signals from sperm stimulate oocytes to mature and be ovulated. The sperm also show strong competitive interactions with other sperm and oocytes. Some of the molecules that mediate these processes have conserved functions in animal sperm, others are conserved proteins that have been adapted for new roles in nematode sperm, and some are novel proteins that provide insights into evolutionary change. The advent of new techniques should keep this system on the cutting edge of research in cellular and reproductive biology.
Collapse
Affiliation(s)
- Ronald E Ellis
- Department of Molecular Biology, Rowan University SOM, B303 Science Center, 2 Medical Center Drive, Stratford, NJ 08084, United States.
| | - Gillian M Stanfield
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, United States
| |
Collapse
|
25
|
Role of posttranslational modifications in C. elegans and ascaris spermatogenesis and sperm function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 759:215-39. [PMID: 25030766 DOI: 10.1007/978-1-4939-0817-2_10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Generally, spermatogenesis and sperm function involve widespread posttranslational modification of regulatory proteins in many different species. Nematode spermatogenesis has been studied in detail, mostly by genetic/molecular genetic techniques in the free-living Caenorhabditis elegans and by biochemistry/cell biology in the pig parasite Ascaris suum. Like other nematodes, both of these species produce sperm that use a form of amoeboid motility termed crawling, and many aspects of spermatogenesis are likely to be similar in both species. Consequently, work in these two nematode species has been largely complementary. Work in C. elegans has identified a number of spermatogenesis-defective genes and, so far, 12 encode enzymes that are implicated as catalysts of posttranslational protein modification. Crawling motility involves extension of a single pseudopod and this process is powered by a unique cytoskeleton composed of Major Sperm Protein (MSP) and accessory proteins, instead of the more widely observed actin. In Ascaris, pseudopod extension and crawling motility can be reconstituted in vitro, and biochemical studies have begun to reveal how posttranslational protein modifications, including phosphorylation, dephosphorylation and proteolysis, participate in these processes.
Collapse
|
26
|
Liau WS, Nasri U, Elmatari D, Rothman J, LaMunyon CW. Premature sperm activation and defective spermatogenesis caused by loss of spe-46 function in Caenorhabditis elegans. PLoS One 2013; 8:e57266. [PMID: 23483899 PMCID: PMC3590197 DOI: 10.1371/journal.pone.0057266] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 01/21/2013] [Indexed: 12/05/2022] Open
Abstract
Given limited resources for motility, sperm cell activation must be precisely timed to ensure the greatest likelihood of fertilization. Like those of most species, the sperm of C. elegans become active only after encountering an external signaling molecule. Activation coincides with spermiogenesis, the final step in spermatogenesis, when the spherical spermatid undergoes wholesale reorganization to produce a pseudopod. Here, we describe a gene involved in sperm activation, spe-46. This gene was identified in a suppressor screen of spe-27(it132ts), a sperm-expressed gene whose product functions in the transduction of the spermatid activation signal. While spe-27(it132ts) worms are sterile at 25°C, the spe-46(hc197)I; spe-27(it132ts)IV double mutants regain partial fertility. Single nucleotide polymorphism mapping, whole genome sequencing, and transformation rescue were employed to identify the spe-46 coding sequence. It encodes a protein with seven predicted transmembrane domains but with no other predicted functional domains or homology outside of nematodes. Expression is limited to spermatogenic tissue, and a transcriptional GFP fusion shows expression corresponds with the onset of the pachytene stage of meiosis. The spe-46(hc197) mutation bypasses the need for the activation signal; mutant sperm activate prematurely without an activation signal in males, and mutant males are sterile. In an otherwise wild-type genome, the spe-46(hc197) mutation induces a sperm defective phenotype. In addition to premature activation, spe-46(hc197) sperm exhibit numerous defects including aneuploidy, vacuolization, protruding spikes, and precocious fusion of membranous organelles. Hemizygous worms [spe-46(hc197)/mnDf111] are effectively sterile. Thus, spe-46 appears to be involved in the regulation of spermatid activation during spermiogenesis, with the null phenotype being an absence of functional sperm and hypomorphic phenotypes being premature spermatid activation and numerous sperm cell defects.
Collapse
Affiliation(s)
- Wei-Siang Liau
- Department of Biological Science, California State Polytechnic University, Pomona, California, United States of America
| | - Ubaydah Nasri
- Department of Biological Science, California State Polytechnic University, Pomona, California, United States of America
| | - Daniel Elmatari
- Department of Biological Science, California State Polytechnic University, Pomona, California, United States of America
| | - Jason Rothman
- Department of Biological Science, California State Polytechnic University, Pomona, California, United States of America
| | - Craig W. LaMunyon
- Department of Biological Science, California State Polytechnic University, Pomona, California, United States of America
- * E-mail:
| |
Collapse
|
27
|
|
28
|
Singaravelu G, Singson A. Calcium signaling surrounding fertilization in the nematode Caenorhabditis elegans. Cell Calcium 2012; 53:2-9. [PMID: 23218668 DOI: 10.1016/j.ceca.2012.11.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 11/02/2012] [Accepted: 11/03/2012] [Indexed: 01/17/2023]
Abstract
Calcium plays a prominent role during fertilization in many animals. This review focuses on roles of Ca(2+) during the events around fertilization in the model organism, Caenorhabditis elegans. Specifically, the role of Ca(2+) in sperm, oocytes and the surrounding somatic tissues during fertilization will be discussed, with the focus on sperm activation, meiotic maturation of oocytes, ovulation, sperm-egg interaction and fertilization.
Collapse
|
29
|
Fraire-Zamora JJ, Tran T, Cardullo RA. Cholesterol-enriched microdomains regulate pseudopod extension in the MSP-based cytoskeleton of amoeboid sperm. Biochem Biophys Res Commun 2012; 427:478-84. [DOI: 10.1016/j.bbrc.2012.09.071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 09/12/2012] [Indexed: 12/24/2022]
|
30
|
Smith JR, Stanfield GM. TRY-5 is a sperm-activating protease in Caenorhabditis elegans seminal fluid. PLoS Genet 2011; 7:e1002375. [PMID: 22125495 PMCID: PMC3219595 DOI: 10.1371/journal.pgen.1002375] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 09/12/2011] [Indexed: 12/20/2022] Open
Abstract
Seminal fluid proteins have been shown to play important roles in male reproductive success, but the mechanisms for this regulation remain largely unknown. In Caenorhabditis elegans, sperm differentiate from immature spermatids into mature, motile spermatozoa during a process termed sperm activation. For C. elegans males, sperm activation occurs during insemination of the hermaphrodite and is thought to be mediated by seminal fluid, but the molecular nature of this activity has not been previously identified. Here we show that TRY-5 is a seminal fluid protease that is required in C. elegans for male-mediated sperm activation. We observed that TRY-5::GFP is expressed in the male somatic gonad and is transferred along with sperm to hermaphrodites during mating. In the absence of TRY-5, male seminal fluid loses its potency to transactivate hermaphrodite sperm. However, TRY-5 is not required for either hermaphrodite or male fertility, suggesting that hermaphrodite sperm are normally activated by a distinct hermaphrodite-specific activator to which male sperm are also competent to respond. Within males, TRY-5::GFP localization within the seminal vesicle is antagonized by the protease inhibitor SWM-1. Together, these data suggest that TRY-5 functions as an extracellular activator of C. elegans sperm. The presence of TRY-5 within the seminal fluid couples the timing of sperm activation to that of transfer of sperm into the hermaphrodite uterus, where motility must be rapidly acquired. Our results provide insight into how C. elegans has adopted sex-specific regulation of sperm motility to accommodate its male-hermaphrodite mode of reproduction.
Collapse
Affiliation(s)
- Joseph R. Smith
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, United States of America
| | - Gillian M. Stanfield
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, United States of America
| |
Collapse
|
31
|
Sperm development and motility are regulated by PP1 phosphatases in Caenorhabditis elegans. Genetics 2011; 190:143-57. [PMID: 22042574 DOI: 10.1534/genetics.111.135376] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sperm from different species have evolved distinctive motility structures, including tubulin-based flagella in mammals and major sperm protein (MSP)-based pseudopods in nematodes. Despite such divergence, we show that sperm-specific PP1 phosphatases, which are required for male fertility in mouse, function in multiple processes in the development and motility of Caenorhabditis elegans amoeboid sperm. We used live-imaging analysis to show the PP1 phosphatases GSP-3 and GSP-4 (GSP-3/4) are required to partition chromosomes during sperm meiosis. Postmeiosis, tracking fluorescently labeled sperm revealed that both male and hermaphrodite sperm lacking GSP-3/4 are immotile. Genetic and in vitro activation assays show lack of GSP-3/4 causes defects in pseudopod development and the rate of pseudopodial treadmilling. Further, GSP-3/4 are required for the localization dynamics of MSP. GSP-3/4 shift localization in concert with MSP from fibrous bodies that sequester MSP at the base of the pseudopod, where directed MSP disassembly facilitates pseudopod contraction. Consistent with a role for GSP-3/4 as a spatial regulator of MSP disassembly, MSP is mislocalized in sperm lacking GSP-3/4. Although a requirement for PP1 phosphatases in nematode and mammalian sperm suggests evolutionary conservation, we show PP1s have independently evolved sperm-specific paralogs in separate lineages. Thus PP1 phosphatases are highly adaptable and employed across a broad range of sexually reproducing species to regulate male fertility.
Collapse
|
32
|
Fraire-Zamora JJ, Broitman-Maduro G, Maduro M, Cardullo RA. Evidence for phosphorylation in the MSP cytoskeletal filaments of amoeboid spermatozoa. INTERNATIONAL JOURNAL OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2011; 2:263-273. [PMID: 22003439 PMCID: PMC3193295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 08/17/2011] [Indexed: 05/31/2023]
Abstract
Nematode spermatozoa are highly specialized cells that lack flagella and, instead, extend a pseudopod to initiate motility. Crawling spermatozoa display classic features of amoeboid motility (e.g. protrusion of a pseudopod that attaches to the substrate and the assembly and disassembly of cytoskeletal filaments involved in cell traction and locomotion), however, cytoskeletal dynamics in these cells are powered exclusively by Major Sperm Protein (MSP) rather than actin and no other molecular motors have been identified. Thus, MSP-based motility is regarded as a simple locomotion machinery suitable for the study of plasma membrane protrusion and cell motility in general. This recent focus on MSP dynamics has increased the necessity of a standardized methodology to obtain C. elegans sperm extract that can be used in biochemical assays and proteomic analysis for comparative studies. In the present work we have modified a method to reproducibly obtain relative high amounts of proteins from C. elegans sperm extract. We show that these extracts share some of the properties observed in sperm extracts from the parasitic nematode Ascaris including Major Sperm Protein (MSP) precipitation and MSP fiber elongation. Using this method coupled to immunoblot detection, Mass Spectrometry identification, in silico prediction of functional domains and biochemical assays, our results indicate the presence of phosphorylation sites in MSP of Caenorhabditis elegans spermatozoa.
Collapse
|
33
|
Andrade LF, Nahum LA, Avelar LGA, Silva LL, Zerlotini A, Ruiz JC, Oliveira G. Eukaryotic protein kinases (ePKs) of the helminth parasite Schistosoma mansoni. BMC Genomics 2011; 12:215. [PMID: 21548963 PMCID: PMC3117856 DOI: 10.1186/1471-2164-12-215] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 05/06/2011] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Schistosomiasis remains an important parasitic disease and a major economic problem in many countries. The Schistosoma mansoni genome and predicted proteome sequences were recently published providing the opportunity to identify new drug candidates. Eukaryotic protein kinases (ePKs) play a central role in mediating signal transduction through complex networks and are considered druggable targets from the medical and chemical viewpoints. Our work aimed at analyzing the S. mansoni predicted proteome in order to identify and classify all ePKs of this parasite through combined computational approaches. Functional annotation was performed mainly to yield insights into the parasite signaling processes relevant to its complex lifestyle and to select some ePKs as potential drug targets. RESULTS We have identified 252 ePKs, which corresponds to 1.9% of the S. mansoni predicted proteome, through sequence similarity searches using HMMs (Hidden Markov Models). Amino acid sequences corresponding to the conserved catalytic domain of ePKs were aligned by MAFFT and further used in distance-based phylogenetic analysis as implemented in PHYLIP. Our analysis also included the ePK homologs from six other eukaryotes. The results show that S. mansoni has proteins in all ePK groups. Most of them are clearly clustered with known ePKs in other eukaryotes according to the phylogenetic analysis. None of the ePKs are exclusively found in S. mansoni or belong to an expanded family in this parasite. Only 16 S. mansoni ePKs were experimentally studied, 12 proteins are predicted to be catalytically inactive and approximately 2% of the parasite ePKs remain unclassified. Some proteins were mentioned as good target for drug development since they have a predicted essential function for the parasite. CONCLUSIONS Our approach has improved the functional annotation of 40% of S. mansoni ePKs through combined similarity and phylogenetic-based approaches. As we continue this work, we will highlight the biochemical and physiological adaptations of S. mansoni in response to diverse environments during the parasite development, vector interaction, and host infection.
Collapse
Affiliation(s)
- Luiza F Andrade
- Genomics and Computational Biology Group, Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz - FIOCRUZ, Belo Horizonte, MG- 30190-002, Brazil
| | - Laila A Nahum
- Genomics and Computational Biology Group, Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz - FIOCRUZ, Belo Horizonte, MG- 30190-002, Brazil
- Centro de Excelência em Bioinformática, Fundação Oswaldo Cruz - FIOCRUZ, Belo Horizonte, MG- 30190-110, Brazil
| | - Lívia GA Avelar
- Genomics and Computational Biology Group, Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz - FIOCRUZ, Belo Horizonte, MG- 30190-002, Brazil
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, MG- 31270-910, Brazil
| | - Larissa L Silva
- Genomics and Computational Biology Group, Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz - FIOCRUZ, Belo Horizonte, MG- 30190-002, Brazil
- Centro de Excelência em Bioinformática, Fundação Oswaldo Cruz - FIOCRUZ, Belo Horizonte, MG- 30190-110, Brazil
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, MG- 31270-910, Brazil
| | - Adhemar Zerlotini
- Centro de Excelência em Bioinformática, Fundação Oswaldo Cruz - FIOCRUZ, Belo Horizonte, MG- 30190-110, Brazil
| | - Jerônimo C Ruiz
- Genomics and Computational Biology Group, Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz - FIOCRUZ, Belo Horizonte, MG- 30190-002, Brazil
| | - Guilherme Oliveira
- Genomics and Computational Biology Group, Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz - FIOCRUZ, Belo Horizonte, MG- 30190-002, Brazil
- Centro de Excelência em Bioinformática, Fundação Oswaldo Cruz - FIOCRUZ, Belo Horizonte, MG- 30190-110, Brazil
| |
Collapse
|
34
|
Singaravelu G, Singson A. New insights into the mechanism of fertilization in nematodes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 289:211-38. [PMID: 21749902 PMCID: PMC3273857 DOI: 10.1016/b978-0-12-386039-2.00006-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Fertilization results from the fusion of male and female gametes in all sexually reproducing organisms. Much of nematode fertility work was focused on Caenorhabditis elegans and Ascaris suum. The C. elegans hermaphrodite produces a limited number of sperm initially and then commits to the exclusive production of oocytes. The postmeiotic differentiation called spermiogenesis converts sessile spermatids into motile spermatozoa. The motility of spermatozoa depends on dynamic assembly and disassembly of a major sperm protein-based cytoskeleton uniquely found in nematodes. Both self-derived and male-derived spermatozoa are stored in spermatheca, the site of fertilization in hermaphrodites. The oocyte is arrested in meiotic prophase I until a sperm-derived signal relieves the inhibition allowing the meiotic maturation to occur. Oocyte undergoes meiotic maturation, enters into spermatheca, gets fertilized, completes meiosis, and exits into uterus as a zygote. This review focuses on our current understanding of the events around fertilization in nematodes.
Collapse
|
35
|
Fraire-Zamora JJ, Cardullo RA. The physiological acquisition of amoeboid motility in nematode sperm: is the tail the only thing the sperm lost? Mol Reprod Dev 2010; 77:739-50. [PMID: 20803732 DOI: 10.1002/mrd.21193] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Nematode spermatozoa are highly specialized amoeboid cells that must acquire motility through the extension of a single pseudopod. Despite morphological and molecular differences with flagellated spermatozoa (including a non-actin-based cytoskeleton), nematode sperm must also respond to cues present in the female reproductive tract that render them motile, thereby allowing them to locate and fertilize the egg. The factors that trigger pseudopod extension in vivo are unknown, although current models suggest the activation through proteases acting on the sperm surface resulting in a myriad of biochemical, physiological, and morphological changes. Compelling evidence shows that pseudopod extension is under the regulation of physiological events also observed in other eukaryotic cells (including flagellated sperm) that involve membrane rearrangements in response to extracellular cues that initiate various signal transduction pathways. An integrative approach to the study of nonflagellated spermatozoa will shed light on the identification of unique and conserved processes during fertilization among different taxa.
Collapse
Affiliation(s)
- Juan J Fraire-Zamora
- Department of Biology and the Graduate Program in Evolution, Ecology, and Organismal Biology, University of California, Riverside, California 92521, USA
| | | |
Collapse
|
36
|
Nishimura H, L'Hernault SW. Spermatogenesis-defective (spe) mutants of the nematode Caenorhabditis elegans provide clues to solve the puzzle of male germline functions during reproduction. Dev Dyn 2010; 239:1502-14. [PMID: 20419782 DOI: 10.1002/dvdy.22271] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
In most species, each sex produces gametes, usually either sperm or oocytes, from its germline during gametogenesis. The sperm and oocyte subsequently fuse together during fertilization to create the next generation. This review focuses on spermatogenesis and the roles of sperm during fertilization in the nematode Caenorhabditis elegans, where suitable mutants are readily obtained. So far, 186 mutants defective in the C. elegans male germline functions have been isolated, and many of these mutations are alleles for one of the approximately 60 spermatogenesis-defective (spe) genes. Many cloned spe genes are expressed specifically in the male germline, where they play roles during spermatogenesis (spermatid production), spermiogenesis (spermatid activation into spermatozoa), and/or fertilization. Moreover, several spe genes are orthologs of mammalian genes, suggesting that the reproductive processes of the C. elegans and the mammalian male germlines might share common pathways at the molecular level.
Collapse
Affiliation(s)
- Hitoshi Nishimura
- Department of Biology, Emory University, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
37
|
Anderson JL, Morran LT, Phillips PC. Outcrossing and the maintenance of males within C. elegans populations. J Hered 2010; 101 Suppl 1:S62-74. [PMID: 20212008 PMCID: PMC2859890 DOI: 10.1093/jhered/esq003] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Revised: 12/21/2009] [Accepted: 01/11/2010] [Indexed: 01/13/2023] Open
Abstract
Caenorhabditis elegans is an androdioecious nematode with both hermaphrodites and males. Although males can potentially play an important role in avoiding inbreeding and facilitating adaptation, their existence is evolutionarily problematic because they do not directly generate offspring in the way that hermaphrodites do. This review explores how genetic, population genomic, and experimental evolution approaches are being used to address the role of males and outcrossing within C. elegans. Although theory suggests that inbreeding depression and male mating ability should be the primary determinants of male frequency, this has yet to be convincingly confirmed experimentally. Genomic analysis of natural populations finds that outcrossing occurs at low, but not negligible levels, and that observed patterns of linkage disequilibrium consistent with strong selfing may instead be generated by natural selection against outcrossed progeny. Recent experimental evolution studies suggest that males can be maintained at fairly high levels if populations are initiated with sufficient genetic variation and/or subjected to strong natural selection via a change in the environment. For example, as reported here, populations adapting to novel laboratory rearing and temperature regimes maintain males at frequencies from 5% to 40%. Laboratory and field results still await full reconciliation, which may be facilitated by identifying the loci underlying among-strain differences in mating system dynamics.
Collapse
Affiliation(s)
- Jennifer L Anderson
- Center for Ecology and Evolutionary Biology, University of Oregon, Eugene, OR 97403, USA
| | | | | |
Collapse
|
38
|
Gent JI, Schvarzstein M, Villeneuve AM, Gu SG, Jantsch V, Fire AZ, Baudrimont A. A Caenorhabditis elegans RNA-directed RNA polymerase in sperm development and endogenous RNA interference. Genetics 2009; 183:1297-314. [PMID: 19805814 PMCID: PMC2787422 DOI: 10.1534/genetics.109.109686] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Accepted: 10/01/2009] [Indexed: 11/18/2022] Open
Abstract
Short interfering RNAs (siRNAs) are a class of regulatory effectors that enforce gene silencing through formation of RNA duplexes. Although progress has been made in identifying the capabilities of siRNAs in silencing foreign RNA and transposable elements, siRNA functions in endogenous gene regulation have remained mysterious. In certain organisms, siRNA biosynthesis involves novel enzymes that act as RNA-directed RNA polymerases (RdRPs). Here we analyze the function of a Caenorhabditis elegans RdRP, RRF-3, during spermatogenesis. We found that loss of RRF-3 function resulted in pleiotropic defects in sperm development and that sperm defects led to embryonic lethality. Notably, sperm nuclei in mutants of either rrf-3 or another component of the siRNA pathway, eri-1, were frequently surrounded by ectopic microtubule structures, with spindle abnormalities in a subset of the resulting embryos. Through high-throughput small RNA sequencing, we identified a population of cellular mRNAs from spermatogenic cells that appear to serve as templates for antisense siRNA synthesis. This set of genes includes the majority of genes known to have enriched expression during spermatogenesis, as well as many genes not previously known to be expressed during spermatogenesis. In a subset of these genes, we found that RRF-3 was required for effective siRNA accumulation. These and other data suggest a working model in which a major role of the RRF-3/ERI pathway is to generate siRNAs that set patterns of gene expression through feedback repression of a set of critical targets during spermatogenesis.
Collapse
Affiliation(s)
- Jonathan I. Gent
- Department of Genetics, Department of Developmental Biology, and Department of Pathology, Stanford University School of Medicine, Stanford, California 94305 and Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, A-1030 Vienna, Austria
| | - Mara Schvarzstein
- Department of Genetics, Department of Developmental Biology, and Department of Pathology, Stanford University School of Medicine, Stanford, California 94305 and Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, A-1030 Vienna, Austria
| | - Anne M. Villeneuve
- Department of Genetics, Department of Developmental Biology, and Department of Pathology, Stanford University School of Medicine, Stanford, California 94305 and Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, A-1030 Vienna, Austria
| | - Sam Guoping Gu
- Department of Genetics, Department of Developmental Biology, and Department of Pathology, Stanford University School of Medicine, Stanford, California 94305 and Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, A-1030 Vienna, Austria
| | - Verena Jantsch
- Department of Genetics, Department of Developmental Biology, and Department of Pathology, Stanford University School of Medicine, Stanford, California 94305 and Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, A-1030 Vienna, Austria
| | - Andrew Z. Fire
- Department of Genetics, Department of Developmental Biology, and Department of Pathology, Stanford University School of Medicine, Stanford, California 94305 and Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, A-1030 Vienna, Austria
| | - Antoine Baudrimont
- Department of Genetics, Department of Developmental Biology, and Department of Pathology, Stanford University School of Medicine, Stanford, California 94305 and Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, A-1030 Vienna, Austria
| |
Collapse
|
39
|
Bae YK, Kim E, L'Hernault SW, Barr MM. The CIL-1 PI 5-phosphatase localizes TRP Polycystins to cilia and activates sperm in C. elegans. Curr Biol 2009; 19:1599-607. [PMID: 19781942 PMCID: PMC2762383 DOI: 10.1016/j.cub.2009.08.045] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Revised: 08/14/2009] [Accepted: 08/17/2009] [Indexed: 11/26/2022]
Abstract
BACKGROUND C. elegans male sexual behaviors include chemotaxis and response to hermaphrodites, backing, turning, vulva location, spicule insertion, and sperm transfer, culminating in cross-fertilization of hermaphrodite oocytes with male sperm. The LOV-1 and PKD-2 transient receptor potential polycystin (TRPP) complex localizes to ciliated endings of C. elegans male-specific sensory neurons and mediates several aspects of male mating behavior. TRPP complex ciliary localization and sensory function are evolutionarily conserved. A genetic screen for C. elegans mutants with PKD-2 ciliary localization (Cil) defects led to the isolation of a mutation in the cil-1 gene. RESULTS Here, we report that a phosphoinositide (PI) 5-phosphatase, CIL-1, regulates TRPP complex ciliary receptor localization and sperm activation. cil-1 does not regulate the localization of other ciliary proteins, including intraflagellar transport (IFT) components, sensory receptors, or other TRP channels in different cell types. Rather, cil-1 specifically controls TRPP complex trafficking in male-specific sensory neurons and does so in a cell-autonomous fashion. In these cells, cil-1 is required for normal PI(3)P distribution, indicating that a balance between PI(3,5)P2 and PI(3)P is important for TRPP localization. cil-1 mutants are infertile because of sperm activation and motility defects. In sperm, the CIL-1 5-phosphatase and a wortmannin-sensitive PI 3-kinase act antagonistically to regulate the conversion of sessile spermatids into motile spermatozoa, implicating PI(3,4,5)P3 signaling in nematode sperm activation. CONCLUSION Our studies identify the CIL-1 5-phosphatase as a key regulator of PI metabolism in cell types that are important in several aspects of male reproductive biology.
Collapse
Affiliation(s)
- Young-Kyung Bae
- Department of Genetics, Rutgers University, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Eunsoo Kim
- Department of Biochemistry and Molecular Biology, Dalhousie University, 5850 College St., Halifax NS B3H 1X5 Canada
| | | | - Maureen M. Barr
- Department of Genetics, Rutgers University, the State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
40
|
Gosney R, Liau WS, Lamunyon CW. A novel function for the presenilin family member spe-4: inhibition of spermatid activation in Caenorhabditis elegans. BMC DEVELOPMENTAL BIOLOGY 2008; 8:44. [PMID: 18430247 PMCID: PMC2383881 DOI: 10.1186/1471-213x-8-44] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Accepted: 04/22/2008] [Indexed: 11/23/2022]
Abstract
Background Sperm cells must regulate the timing and location of activation to maximize the likelihood of fertilization. Sperm from most species, including the nematode Caenorhabditis elegans, activate upon encountering an external signal. Activation for C. elegans sperm occurs as spermatids undergo spermiogenesis, a profound cellular reorganization that produces a pseudopod. Spermiogenesis is initiated by an activation signal that is transduced through a series of gene products. It is now clear that an inhibitory pathway also operates in spermatids, preventing their premature progression to spermatozoa and resulting in fine-scale control over the timing of activation. Here, we describe the involvement of a newly assigned member of the inhibitory pathway: spe-4, a homolog of the human presenilin gene PS1. The spe-4(hc196) allele investigated here was isolated as a suppressor of sterility of mutations in the spermiogenesis signal transduction gene spe-27. Results Through mapping, complementation tests, DNA sequencing, and transformation rescue, we determined that allele hc196 is a mutation in the spe-4 gene. Our data show that spe-4(hc196) is a bypass suppressor that eliminates the need for the spermiogenesis signal transduction. On its own, spe-4(hc196) has a recessive, temperature sensitive spermatogenesis-defective phenotype, with mutants exhibiting (i) defective spermatocytes, (ii) defective spermatids, (iii) premature spermatid activation, and (iv) spermatozoa defective in fertilization, in addition to a small number of functional sperm which appear normal microscopically. Conclusion A fraction of the sperm from spe-4(hc196) mutant males progress directly to functional spermatozoa without the need for an activation signal, suggesting that spe-4 plays a role in preventing spermatid activation. Another fraction of spermatozoa from spe-4(hc196) mutants are defective in fertilization. Therefore, prematurely activated spermatozoa may have several defects: we show that they may be defective in fertilization, and earlier work showed that they obstruct sperm transfer from males at mating. hc196 is a hypomorphic allele of spe-4, and its newly-discovered role inhibiting spermiogenesis may involve known proteolytic and/or calcium regulatory aspects of presenilin function, or it may involve yet-to-be discovered functions.
Collapse
Affiliation(s)
- Ryoko Gosney
- Department of Biological Science, California State Polytechnic University, Pomona, CA, USA.
| | | | | |
Collapse
|
41
|
Genomics of reproduction in nematodes: prospects for parasite intervention? Trends Parasitol 2008; 24:89-95. [PMID: 18182326 DOI: 10.1016/j.pt.2007.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2007] [Revised: 10/11/2007] [Accepted: 12/06/2007] [Indexed: 11/21/2022]
Abstract
Understanding reproductive processes in parasitic nematodes has the potential to lead to the informed design of new anthelmintics and control strategies. Little is known, however, about the molecular mechanisms underlying sex determination, gametogenesis and reproductive physiology for most parasitic nematodes. Together with comparative analyses of data for the free-living nematode Caenorhabditis elegans, molecular investigations are beginning to provide insights into the processes involved in reproduction and development in parasitic nematodes. Here, we review recent developments, focusing on technological aspects and on molecules associated with sex-specific differences in adult nematodes.
Collapse
|
42
|
Campbell BE, Nagaraj SH, Hu M, Zhong W, Sternberg PW, Ong EK, Loukas A, Ranganathan S, Beveridge I, McInnes RL, Hutchinson GW, Gasser RB. Gender-enriched transcripts in Haemonchus contortus--predicted functions and genetic interactions based on comparative analyses with Caenorhabditis elegans. Int J Parasitol 2007; 38:65-83. [PMID: 17707841 DOI: 10.1016/j.ijpara.2007.07.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2007] [Revised: 06/27/2007] [Accepted: 07/03/2007] [Indexed: 02/05/2023]
Abstract
In the present study, a bioinformatic-microarray approach was employed for the analysis of selected expressed sequence tags (ESTs) from Haemonchus contortus, a key parasitic nematode of small ruminants. Following a bioinformatic analysis of EST data using a semiautomated pipeline, 1885 representative ESTs (rESTs) were selected, to which oligonucleotides (three per EST) were designed and spotted on to a microarray. This microarray was hybridized with cyanine-dye labelled cRNA probes synthesized from RNA from female or male adults of H. contortus. Differential hybridisation was displayed for 301 of the 1885 rESTs ( approximately 16%). Of these, 165 (55%) had significantly greater signal intensities for female cRNA and 136 (45%) for male cRNA. Of these, 113 with increased signals in female or male H. contortus had homologues in Caenorhabditis elegans, predicted to function in metabolism, information storage and processing, cellular processes and signalling, and embryonic and/or larval development. Of the rESTs with no known homologues in C. elegans, 24 ( approximately 40%) had homologues in other nematodes, four had homologues in various other organisms and 30 (52%) had no homology to any sequence in current gene databases. A genetic interaction network was predicted for the C. elegans orthologues of the gender-enriched H. contortus genes, and a focused analysis of a subset revealed a tight network of molecules involved in amino acid, carbohydrate or lipid transport and metabolism, energy production and conversion, translation, ribosomal structure and biogenesis and, importantly, those associated with meiosis and/or mitosis in the germline during oogenesis or spermatogenesis. This study provides a foundation for the molecular, biochemical and functional exploration of selected molecules with differential transcription profiles in H. contortus, for further microarray analyses of transcription in different developmental stages of H. contortus, and for an extended functional analysis once the full genome sequence of this nematode is known.
Collapse
Affiliation(s)
- Bronwyn E Campbell
- Department of Veterinary Science, The University of Melbourne, Werribee, Vic. 3030, Australia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Geldziler B, Chatterjee I, Kadandale P, Putiri E, Patel R, Singson A. A comparative study of sperm morphology, cytology and activation in Caenorhabditis elegans, Caenorhabditis remanei and Caenorhabditis briggsae. Dev Genes Evol 2006; 216:198-208. [PMID: 16389557 DOI: 10.1007/s00427-005-0045-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2005] [Accepted: 11/21/2005] [Indexed: 10/25/2022]
Abstract
Studies of sterile mutants in Caenorhabditis elegans have uncovered new insights into fundamental aspects of gamete cell biology, development, and function at fertilization. The genome sequences of C. elegans, Caenorhabditis briggsae and Caenorhabditis remanei allow for informative comparative studies among these three species. Towards that end, we have examined wild-type sperm morphology and activation (spermiogenesis) in each. Light and electron microscopy studies reveal that general sperm morphology, organization, and ultrastructure are similar in all three species, and activation techniques developed for C. elegans were found to work well in both C. briggsae and C. remanei. Despite important differences in the reproductive mode between C. remanei and the other two species, most genes required for spermiogenesis are conserved in all three. Finally, we have also examined the subcellular distribution of sperm epitopes in C. briggsae and C. remanei that cross-react with anti-sera directed against C. elegans sperm proteins. The baseline data in this study will prove useful for the future analysis and interpretation of sperm gene function across nematode species.
Collapse
Affiliation(s)
- Brian Geldziler
- Department of Genetics, Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA
| | | | | | | | | | | |
Collapse
|
44
|
Affiliation(s)
- Andrew Singson
- Waksman Institute and Department of Genetics, Rutgers University, 190 Frelinghuysen Road, Piscataway, New Jersey 08854, USA.
| |
Collapse
|
45
|
Stanfield GM, Villeneuve AM. Regulation of Sperm Activation by SWM-1 Is Required for Reproductive Success of C. elegans Males. Curr Biol 2006; 16:252-63. [PMID: 16461278 DOI: 10.1016/j.cub.2005.12.041] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2005] [Revised: 12/12/2005] [Accepted: 12/16/2005] [Indexed: 10/25/2022]
Abstract
BACKGROUND Sexual reproduction in animals requires the production of highly specialized motile sperm cells that can navigate to and fertilize ova. During sperm differentiation, nonmotile spermatids are remodeled into motile spermatozoa through a process known as spermiogenesis. In nematodes, spermiogenesis, or sperm activation, involves a rapid cellular morphogenesis that converts unpolarized round spermatids into polarized amoeboid spermatozoa capable of both motility and fertilization. RESULTS Here we demonstrate, by genetic analysis and in vivo and in vitro cell-based assays, that the temporal and spatial localization of spermiogenesis are critical determinants of male fertility in C. elegans, a male/hermaphrodite species. We identify swm-1 as a factor important for male but not hermaphrodite fertility. We show that whereas in wild-type males, activation occurs after spermatids are transferred to the hermaphrodite, swm-1 mutants exhibit ectopic activation of sperm within the male reproductive tract. This ectopic activation leads to infertility by impeding sperm transfer. The SWM-1 protein is composed of a signal sequence and two trypsin inhibitor-like domains and likely functions as a secreted serine protease inhibitor that targets two distinct proteases. CONCLUSIONS These findings support a model in which (1) proteolysis acts as an important in vivo trigger for sperm activation and (2) regulating the timing of proteolysis-triggered activation is crucial for male reproductive success. Furthermore, our data provide insight into how a common program of gamete differentiation can be modulated to allow males to participate in reproduction in the context of a male/hermaphrodite species where the capacity for hermaphrodite self-fertilization has rendered them nonessential for progeny production.
Collapse
Affiliation(s)
- Gillian M Stanfield
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | |
Collapse
|
46
|
Cottee PA, Nisbet AJ, Abs El-Osta YG, Webster TL, Gasser RB. Construction of gender-enriched cDNA archives for adult Oesophagostomum dentatum by suppressive-subtractive hybridization and a microarray analysis of expressed sequence tags. Parasitology 2006; 132:691-708. [PMID: 16426483 DOI: 10.1017/s0031182005009728] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2005] [Revised: 11/07/2005] [Accepted: 11/07/2005] [Indexed: 11/07/2022]
Abstract
In the present study, we constructed gender-enriched cDNA libraries for the adult stage of the parasitic nematode Oesophagostomum dentatum (order Strongylida) using suppressive-subtractive hybridization (SSH), sequenced clones from the female-library and male-library (480 from each) and conducted bioinformatic and microarray analyses of the expressed sequence tags (ESTs). In total, 873 ESTs (440 male and 433 female) were obtained, achieving a sequencing success of 91%The nucleotide sequences reported in this article (Tables 1-5) have been deposited in the EMBL, GenBank and DDJB databases under the Accession nos. AM157797-AM158083. Microarray analyses of 516 unique ESTs representing both gender-enriched libraries revealed differential hybridization for 391 of them (75.8%). Of these, 220 (56.3%) had significantly greater signal intensities in the female than in the male, and 154 (70%) of these were predicted to have homologues in C. elegans. These homologues were predicted to be involved in key biological processes, including embryonic nutrition, gametogenesis, molecular binding/transport or metabolism, nucleic acid synthesis and function, and signal transduction. Of the 171 ESTs with statistically higher signal intensities in male O. dentatum, 43.8% had homologues in C. elegans. These homologues included major sperm proteins (MSPs) or MSP-like molecules, keratin-like molecules, molecules involved in metabolism, PDZ domain-containing proteins, sugar binding proteins, protein kinases, serine proteases or protease inhibitors, molecules involved in proteolysis and other proteins, such as enzymes and various putative proteins. Of the 287 ESTs (from both gender-enriched cDNA libraries) with no known homologues in C. elegans, 50 (17.4%) had homologues in other nematodes, 8 had homologues in various other organisms and 104 (36.2%) had no homology to any sequence in current gene databases. The present study lays a foundation for the isolation and molecular, biochemical and functional characterization of selected genes from the gender-enriched cDNA archives established for O. dentatum.
Collapse
Affiliation(s)
- P A Cottee
- Department of Veterinary Science, The University of Melbourne, 250 Princes Highway, Werribee, Victoria 3030, Australia
| | | | | | | | | |
Collapse
|
47
|
Geldziler B, Chatterjee I, Singson A. The genetic and molecular analysis of spe-19, a gene required for sperm activation in Caenorhabditis elegans. Dev Biol 2005; 283:424-36. [PMID: 15939418 DOI: 10.1016/j.ydbio.2005.04.036] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2004] [Revised: 04/28/2005] [Accepted: 04/28/2005] [Indexed: 11/27/2022]
Abstract
During the process of spermiogenesis (sperm activation) in Caenorhabditis elegans, the dramatic morphological events that ultimately transform round sessile spermatids into polar motile spermatozoa occur without the synthesis of any new gene products. Previous studies have identified four genes (spe-8, spe-12, spe-27 and spe-29) that specifically block spermiogenesis and lead to hermaphrodite-specific fertility defects. Here, we report the cloning and characterization of a new component of the sperm activation pathway, spe-19, that is required for fertility in hermaphrodites. spe-19 is predicted to encode a novel single-pass transmembrane protein. The spe-19 mutant phenotype, genetic interactions and the molecular nature of the gene product suggest SPE-19 to be a candidate for the receptor/co-receptor necessary for the transduction of the activation signal across the sperm plasma membrane.
Collapse
Affiliation(s)
- Brian Geldziler
- Waksman Institute, Department of Genetics, Rutgers University, Piscataway, NJ 08854, USA
| | | | | |
Collapse
|
48
|
Chatterjee I, Richmond A, Putiri E, Shakes DC, Singson A. TheCaenorhabditis elegans spe-38gene encodes a novel four-pass integral membrane protein required for sperm function at fertilization. Development 2005; 132:2795-808. [PMID: 15930110 DOI: 10.1242/dev.01868] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A mutation in the Caenorhabditis elegans spe-38 gene results in a sperm-specific fertility defect. spe-38 sperm are indistinguishable from wild-type sperm with regards to their morphology, motility and migratory behavior. spe-38 sperm make close contact with oocytes but fail to fertilize them. spe-38 sperm can also stimulate ovulation and engage in sperm competition. The spe-38 gene is predicted to encode a novel four-pass (tetraspan) integral membrane protein. Structurally similar tetraspan molecules have been implicated in processes such as gamete adhesion/fusion in mammals, membrane adhesion/fusion during yeast mating, and the formation/function of tight-junctions in metazoa. In antibody localization experiments, SPE-38 was found to concentrate on the pseudopod of mature sperm,consistent with it playing a direct role in gamete interactions.
Collapse
Affiliation(s)
- Indrani Chatterjee
- Waksman Institute and Department of Genetics, Rutgers University, Piscataway, NJ 08854, USA
| | | | | | | | | |
Collapse
|
49
|
Good K, Ciosk R, Nance J, Neves A, Hill RJ, Priess JR. The T-box transcription factors TBX-37 and TBX-38 link GLP-1/Notch signaling to mesoderm induction in C. elegans embryos. Development 2004; 131:1967-78. [PMID: 15056620 DOI: 10.1242/dev.01088] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The four-cell C. elegans embryo contains two sister cells called ABa and ABp that initially have equivalent abilities to produce ectodermal cell types. Multiple Notch-mediated interactions occur during the early cell divisions that diversify the ABa and ABp descendants. The first interaction determines the pattern of ectodermal cell types produced by ABp. The second interaction induces two ABa granddaughters to become mesodermal precursors. We show that T-box transcription factors called TBX-37 and TBX-38 are essential for mesodermal induction, and that these factors are expressed in ABa, but not ABp, descendants. We provide evidence that the first Notch interaction functions largely, if not entirely, to prevent TBX-37, TBX-38 expression in ABp descendants. Neither the second Notch interaction nor TBX-37, TBX-38 alone are sufficient for mesodermal induction, indicating that both must function together. We conclude that TBX-37, TBX-38 play a key role in distinguishing the outcomes of two sequential Notch-mediated interactions.
Collapse
Affiliation(s)
- Kathryn Good
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | | | | | | | |
Collapse
|
50
|
Nisbet AJ, Cottee P, Gasser RB. Molecular biology of reproduction and development in parasitic nematodes: progress and opportunities. Int J Parasitol 2004; 34:125-38. [PMID: 15037100 DOI: 10.1016/j.ijpara.2003.09.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2003] [Revised: 09/05/2003] [Accepted: 09/11/2003] [Indexed: 10/26/2022]
Abstract
Molecular biological research on the development and reproduction of parasites is of major significance for many fundamental and applied areas of medical and veterinary parasitology. Together with knowledge of parasite biology and epidemiology, the application of molecular tools and technologies provides unique opportunities for elucidating developmental and reproductive processes in helminths. This article focuses specifically on recent progress in studying the molecular mechanisms of development, sexual differentiation and reproduction in parasitic nematodes of socio-economic importance and comparative analyses, where appropriate, with the free-living nematode Caenorhabditis elegans. It also describes the implications of such work for understanding reproduction, tissue migration, hypobiosis, signal transduction and host-parasite interactions at the molecular level, and for seeking new means of parasite intervention.
Collapse
Affiliation(s)
- Alasdair J Nisbet
- Department of Veterinary Science, The University of Melbourne, 250 Princes Highway, Werribee, Victoria 3030, Australia
| | | | | |
Collapse
|