1
|
Houpt NSB, Kassen R. On the De Novo Emergence of Ecological Interactions during Evolutionary Diversification: A Conceptual Framework and Experimental Test. Am Nat 2023; 202:800-817. [PMID: 38033179 DOI: 10.1086/726895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
AbstractEcological interactions are crucial to the structure and function of biological communities, but we lack a causal understanding of the forces shaping their emergence during evolutionary diversification. Here we provide a conceptual framework linking different modes of diversification (e.g., ecological diversification), which depend on environmental characteristics, to the evolution of different forms of ecological interactions (e.g., resource partitioning) in asexual lineages. We tested the framework by examining the net interactions in communities of Pseudomonas aeruginosa produced via experimental evolution in nutritionally simple (SIM) or complex (COM) environments by contrasting the productivity and competitive fitness of whole evolved communities relative to their component isolates. As expected, we found that nutritional complexity drove the evolution of communities with net positive interactions whereas SIM communities had similar performance as their component isolates. A follow-up experiment revealed that high fitness in two COM communities was driven by rare variants (frequency <0.1%) that antagonized PA14, the ancestral strain and common competitor used in fitness assays. Our study suggests that the evolution of de novo ecological interactions in asexual lineages is predictable at a broad scale from environmental conditions. Further, our work demonstrates that rare variants can disproportionately impact the function of relatively simple microbial communities.
Collapse
|
2
|
Abstract
AbstractEvolutionary biologists have thought about the role of genetic variation during adaptation for a very long time-before we understood the organization of the genetic code, the provenance of genetic variation, and how such variation influenced the phenotypes on which natural selection acts. Half a century after the discovery of the structure of DNA and the unraveling of the genetic code, we have a rich understanding of these problems and the means to both delve deeper and widen our perspective across organisms and natural populations. The 2022 Vice Presidential Symposium of the American Society of Naturalists highlighted examples of recent insights into the role of genetic variation in adaptive processes, which are compiled in this special section. The work was conducted in different parts of the world, included theoretical and empirical studies with diverse organisms, and addressed distinct aspects of how genetic variation influences adaptation. In our introductory article to the special section, we discuss some important recent insights about the generation and maintenance of genetic variation, its impacts on phenotype and fitness, its fate in natural populations, and its role in driving adaptation. By placing the special section articles in the broader context of recent developments, we hope that this overview will also serve as a useful introduction to the field.
Collapse
|
3
|
Miller CL, Sun D, Thornton LH, McGuigan K. The Contribution of Mutation to Variation in Temperature-Dependent Sprint Speed in Zebrafish, Danio rerio. Am Nat 2023; 202:519-533. [PMID: 37792923 DOI: 10.1086/726011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
AbstractThe contribution of new mutations to phenotypic variation and the consequences of this variation for individual fitness are fundamental concepts for understanding genetic variation and adaptation. Here, we investigated how mutation influenced variation in a complex trait in zebrafish, Danio rerio. Typical of many ecologically relevant traits in ectotherms, swimming speed in fish is temperature dependent, with evidence of adaptive evolution of thermal performance. We chemically induced novel germline point mutations in males and measured sprint speed in their sons at six temperatures (between 16°C and 34°C). Heterozygous mutational effects on speed were strongly positively correlated among temperatures, resulting in statistical support for only a single axis of mutational variation, reflecting temperature-independent variation in speed (faster-slower mode). These results suggest pleiotropic effects on speed across different temperatures; however, spurious correlations arise via linkage or heterogeneity in mutation number when mutations have consistent directional effects on each trait. Here, mutation did not change mean speed, indicating no directional bias in mutational effects. The results contribute to emerging evidence that mutations may predominantly have synergistic cross-environment effects, in contrast to conditionally neutral or antagonistic effects that underpin thermal adaptation. We discuss several aspects of experimental design that may affect resolution of mutations with nonsynergistic effects.
Collapse
|
4
|
Robinson D, Vanacloig-Pedros E, Cai R, Place M, Hose J, Gasch AP. Gene-by-environment interactions influence the fitness cost of gene copy-number variation in yeast. G3 (BETHESDA, MD.) 2023; 13:jkad159. [PMID: 37481264 PMCID: PMC10542507 DOI: 10.1093/g3journal/jkad159] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/11/2023] [Accepted: 07/12/2023] [Indexed: 07/24/2023]
Abstract
Variation in gene copy number can alter gene expression and influence downstream phenotypes; thus copy-number variation provides a route for rapid evolution if the benefits outweigh the cost. We recently showed that genetic background significantly influences how yeast cells respond to gene overexpression, revealing that the fitness costs of copy-number variation can vary substantially with genetic background in a common-garden environment. But the interplay between copy-number variation tolerance and environment remains unexplored on a genomic scale. Here, we measured the tolerance to gene overexpression in four genetically distinct Saccharomyces cerevisiae strains grown under sodium chloride stress. Overexpressed genes that are commonly deleterious during sodium chloride stress recapitulated those commonly deleterious under standard conditions. However, sodium chloride stress uncovered novel differences in strain responses to gene overexpression. West African strain NCYC3290 and North American oak isolate YPS128 are more sensitive to sodium chloride stress than vineyard BC187 and laboratory strain BY4743. Consistently, NCYC3290 and YPS128 showed the greatest sensitivities to overexpression of specific genes. Although most genes were deleterious, hundreds were beneficial when overexpressed-remarkably, most of these effects were strain specific. Few beneficial genes were shared between the sodium chloride-sensitive isolates, implicating mechanistic differences behind their sodium chloride sensitivity. Transcriptomic analysis suggested underlying vulnerabilities and tolerances across strains, and pointed to natural copy-number variation of a sodium export pump that likely contributes to strain-specific responses to overexpression of other genes. Our results reveal extensive strain-by-environment interactions in the response to gene copy-number variation, raising important implications for the accessibility of copy-number variation-dependent evolutionary routes under times of stress.
Collapse
Affiliation(s)
- DeElegant Robinson
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53704, USA
| | - Elena Vanacloig-Pedros
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53704, USA
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53704, USA
| | - Ruoyi Cai
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53704, USA
| | - Michael Place
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53704, USA
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53704, USA
| | - James Hose
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53704, USA
| | - Audrey P Gasch
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53704, USA
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53704, USA
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI 53704, USA
| |
Collapse
|
5
|
Robinson D, Vanacloig-Pedros E, Cai R, Place M, Hose J, Gasch AP. Gene-by-environment interactions influence the fitness cost of gene copy-number variation in yeast. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.11.540375. [PMID: 37503218 PMCID: PMC10369901 DOI: 10.1101/2023.05.11.540375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Variation in gene copy number can alter gene expression and influence downstream phenotypes; thus copy-number variation (CNV) provides a route for rapid evolution if the benefits outweigh the cost. We recently showed that genetic background significantly influences how yeast cells respond to gene over-expression (OE), revealing that the fitness costs of CNV can vary substantially with genetic background in a common-garden environment. But the interplay between CNV tolerance and environment remains unexplored on a genomic scale. Here we measured the tolerance to gene OE in four genetically distinct Saccharomyces cerevisiae strains grown under sodium chloride (NaCl) stress. OE genes that are commonly deleterious during NaCl stress recapitulated those commonly deleterious under standard conditions. However, NaCl stress uncovered novel differences in strain responses to gene OE. West African strain NCYC3290 and North American oak isolate YPS128 are more sensitive to NaCl stress than vineyard BC187 and laboratory strain BY4743. Consistently, NCYC3290 and YPS128 showed the greatest sensitivities to gene OE. Although most genes were deleterious, hundreds were beneficial when overexpressed - remarkably, most of these effects were strain specific. Few beneficial genes were shared between the NaCl-sensitive isolates, implicating mechanistic differences behind their NaCl sensitivity. Transcriptomic analysis suggested underlying vulnerabilities and tolerances across strains, and pointed to natural CNV of a sodium export pump that likely contributes to strain-specific responses to OE of other genes. Our results reveal extensive strain-by-environment interaction in the response to gene CNV, raising important implications for the accessibility of CNV-dependent evolutionary routes under times of stress.
Collapse
Affiliation(s)
- DeElegant Robinson
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison WI 53704
| | - Elena Vanacloig-Pedros
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison WI 53704
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison WI 53704
| | - Ruoyi Cai
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison WI 53704
| | - Michael Place
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison WI 53704
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison WI 53704
| | - James Hose
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison WI 53704
| | - Audrey P Gasch
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison WI 53704
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison WI 53704
- Department of Medical Genetics, University of Wisconsin-Madison, Madison WI 53704
| |
Collapse
|
6
|
Effect of Salt Stress on Mutation and Genetic Architecture for Fitness Components in Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2020; 10:3831-3842. [PMID: 32847816 PMCID: PMC7534429 DOI: 10.1534/g3.120.401593] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Mutations shape genetic architecture and thus influence the evolvability, adaptation and diversification of populations. Mutations may have different and even opposite effects on separate fitness components, and their rate of origin, distribution of effects and variance-covariance structure may depend on environmental quality. We performed an approximately 1,500-generation mutation-accumulation (MA) study in diploids of the yeast Saccharomyces cerevisiae in stressful (high-salt) and normal environments (50 lines each) to investigate the rate of input of mutational variation (Vm) as well as the mutation rate and distribution of effects on diploid and haploid fitness components, assayed in the normal environment. All four fitness components in both MA treatments exhibited statistically significant mutational variance and mutational heritability. Compared to normal-MA, salt stress increased the mutational variance in growth rate by more than sevenfold in haploids derived from the MA lines. This increase was not detected in diploid growth rate, suggesting masking of mutations in the heterozygous state. The genetic architecture arising from mutation (M-matrix) differed between normal and salt conditions. Salt stress also increased environmental variance in three fitness components, consistent with a reduction in canalization. Maximum-likelihood analysis indicated that stress increased the genomic mutation rate by approximately twofold for maximal growth rate and sporulation rate in diploids and for viability in haploids, and by tenfold for maximal growth rate in haploids, but large confidence intervals precluded distinguishing these values between MA environments. We discuss correlations between fitness components in diploids and haploids and compare the correlations between the two MA environmental treatments.
Collapse
|
7
|
Empirical measures of mutational effects define neutral models of regulatory evolution in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2019; 116:21085-21093. [PMID: 31570626 DOI: 10.1073/pnas.1902823116] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Understanding how phenotypes evolve requires disentangling the effects of mutation generating new variation from the effects of selection filtering it. Tests for selection frequently assume that mutation introduces phenotypic variation symmetrically around the population mean, yet few studies have tested this assumption by deeply sampling the distributions of mutational effects for particular traits. Here, we examine distributions of mutational effects for gene expression in the budding yeast Saccharomyces cerevisiae by measuring the effects of thousands of point mutations introduced randomly throughout the genome. We find that the distributions of mutational effects differ for the 10 genes surveyed and are inconsistent with normality. For example, all 10 distributions of mutational effects included more mutations with large effects than expected for normally distributed phenotypes. In addition, some genes also showed asymmetries in their distribution of mutational effects, with new mutations more likely to increase than decrease the gene's expression or vice versa. Neutral models of regulatory evolution that take these empirically determined distributions into account suggest that neutral processes may explain more expression variation within natural populations than currently appreciated.
Collapse
|
8
|
Arbuthnott D, Whitlock MC. Environmental stress does not increase the mean strength of selection. J Evol Biol 2018; 31:1599-1606. [PMID: 29978525 DOI: 10.1111/jeb.13351] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/06/2018] [Accepted: 06/23/2018] [Indexed: 11/28/2022]
Abstract
A common intuition among evolutionary biologists and ecologists is that environmental stress will increase the strength of selection against deleterious alleles and among alternate genotypes. However, the strength of selection is determined by the relative fitness differences among genotypes, and there is no theoretical reason why these differences should be exaggerated as mean fitness decreases. We update a recent review of the empirical results pertaining to environmental stress and the strength of selection and find that there is no overall trend towards increased selection under stress, in agreement with other recent analyses of existing data. The majority of past studies measure the strength of selection by quantifying the decrease in fitness imposed by single or multiple mutations in different environments. However, selection rarely acts on one locus independently, and the strength of selection will be determined by variation across the whole genome. We used 20 inbred lines of Drosophila melanogaster to make repeated fitness measurements of the same genotypes in four different environments. This framework allowed us to determine the variation in fitness attributable to genotype across stressful environments and to calculate the opportunity for selection among these genotypes in each stress. Although we found significant decreases in mean fitness in our stressful environments, we did not find any significant differences in the strength of selection among any of the four measured environments. Therefore, in agreement with our updated review, we find no evidence for the oft-cited verbal model that stress increases the strength of selection.
Collapse
Affiliation(s)
- Devin Arbuthnott
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Michael C Whitlock
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
9
|
Lu GA, Zhao Y, Liufu Z, Wu CI. On the possibility of death of new genes - evidence from the deletion of de novo microRNAs. BMC Genomics 2018; 19:388. [PMID: 29792159 PMCID: PMC5966946 DOI: 10.1186/s12864-018-4755-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 05/02/2018] [Indexed: 01/21/2023] Open
Abstract
Background New genes are constantly formed, sometimes from non-genic sequences, creating what is referred to as de novo genes. Since the total number of genes remains relatively steady, gene deaths likely balance out new births. In metazoan genomes, microRNAs (miRs) genes, small and non-coding, account for the bulk of functional de novo genes and are particularly suited to the investigation of gene death. Results In this study, we discover a Drosophila-specific de novo miRNA (mir-977) that may be facing impending death. Strikingly, after this testis-specific gene is deleted from D. melanogaster, most components of male fitness increase, rather than decrease as had been expected. These components include male viability, fertility and males’ ability to repress female re-mating. Given that mir-977 has a negative fitness effect in D. melanogaster, this de novo gene with an adaptive history for over 60 Myrs may be facing elimination. In some other species where mir-977 is not found, gene death may have already happened. Conclusion The surprising result suggests that de novo genes, constantly rising and falling during evolution, may often be transiently adaptive and then purged from the genome. Electronic supplementary material The online version of this article (10.1186/s12864-018-4755-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guang-An Lu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Yixin Zhao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Zhongqi Liufu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Chung-I Wu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China. .,Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, 60637, USA.
| |
Collapse
|
10
|
Effects of mutation and selection on plasticity of a promoter activity in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2017; 114:E11218-E11227. [PMID: 29259117 DOI: 10.1073/pnas.1713960115] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Phenotypic plasticity is an evolvable property of biological systems that can arise from environment-specific regulation of gene expression. To better understand the evolutionary and molecular mechanisms that give rise to plasticity in gene expression, we quantified the effects of 235 single-nucleotide mutations in the Saccharomyces cerevisiae TDH3 promoter (PTDH3 ) on the activity of this promoter in media containing glucose, galactose, or glycerol as a carbon source. We found that the distributions of mutational effects differed among environments because many mutations altered the plastic response exhibited by the wild-type allele. Comparing the effects of these mutations with the effects of 30 PTDH3 polymorphisms on expression plasticity in the same environments provided evidence of natural selection acting to prevent the plastic response in PTDH3 activity between glucose and galactose from becoming larger. The largest changes in expression plasticity were observed between fermentable (glucose or galactose) and nonfermentable (glycerol) carbon sources and were caused by mutations located in the RAP1 and GCR1 transcription factor binding sites. Mutations altered expression plasticity most frequently between the two fermentable environments, with mutations causing significant changes in plasticity between glucose and galactose distributed throughout the promoter, suggesting they might affect chromatin structure. Taken together, these results provide insight into the molecular mechanisms underlying gene-by-environment interactions affecting gene expression as well as the evolutionary dynamics affecting natural variation in plasticity of gene expression.
Collapse
|
11
|
The mutational decay of male-male and hermaphrodite-hermaphrodite competitive fitness in the androdioecious nematode C. elegans. Heredity (Edinb) 2017; 120:1-12. [PMID: 29234171 DOI: 10.1038/s41437-017-0003-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/27/2017] [Accepted: 08/16/2017] [Indexed: 12/14/2022] Open
Abstract
Androdioecious Caenorhabditis have a high frequency of self-compatible hermaphrodites and a low frequency of males. The effects of mutations on male fitness are of interest for two reasons. First, when males are rare, selection on male-specific mutations is less efficient than in hermaphrodites. Second, males may present a larger mutational target than hermaphrodites because of the different ways in which fitness accrues in the two sexes. We report the first estimates of male-specific mutational effects in an androdioecious organism. The rate of male-specific inviable or sterile mutations is ⩽5 × 10-4/generation, below the rate at which males would be lost solely due to those kinds of mutations. The rate of mutational decay of male competitive fitness is ~ 0.17%/generation; that of hermaphrodite competitive fitness is ~ 0.11%/generation. The point estimate of ~ 1.5X faster rate of mutational decay of male fitness is nearly identical to the same ratio in Drosophila. Estimates of mutational variance (VM) for male mating success and competitive fitness are not significantly different from zero, whereas VM for hermaphrodite competitive fitness is similar to that of non-competitive fitness. Two independent estimates of the average selection coefficient against mutations affecting hermaphrodite competitive fitness agree to within two-fold, 0.33-0.5%.
Collapse
|
12
|
Kraemer SA, Böndel KB, Ness RW, Keightley PD, Colegrave N. Fitness change in relation to mutation number in spontaneous mutation accumulation lines of Chlamydomonas reinhardtii. Evolution 2017; 71:2918-2929. [PMID: 28884790 PMCID: PMC5765464 DOI: 10.1111/evo.13360] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 09/01/2017] [Accepted: 09/05/2017] [Indexed: 01/08/2023]
Abstract
Although all genetic variation ultimately stems from mutations, their properties are difficult to study directly. Here, we used multiple mutation accumulation (MA) lines derived from five genetic backgrounds of the green algae Chlamydomonas reinhardtii that have been previously subjected to whole genome sequencing to investigate the relationship between the number of spontaneous mutations and change in fitness from a nonevolved ancestor. MA lines were on average less fit than their ancestors and we detected a significantly negative correlation between the change in fitness and the total number of accumulated mutations in the genome. Likewise, the number of mutations located within coding regions significantly and negatively impacted MA line fitness. We used the fitness data to parameterize a maximum likelihood model to estimate discrete categories of mutational effects, and found that models containing one to two mutational effect categories (one neutral and one deleterious category) fitted the data best. However, the best‐fitting mutational effects models were highly dependent on the genetic background of the ancestral strain.
Collapse
Affiliation(s)
- Susanne A Kraemer
- Institute of Evolutionary Biology, Ashworth Laboratories, University of Edinburgh, Edinburgh EH93FL, United Kingdom
| | - Katharina B Böndel
- Institute of Evolutionary Biology, Ashworth Laboratories, University of Edinburgh, Edinburgh EH93FL, United Kingdom
| | - Robert W Ness
- Department of Biology, William G. Davis Building, University of Toronto, Mississuaga L5L1C6, Canada
| | - Peter D Keightley
- Institute of Evolutionary Biology, Ashworth Laboratories, University of Edinburgh, Edinburgh EH93FL, United Kingdom
| | - Nick Colegrave
- Institute of Evolutionary Biology, Ashworth Laboratories, University of Edinburgh, Edinburgh EH93FL, United Kingdom
| |
Collapse
|
13
|
Davies SK, Leroi A, Burt A, Bundy JG, Baer CF. The mutational structure of metabolism in Caenorhabditis elegans. Evolution 2016; 70:2239-2246. [PMID: 27465022 PMCID: PMC5050113 DOI: 10.1111/evo.13020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 06/27/2016] [Accepted: 07/10/2016] [Indexed: 12/14/2022]
Abstract
A properly functioning organism must maintain metabolic homeostasis. Deleterious mutations degrade organismal function, presumably at least in part via effects on metabolic function. Here we present an initial investigation into the mutational structure of the Caenorhabditis elegans metabolome by means of a mutation accumulation experiment. We find that pool sizes of 29 metabolites vary greatly in their vulnerability to mutation, both in terms of the rate of accumulation of genetic variance (the mutational variance, VM) and the rate of change of the trait mean (the mutational bias, ΔM). Strikingly, some metabolites are much more vulnerable to mutation than any other trait previously studied in the same way. Although we cannot statistically assess the strength of mutational correlations between individual metabolites, principal component analysis provides strong evidence that some metabolite pools are genetically correlated, but also that there is substantial scope for independent evolution of different groups of metabolites. Averaged over mutation accumulation lines, PC3 is positively correlated with relative fitness, but a model in which metabolites are uncorrelated with fitness is nearly as good by Akaike's Information Criterion.
Collapse
Affiliation(s)
- Sarah K Davies
- Department of Life Sciences, Imperial College London, United Kingdom
- Department of Surgery and Cancer, Imperial College London, United Kingdom
| | - Armand Leroi
- Department of Life Sciences, Imperial College London, United Kingdom
| | - Austin Burt
- Department of Life Sciences, Imperial College London, United Kingdom
| | - Jacob G Bundy
- Department of Surgery and Cancer, Imperial College London, United Kingdom
| | - Charles F Baer
- Department of Biology, University of Florida, Gainesville, Florida.
- Genetics Institute, University of Florida, Gainesville, Florida.
| |
Collapse
|
14
|
Fitness Effects of Spontaneous Mutations in Picoeukaryotic Marine Green Algae. G3-GENES GENOMES GENETICS 2016; 6:2063-71. [PMID: 27175016 PMCID: PMC4938659 DOI: 10.1534/g3.116.029769] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Estimates of the fitness effects of spontaneous mutations are important for understanding the adaptive potential of species. Here, we present the results of mutation accumulation experiments over 265–512 sequential generations in four species of marine unicellular green algae, Ostreococcus tauri RCC4221, Ostreococcus mediterraneus RCC2590, Micromonas pusilla RCC299, and Bathycoccus prasinos RCC1105. Cell division rates, taken as a proxy for fitness, systematically decline over the course of the experiment in O. tauri, but not in the three other species where the MA experiments were carried out over a smaller number of generations. However, evidence of mutation accumulation in 24 MA lines arises when they are exposed to stressful conditions, such as changes in osmolarity or exposure to herbicides. The selection coefficients, estimated from the number of cell divisions/day, varies significantly between the different environmental conditions tested in MA lines, providing evidence for advantageous and deleterious effects of spontaneous mutations. This suggests a common environmental dependence of the fitness effects of mutations and allows the minimum mutation/genome/generation rates to be inferred at 0.0037 in these species.
Collapse
|
15
|
The fitness effects of a point mutation in Escherichia coli change with founding population density. Genetica 2016; 144:417-24. [PMID: 27344657 DOI: 10.1007/s10709-016-9910-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 06/13/2016] [Indexed: 10/21/2022]
Abstract
Although intraspecific competition plays a seminal role in organismal evolution, little is known about the fitness effects of mutations at different population densities. We identified a point mutation in the cyclic AMP receptor protein (CRP) gene in Escherichia coli that confers significantly higher fitness than the wildtype at low founding population density, but significantly lower fitness at high founding density. Because CRP is a transcription factor that regulates the expression of nearly 500 genes, we compared global gene expression profiles of the mutant and wildtype strains. This mutation (S63F) does not affect expression of crp itself, but it does significantly affect expression of 170 and 157 genes at high and low founding density, respectively. Interestingly, acid resistance genes, some of which are known to exhibit density-dependent effects in E. coli, were consistently differentially expressed at high but not low density. As such, these genes may play a key role in reducing the crp mutant's fitness at high density, although other differentially expressed genes almost certainly also contribute to the fluctuating fitness differences we observed. Whatever the causes, we suspect that many mutations may exhibit density-dependent fitness effects in natural populations, so the fate of new mutations may frequently depend on the effective population size when they originate.
Collapse
|
16
|
Roles AJ, Rutter MT, Dworkin I, Fenster CB, Conner JK. Field measurements of genotype by environment interaction for fitness caused by spontaneous mutations in Arabidopsis thaliana. Evolution 2016; 70:1039-50. [PMID: 27061194 DOI: 10.1111/evo.12913] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 03/24/2016] [Indexed: 12/24/2022]
Abstract
As the ultimate source of genetic diversity, spontaneous mutation is critical to the evolutionary process. The fitness effects of spontaneous mutations are almost always studied under controlled laboratory conditions rather than under the evolutionarily relevant conditions of the field. Of particular interest is the conditionality of new mutations-that is, is a new mutation harmful regardless of the environment in which it is found? In other words, what is the extent of genotype-environment interaction for spontaneous mutations? We studied the fitness effects of 25 generations of accumulated spontaneous mutations in Arabidopsis thaliana in two geographically widely separated field environments, in Michigan and Virginia. At both sites, mean total fitness of mutation accumulation lines exceeded that of the ancestors, contrary to the expected decrease in the mean due to new mutations but in accord with prior work on these MA lines. We observed genotype-environment interactions in the fitness effects of new mutations, such that the effects of mutations in Michigan were a poor predictor of their effects in Virginia and vice versa. In particular, mutational variance for fitness was much larger in Virginia compared to Michigan. This strong genotype-environment interaction would increase the amount of genetic variation maintained by mutation-selection balance.
Collapse
Affiliation(s)
- Angela J Roles
- Biology Department, Oberlin College, Oberlin, Ohio, 44074. .,Kellogg Biological Station, Michigan State University, East Lansing, Michigan, 48824. .,Department of Integrative Biology, Michigan State University, East Lansing, Michigan, 48824.
| | - Matthew T Rutter
- Department of Biology, College of Charleston, Charleston, South Carolina, 29401.,Department of Biology, University of Maryland, College Park, Maryland, 20742
| | - Ian Dworkin
- Department of Integrative Biology, Michigan State University, East Lansing, Michigan, 48824.,Department of Biology, McMaster University, Hamilton, Ontario, L8S 4L8, Canada
| | - Charles B Fenster
- Department of Biology, University of Maryland, College Park, Maryland, 20742
| | - Jeffrey K Conner
- Kellogg Biological Station, Michigan State University, East Lansing, Michigan, 48824.,Department of Plant Biology, Michigan State University, East Lansing, Michigan, 48824
| |
Collapse
|
17
|
Kraemer SA, Morgan AD, Ness RW, Keightley PD, Colegrave N. Fitness effects of new mutations in Chlamydomonas reinhardtii across two stress gradients. J Evol Biol 2016; 29:583-93. [PMID: 26663473 PMCID: PMC4982031 DOI: 10.1111/jeb.12807] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 10/22/2015] [Accepted: 12/02/2015] [Indexed: 11/29/2022]
Abstract
Most spontaneous mutations affecting fitness are likely to be deleterious, but the strength of selection acting on them might be impacted by environmental stress. Such stress‐dependent selection could expose hidden genetic variation, which in turn might increase the adaptive potential of stressed populations. On the other hand, this variation might represent a genetic load and thus lead to population extinction under stress. Previous studies to determine the link between stress and mutational effects on fitness, however, have produced inconsistent results. Here, we determined the net change in fitness in 29 genotypes of the green algae Chlamydomonas reinhardtii that accumulated mutations in the near absence of selection for approximately 1000 generations across two stress gradients, increasing NaCl and decreasing phosphate. We found mutational effects to be magnified under extremely stressful conditions, but such effects were specific both to the type of stress and to the genetic background. The detection of stress‐dependent fitness effects of mutations depended on accurately scaling relative fitness measures by generation times, thus offering an explanation for the inconsistencies among previous studies.
Collapse
Affiliation(s)
- S A Kraemer
- Ashworth Laboratories, University of Edinburgh, Edinburgh, UK
| | - A D Morgan
- Ashworth Laboratories, University of Edinburgh, Edinburgh, UK
| | - R W Ness
- Ashworth Laboratories, University of Edinburgh, Edinburgh, UK
| | - P D Keightley
- Ashworth Laboratories, University of Edinburgh, Edinburgh, UK
| | - N Colegrave
- Ashworth Laboratories, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
18
|
Abiotic stress does not magnify the deleterious effects of spontaneous mutations. Heredity (Edinb) 2015; 115:503-8. [PMID: 26103946 DOI: 10.1038/hdy.2015.51] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 04/30/2015] [Accepted: 05/06/2015] [Indexed: 01/10/2023] Open
Abstract
Although the effects of deleterious alleles often are predicted to be greater in stressful environments, there is no theoretical basis for this prediction and the empirical evidence is mixed. Here we characterized the effects of three types of abiotic stress (thermal, oxidative and hyperosmotic) on two sets of nematode (Caenorhabditis elegans) mutation accumulation (MA) lines that differ by threefold in fitness. We compared the survival and egg-to-adult viability between environments (benign and stressful) and between fitness categories (high-fitness MA, low-fitness MA). If the environment and mutation load have synergistic effects on trait means, then the difference between the high and low-fitness MA lines should be larger in stressful environments. Although the stress treatments consistently decreased survival and/or viability, we did not detect significant interactions between fitness categories and environment types. In contrast, we did find consistent evidence for synergistic effects on (micro)environmental variation. The lack of signal in trait means likely reflects the very low starting fitness of some low-fitness MA lines, the potential for cross-stress responses and the context dependence of mutational effects. In addition, the large increases in the environmental variance in the stressful environments may have masked small changes in trait means. These results do not provide evidence for synergism between mutation and stress.
Collapse
|
19
|
Martin G, Lenormand T. The fitness effect of mutations across environments: Fisher's geometrical model with multiple optima. Evolution 2015; 69:1433-1447. [DOI: 10.1111/evo.12671] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 04/07/2015] [Indexed: 12/22/2022]
Affiliation(s)
- Guillaume Martin
- Institut des Sciences de l'Evolution de Montpellier, UMR CNRS-UM II 5554; Université Montpellier II; 34 095 Montpellier cedex 5 France
| | - Thomas Lenormand
- UMR 5175 CEFE; CNRS - Université Montpellier - Université P. Valéry, EPHE; 1919 route de Mende 34293 Montpellier Cedex 5 France
| |
Collapse
|
20
|
Barker B, Xu L, Gu Z. Dynamic epistasis under varying environmental perturbations. PLoS One 2015; 10:e0114911. [PMID: 25625594 PMCID: PMC4308068 DOI: 10.1371/journal.pone.0114911] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 11/15/2014] [Indexed: 01/17/2023] Open
Abstract
Epistasis describes the phenomenon that mutations at different loci do not have independent effects with regard to certain phenotypes. Understanding the global epistatic landscape is vital for many genetic and evolutionary theories. Current knowledge for epistatic dynamics under multiple conditions is limited by the technological difficulties in experimentally screening epistatic relations among genes. We explored this issue by applying flux balance analysis to simulate epistatic landscapes under various environmental perturbations. Specifically, we looked at gene-gene epistatic interactions, where the mutations were assumed to occur in different genes. We predicted that epistasis tends to become more positive from glucose-abundant to nutrient-limiting conditions, indicating that selection might be less effective in removing deleterious mutations in the latter. We also observed a stable core of epistatic interactions in all tested conditions, as well as many epistatic interactions unique to each condition. Interestingly, genes in the stable epistatic interaction network are directly linked to most other genes whereas genes with condition-specific epistasis form a scale-free network. Furthermore, genes with stable epistasis tend to have similar evolutionary rates, whereas this co-evolving relationship does not hold for genes with condition-specific epistasis. Our findings provide a novel genome-wide picture about epistatic dynamics under environmental perturbations.
Collapse
Affiliation(s)
- Brandon Barker
- Center for Advanced Computing, Cornell University, Ithaca, New York, United States of America
| | - Lin Xu
- Division of Hematology/Oncology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Zhenglong Gu
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, United States of America
- Tri-Institutional Training Program in Computational Biology and Medicine, New York, New York, United States of America
| |
Collapse
|
21
|
Causes of natural variation in fitness: evidence from studies of Drosophila populations. Proc Natl Acad Sci U S A 2015; 112:1662-9. [PMID: 25572964 DOI: 10.1073/pnas.1423275112] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
DNA sequencing has revealed high levels of variability within most species. Statistical methods based on population genetics theory have been applied to the resulting data and suggest that most mutations affecting functionally important sequences are deleterious but subject to very weak selection. Quantitative genetic studies have provided information on the extent of genetic variation within populations in traits related to fitness and the rate at which variability in these traits arises by mutation. This paper attempts to combine the available information from applications of the two approaches to populations of the fruitfly Drosophila in order to estimate some important parameters of genetic variation, using a simple population genetics model of mutational effects on fitness components. Analyses based on this model suggest the existence of a class of mutations with much larger fitness effects than those inferred from sequence variability and that contribute most of the standing variation in fitness within a population caused by the input of mildly deleterious mutations. However, deleterious mutations explain only part of this standing variation, and other processes such as balancing selection appear to make a large contribution to genetic variation in fitness components in Drosophila.
Collapse
|
22
|
Alexander HK, Martin G, Martin OY, Bonhoeffer S. Evolutionary rescue: linking theory for conservation and medicine. Evol Appl 2014; 7:1161-79. [PMID: 25558278 PMCID: PMC4275089 DOI: 10.1111/eva.12221] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 09/16/2014] [Indexed: 02/01/2023] Open
Abstract
Evolutionary responses that rescue populations from extinction when drastic environmental changes occur can be friend or foe. The field of conservation biology is concerned with the survival of species in deteriorating global habitats. In medicine, in contrast, infected patients are treated with chemotherapeutic interventions, but drug resistance can compromise eradication of pathogens. These contrasting biological systems and goals have created two quite separate research communities, despite addressing the same central question of whether populations will decline to extinction or be rescued through evolution. We argue that closer integration of the two fields, especially of theoretical understanding, would yield new insights and accelerate progress on these applied problems. Here, we overview and link mathematical modelling approaches in these fields, suggest specific areas with potential for fruitful exchange, and discuss common ideas and issues for empirical testing and prediction.
Collapse
Affiliation(s)
- Helen K Alexander
- Institute for Integrative Biology, D-USYS, ETH Zürich Zürich, Switzerland
| | - Guillaume Martin
- Institut des Sciences de l'Evolution, UMR 5554, Université Montpellier 2 - CNRS - IRD Montpellier Cedex, France
| | - Oliver Y Martin
- Institute for Integrative Biology, D-USYS, ETH Zürich Zürich, Switzerland
| | | |
Collapse
|
23
|
Cao H, Butler K, Hossain M, Lewis JD. Variation in the fitness effects of mutations with population density and size in Escherichia coli. PLoS One 2014; 9:e105369. [PMID: 25121498 PMCID: PMC4133409 DOI: 10.1371/journal.pone.0105369] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 07/23/2014] [Indexed: 11/18/2022] Open
Abstract
The fitness effects of mutations are context specific and depend on both external (e.g., environment) and internal (e.g., cellular stress, genetic background) factors. The influence of population size and density on fitness effects are unknown, despite the central role population size plays in the supply and fixation of mutations. We addressed this issue by comparing the fitness of 92 Keio strains (Escherichia coli K12 single gene knockouts) at comparatively high (1.2×10(7) CFUs/mL) and low (2.5×10(2) CFUs/mL) densities, which also differed in population size (high: 1.2×10(8); low: 1.25×10(3)). Twenty-eight gene deletions (30%) exhibited a fitness difference, ranging from 5 to 174% (median: 35%), between the high and low densities. Our analyses suggest this variation among gene deletions in fitness responses reflected in part both gene orientation and function, of the gene properties we examined (genomic position, length, orientation, and function). Although we could not determine the relative effects of population density and size, our results suggest fitness effects of mutations vary with these two factors, and this variation is gene-specific. Besides being a mechanism for density-dependent selection (r-K selection), the dependence of fitness effects on population density and size has implications for any population that varies in size over time, including populations undergoing evolutionary rescue, species invasions into novel habitats, and cancer progression and metastasis. Further, combined with recent advances in understanding the roles of other context-specific factors in the fitness effects of mutations, our results will help address theoretical and applied biological questions more realistically.
Collapse
Affiliation(s)
- Huansheng Cao
- Louis Calder Center–Biological Field Station and Department of Biological Sciences, Fordham University, Armonk, New York, United States of America
| | - Kevin Butler
- Louis Calder Center–Biological Field Station and Department of Biological Sciences, Fordham University, Armonk, New York, United States of America
| | - Mithi Hossain
- Louis Calder Center–Biological Field Station and Department of Biological Sciences, Fordham University, Armonk, New York, United States of America
| | - James D. Lewis
- Louis Calder Center–Biological Field Station and Department of Biological Sciences, Fordham University, Armonk, New York, United States of America
| |
Collapse
|
24
|
Ihnatowicz A, Siwinska J, Meharg AA, Carey M, Koornneef M, Reymond M. Conserved histidine of metal transporter AtNRAMP1 is crucial for optimal plant growth under manganese deficiency at chilling temperatures. THE NEW PHYTOLOGIST 2014; 202:1173-1183. [PMID: 24571269 DOI: 10.1111/nph.12737] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 01/10/2014] [Indexed: 05/05/2023]
Abstract
Manganese (Mn) is an essential nutrient required for plant growth, in particular in the process of photosynthesis. Plant performance is influenced by various environmental stresses including contrasting temperatures, light or nutrient deficiencies. The molecular responses of plants exposed to such stress factors in combination are largely unknown. Screening of 108 Arabidopsis thaliana (Arabidopsis) accessions for reduced photosynthetic performance at chilling temperatures was performed and one accession (Hog) was isolated. Using genetic and molecular approaches, the molecular basis of this particular response to temperature (G × E interaction) was identified. Hog showed an induction of a severe leaf chlorosis and impaired growth after transfer to lower temperatures. We demonstrated that this response was dependent on the nutrient content of the soil. Genetic mapping and complementation identified NRAMP1 as the causal gene. Chlorotic phenotype was associated with a histidine to tyrosine (H239Y) substitution in the allele of Hog NRAMP1. This led to lethality when Hog seedlings were directly grown at 4°C. Chemical complementation and hydroponic culture experiments showed that Mn deficiency was the major cause of this G × E interaction. For the first time, the NRAMP-specific highly conserved histidine was shown to be crucial for plant performance.
Collapse
Affiliation(s)
- Anna Ihnatowicz
- Laboratory of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, ul. Kladki 24, 80-822, Gdansk, Poland
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Joanna Siwinska
- Laboratory of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, ul. Kladki 24, 80-822, Gdansk, Poland
| | - Andrew A Meharg
- Institute for Global Food Security, Queen's University Belfast, David Keir Building, Malone Road, Belfast, UK
| | - Manus Carey
- Institute for Global Food Security, Queen's University Belfast, David Keir Building, Malone Road, Belfast, UK
| | - Maarten Koornneef
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
- Laboratory of Genetics, Wageningen University, NL-6708, PE Wageningen, the Netherlands
| | - Matthieu Reymond
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
- Department of Plant Cell Wall, Function and Utilization, Institut Jean-Pierre Bourgin, INRA Centre de Versailles-Grignon, Route de St-Cyr (RD10), 78026, Versailles Cedex, France
| |
Collapse
|
25
|
Latta LC, Morgan KK, Weaver CS, Allen D, Schaack S, Lynch M. Genomic background and generation time influence deleterious mutation rates in Daphnia. Genetics 2013; 193:539-44. [PMID: 23183667 PMCID: PMC3567742 DOI: 10.1534/genetics.112.146571] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 11/16/2012] [Indexed: 01/09/2023] Open
Abstract
Understanding how genetic variation is generated and how selection shapes mutation rates over evolutionary time requires knowledge of the factors influencing mutation and its effects on quantitative traits. We explore the impact of two factors, genomic background and generation time, on deleterious mutation in Daphnia pulicaria, a cyclically parthenogenic aquatic microcrustacean, using parallel mutation-accumulation experiments. The deleterious mutational properties of life-history characters for individuals from two different populations, and for individuals maintained at two different generation times, were quantified and compared. Mutational properties varied between populations, especially for clutch size, suggesting that genomic background influences mutational properties for some characters. Generation time was found to have a greater effect on mutational properties, with higher per-generation deleterious mutation rates in lines with longer generation times. These results suggest that differences in genetic architecture among populations and species may be explained in part by demographic features that significantly influence generation time and therefore the rate of mutation.
Collapse
Affiliation(s)
- Leigh C Latta
- Department of Biology, Reed College, Portland, OR 97202, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Reed DH, Fox CW, Enders LS, Kristensen TN. Inbreeding-stress interactions: evolutionary and conservation consequences. Ann N Y Acad Sci 2012; 1256:33-48. [PMID: 22583046 DOI: 10.1111/j.1749-6632.2012.06548.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The effect of environmental stress on the magnitude of inbreeding depression has a long history of intensive study. Inbreeding-stress interactions are of great importance to the viability of populations of conservation concern and have numerous evolutionary ramifications. However, such interactions are controversial. Several meta-analyses over the last decade, combined with omic studies, have provided considerable insight into the generality of inbreeding-stress interactions, its physiological basis, and have provided the foundation for future studies. In this review, we examine the genetic and physiological mechanisms proposed to explain why inbreeding-stress interactions occur. We specifically examine whether the increase in inbreeding depression with increasing stress could be due to a concomitant increase in phenotypic variation, using a larger data set than any previous study. Phenotypic variation does usually increase with stress, and this increase can explain some of the inbreeding-stress interaction, but it cannot explain all of it. Overall, research suggests that inbreeding-stress interactions can occur via multiple independent channels, though the relative contribution of each of the mechanisms is unknown. To better understand the causes and consequences of inbreeding-stress interactions in natural populations, future research should focus on elucidating the genetic architecture of such interactions and quantifying naturally occurring levels of stress in the wild.
Collapse
Affiliation(s)
- David H Reed
- Department of Biology, University of Louisville, Louisville, Kentucky, USA
| | | | | | | |
Collapse
|
27
|
MacLellan K, Kwan L, Whitlock MC, Rundle HD. Dietary stress does not strengthen selection against single deleterious mutations in Drosophila melanogaster. Heredity (Edinb) 2011; 108:203-10. [PMID: 21792225 DOI: 10.1038/hdy.2011.60] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Stress is generally thought to increase the strength of selection, although empirical results are mixed and general conclusions are difficult because data are limited. Here we compare the fitness effects of nine independent recessive mutations in Drosophila melanogaster in a high- and low-dietary-stress environment, estimating the strength of selection on these mutations arising from both a competitive measure of male reproductive success and productivity (female fecundity and the subsequent survival to adulthood of her offspring). The effect of stress on male reproductive success has not been addressed previously for individual loci and is of particular interest with respect to the alignment of natural and sexual selection. Our results do not support the hypothesis that stress increases the efficacy of selection arising from either fitness component. Results concerning the alignment of natural and sexual selection were mixed, although data are limited. In the low-stress environment, selection on mating success and productivity were concordant for five of nine mutations (four out of four when restricted to those with significant or near-significant productivity effects), whereas in the high-stress environment, selection aligned for seven of nine mutations (two out of two when restricted to those having significant productivity effects). General conclusions as to the effects of stress on the strength of selection and the alignment of natural and sexual selection await data from additional mutations, fitness components and stressors.
Collapse
Affiliation(s)
- K MacLellan
- Department of Biology, Centre for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, Ontario, Canada
| | | | | | | |
Collapse
|
28
|
Chubykin VL. The epigenetic mechanism of the effect of mildly deleterious mutations on the viability of the progeny and their correction in meiosis. RUSS J GENET+ 2010. [DOI: 10.1134/s1022795410100169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Agrawal AF, Whitlock MC. Environmental duress and epistasis: how does stress affect the strength of selection on new mutations? Trends Ecol Evol 2010; 25:450-8. [DOI: 10.1016/j.tree.2010.05.003] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 05/04/2010] [Accepted: 05/06/2010] [Indexed: 11/29/2022]
|
30
|
Inbreeding-environment interactions for fitness: complex relationships between inbreeding depression and temperature stress in a seed-feeding beetle. Evol Ecol 2010. [DOI: 10.1007/s10682-010-9376-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
31
|
Halligan DL, Keightley PD. Spontaneous Mutation Accumulation Studies in Evolutionary Genetics. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2009. [DOI: 10.1146/annurev.ecolsys.39.110707.173437] [Citation(s) in RCA: 320] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Daniel L. Halligan
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom; ,
| | - Peter D. Keightley
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom; ,
| |
Collapse
|
32
|
Fox CW, Stillwell RC. Environmental effects on sex differences in the genetic load for adult lifespan in a seed-feeding beetle. Heredity (Edinb) 2009; 103:62-72. [DOI: 10.1038/hdy.2009.31] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
33
|
Interactions between stressful environment and gene deletions alleviate the expected average loss of fitness in yeast. Genetics 2008; 178:2105-11. [PMID: 18430936 DOI: 10.1534/genetics.107.084533] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The conjecture that the deleterious effects of mutations are amplified by stress or interaction with one another remains unsatisfactorily tested. It is now possible to reapproach this problem systematically by using genomic collections of mutants and applying stress-inducing conditions with a well-recognized impact on metabolism. We measured the maximum growth rate of single- and double-gene deletion strains of yeast in several stress-inducing treatments, including poor nutrients, elevated temperature, high salinity, and the addition of caffeine. The negative impact of deletions on the maximum growth rate was relatively smaller in stressful than in favorable conditions. In both benign and harsh environments, double-deletion strains grew on average slightly faster than expected from a multiplicative model of interaction between single growth effects, indicating positive epistasis for the rate of growth. This translates to even higher positive epistasis for fitness defined as the number of progeny. We conclude that the negative impact of metabolic disturbances, regardless of whether they are of environmental or genetic origin, is absolutely and relatively highest when growth is fastest. The effect of further damages tends to be weaker. This results in an average alleviating effect of interactions between stressful environment and gene deletions and among gene deletions.
Collapse
|
34
|
Roles AJ, Conner JK. Fitness effects of mutation accumulation in a natural outbred population of wild radish (Raphanus raphanistrum): comparison of field and greenhouse environments. Evolution 2008; 62:1066-75. [PMID: 18298643 DOI: 10.1111/j.1558-5646.2008.00354.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Spontaneous deleterious mutation has been measured in a handful of organisms, always under laboratory conditions and usually employing inbred species or genotypes. We report the results of a mutation accumulation experiment with an outbred annual plant, Raphanus raphanistrum, with lifetime fitness measured in both the field and the greenhouse. This is the first study to report the effects of spontaneous mutation measured under field conditions. Two large replicate populations (N(e) approximately 600) were maintained with random mating in the greenhouse under relaxed selection for nine generations before the field assay was performed and ten generations before the greenhouse assay. Each generation, every individual was mated twice, once as a pollen donor and once as a pollen recipient, and a single seed from each plant was chosen randomly to create the next generation. The ancestral population was maintained as seeds at 4 degrees C. Declines in lifetime fitness were observed in both the field (1.7% per generation; P= 0.27) and the greenhouse (0.6% per generation; P= 0.07). Significant increases in additive genetic variance for fitness were found for stems per day, flowers per stem, fruits per flower and seeds per fruit in the field as well as for fruits per flower in the greenhouse. Lack of significance of the fitness decline may be due to the short period of mutation accumulation, the use of outbred populations, or both. The percent declines in fitness are at the high end of the range observed in other mutation accumulation experiments and give some support to the idea that mutational effects may be magnified under harsher field conditions. Thus, measurement of mutational parameters under laboratory conditions may underestimate the effects of mutations in natural populations.
Collapse
Affiliation(s)
- Angela J Roles
- Biology Department, Oberlin College, Oberlin, OH 44074, USA.
| | | |
Collapse
|
35
|
Ostrow D, Phillips N, Avalos A, Blanton D, Boggs A, Keller T, Levy L, Rosenbloom J, Baer CF. Mutational bias for body size in rhabditid nematodes. Genetics 2007; 176:1653-61. [PMID: 17483403 PMCID: PMC1931521 DOI: 10.1534/genetics.107.074666] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mutational bias is a potentially important agent of evolution, but it is difficult to disentangle the effects of mutation from those of natural selection. Mutation-accumulation experiments, in which mutations are allowed to accumulate at very small population size, thus minimizing the efficiency of natural selection, are the best way to separate the effects of mutation from those of selection. Body size varies greatly among species of nematode in the family rhabditidae; mutational biases are both a potential cause and a consequence of that variation. We report data on the cumulative effects of mutations that affect body size in three species of rhabditid nematode that vary fivefold in adult size. Results are very consistent with previous studies of mutations underlying fitness in the same strains: two strains of Caenorhabditis briggsae decline in body size about twice as fast as two strains of C. elegans, with a concomitant higher point estimate of the genomic mutation rate; the confamilial Oscheius myriophila is intermediate. There is an overall mutational bias, such that mutations reduce size on average, but the bias appears consistent between species. The genetic correlation between mutations that affect size and those underlying fitness is large and positive, on average.
Collapse
Affiliation(s)
- Dejerianne Ostrow
- Department of Zoology, University of Florida, Gainesville, Florida 32611-8525, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Martin G, Lenormand T. THE FITNESS EFFECT OF MUTATIONS ACROSS ENVIRONMENTS: A SURVEY IN LIGHT OF FITNESS LANDSCAPE MODELS. Evolution 2006. [DOI: 10.1111/j.0014-3820.2006.tb01878.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
37
|
Baer CF, Phillips N, Ostrow D, Avalos A, Blanton D, Boggs A, Keller T, Levy L, Mezerhane E. Cumulative effects of spontaneous mutations for fitness in Caenorhabditis: role of genotype, environment and stress. Genetics 2006; 174:1387-95. [PMID: 16888328 PMCID: PMC1667051 DOI: 10.1534/genetics.106.061200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Accepted: 07/25/2006] [Indexed: 01/06/2023] Open
Abstract
It is often assumed that the mutation rate is an evolutionarily optimized property of a taxon. The relevant mutation rate is for mutations that affect fitness, U, but the strength of selection on the mutation rate depends on the average effect of a mutation. Determination of U is complicated by the possibility that mutational effects depend on the particular environmental context in which the organism exists. It has been suggested that the effects of deleterious mutations are typically magnified in stressful environments, but most studies confound genotype with environment, so it is unclear to what extent environmental specificity of mutations is specific to a particular starting genotype. We report a study designed to separate effects of species, genotype, and environment on the degradation of fitness resulting from new mutations. Mutations accumulated for >200 generations at 20 degrees in two strains of two species of nematodes that differ in thermal sensitivity. Caenorhabditis briggsae and C. elegans have similar demography at 20 degrees, but C. elegans suffers markedly reduced fitness at 25 degrees. We find little evidence that mutational properties differ depending on environmental conditions and mutational correlations between environments are close to those expected if effects were identical in both environments.
Collapse
Affiliation(s)
- Charles F Baer
- Department of Zoology, University of Florida, Gainesville, FL 32611-8525, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Avila V, Chavarrías D, Sánchez E, Manrique A, López-Fanjul C, García-Dorado A. Increase of the spontaneous mutation rate in a long-term experiment with Drosophila melanogaster. Genetics 2006; 173:267-77. [PMID: 16547099 PMCID: PMC1461422 DOI: 10.1534/genetics.106.056200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2006] [Accepted: 03/07/2006] [Indexed: 11/18/2022] Open
Abstract
In a previous experiment, the effect of 255 generations of mutation accumulation (MA) on the second chromosome viability of Drosophila melanogaster was studied using 200 full-sib MA1 lines and a large C1 control, both derived from a genetically homogeneous base population. At generation 265, one of those MA1 lines was expanded to start 150 new full-sib MA2 lines and a new C2 large control. After 46 generations, the rate of decline in mean viability in MA2 was approximately 2.5 times that estimated in MA1, while the average degree of dominance of mutations was small and nonsignificant by generation 40 and moderate by generation 80. In parallel, the inbreeding depression rate for viability and the amount of additive variance for two bristle traits in C2 were 2-3 times larger than those in C1. The results are consistent with a mutation rate in the line from which MA2 and C2 were derived about 2.5 times larger than that in MA1. The mean viability of C2 remained roughly similar to that of C1, but the rate of MA2 line extinction increased progressively, leading to mutational collapse, which can be ascribed to accelerated mutation and/or synergy after important deleterious accumulation.
Collapse
Affiliation(s)
- Victoria Avila
- Departamento de Genética, Facultad de Biología, Universidad Complutense, 28040 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
39
|
Theodorou K, Couvet D. Genetic load in subdivided populations: interactions between the migration rate, the size and the number of subpopulations. Heredity (Edinb) 2006; 96:69-78. [PMID: 16304604 DOI: 10.1038/sj.hdy.6800762] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
We assess the relative importance of migration rate, size and number of subpopulations on the genetic load of subdivided populations. Using diffusion approximations, we show that in most cases subdivision has detrimental effects on fitness. Moreover, our results suggest that fitness increases with subpopulation size, so that for the same total population size, genetic load is relatively lower when there are a small number of large subpopulations. Using elasticity analysis, we show that the size of the subpopulations appears to be the parameter that most strongly determines genetic load. interconnecting subpopulations via migration would also be of importance for population fitness when subpopulations are small and gene flow is low. Interestingly, the number of subpopulations has minor influence on genetic load except for the case of both very slightly deleterious mutations and small subpopulations. Elasticities decrease as the magnitude of deleterious effects increases. In other words, population structure does not matter for very deleterious alleles, but strongly affects fitness for slightly deleterious alleles.
Collapse
Affiliation(s)
- K Theodorou
- Biodiversity Conservation Laboratory, Department of Environmental Studies, University of the Aegean, University Hill, Mytilene 81100, Greece.
| | | |
Collapse
|
40
|
Martin G, Lenormand T. THE FITNESS EFFECT OF MUTATIONS ACROSS ENVIRONMENTS: A SURVEY IN LIGHT OF FITNESS LANDSCAPE MODELS. Evolution 2006. [DOI: 10.1554/06-162.1] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
41
|
Charlesworth B, Borthwick H, Bartolomé C, Pignatelli P. Estimates of the genomic mutation rate for detrimental alleles in Drosophila melanogaster. Genetics 2005; 167:815-26. [PMID: 15238530 PMCID: PMC1470907 DOI: 10.1534/genetics.103.025262] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The net rate of mutation to deleterious but nonlethal alleles and the sizes of effects of these mutations are of great significance for many evolutionary questions. Here we describe three replicate experiments in which mutations have been accumulated on chromosome 3 of Drosophila melanogaster by means of single-male backcrosses of heterozygotes for a wild-type third chromosome. Egg-to-adult viability was assayed for nonlethal homozygous chromosomes. The rates of decline in mean and increase in variance (DM and DV, respectively) were estimated. Scaled up to the diploid whole genome, the mean DM for homozygous detrimental mutations over the three experiments was between 0.8 and 1.8%. The corresponding DV estimate was approximately 0.11%. Overall, the results suggest a lower bound estimate of at least 12% for the diploid per genome mutation rate for detrimentals. The upper bound estimates for the mean selection coefficient were between 2 and 10%, depending on the method used. Mutations with selection coefficients of at least a few percent must be the major contributors to the effects detected here and are likely to be caused mostly by transposable element insertions or indels.
Collapse
Affiliation(s)
- Brian Charlesworth
- Institute of Cell, Animal and Population Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom.
| | | | | | | |
Collapse
|
42
|
Kavanaugh CM, Shaw RG. THE CONTRIBUTION OF SPONTANEOUS MUTATION TO VARIATION IN ENVIRONMENTAL RESPONSES OF ARABIDOPSIS THALIANA: RESPONSES TO LIGHT. Evolution 2005. [DOI: 10.1111/j.0014-3820.2005.tb00987.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
43
|
Kavanaugh CM, Shaw RG. THE CONTRIBUTION OF SPONTANEOUS MUTATION TO VARIATION IN ENVIRONMENTAL RESPONSES OF ARABIDOPSIS THALIANA: RESPONSES TO LIGHT. Evolution 2005. [DOI: 10.1554/04-195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
44
|
Estes S, Phillips PC, Denver DR, Thomas WK, Lynch M. Mutation accumulation in populations of varying size: the distribution of mutational effects for fitness correlates in Caenorhabditis elegans. Genetics 2004; 166:1269-79. [PMID: 15082546 PMCID: PMC1470770 DOI: 10.1534/genetics.166.3.1269] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The consequences of mutation for population-genetic and evolutionary processes depend on the rate and, especially, the frequency distribution of mutational effects on fitness. We sought to approximate the form of the distribution of mutational effects by conducting divergence experiments in which lines of a DNA repair-deficient strain of Caenorhabditis elegans, msh-2, were maintained at a range of population sizes. Assays of these lines conducted in parallel with the ancestral control suggest that the mutational variance is dominated by contributions from highly detrimental mutations. This was evidenced by the ability of all but the smallest population-size treatments to maintain relatively high levels of mean fitness even under the 100-fold increase in mutational pressure caused by knocking out the msh-2 gene. However, we show that the mean fitness decline experienced by larger populations is actually greater than expected on the basis of our estimates of mutational parameters, which could be consistent with the existence of a common class of mutations with small individual effects. Further, comparison of the total mutation rate estimated from direct sequencing of DNA to that detected from phenotypic analyses implies the existence of a large class of evolutionarily relevant mutations with no measurable effect on laboratory fitness.
Collapse
Affiliation(s)
- Suzanne Estes
- Center for Ecology and Evolutionary Biology, University of Oregon, Eugene, Oregon 97403, USA.
| | | | | | | | | |
Collapse
|
45
|
Fry JD. On the rate and linearity of viability declines in Drosophila mutation-accumulation experiments: genomic mutation rates and synergistic epistasis revisited. Genetics 2004; 166:797-806. [PMID: 15020469 PMCID: PMC1470720 DOI: 10.1534/genetics.166.2.797] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
High rates of deleterious mutations could severely reduce the fitness of populations, even endangering their persistence; these effects would be mitigated if mutations synergize each others' effects. An experiment by Mukai in the 1960s gave evidence that in Drosophila melanogaster, viability-depressing mutations occur at the surprisingly high rate of around one per zygote and that the mutations interact synergistically. A later experiment by Ohnishi seemed to support the high mutation rate, but gave no evidence for synergistic epistasis. Both of these studies, however, were flawed by the lack of suitable controls for assessing viability declines of the mutation-accumulation (MA) lines. By comparing homozygous viability of the MA lines to simultaneously estimated heterozygous viability and using estimates of the dominance of mutations in the experiments, I estimate the viability declines relative to an appropriate control. This approach yields two unexpected conclusions. First, in Ohnishi's experiment as well as in Mukai's, MA lines showed faster-than-linear declines in viability, indicative of synergistic epistasis. Second, while Mukai's estimate of the genomic mutation rate is supported, that from Ohnishi's experiment is an order of magnitude lower. The different results of the experiments most likely resulted from differences in the starting genotypes; even within Mukai's experiment, a subset of MA lines, which I argue probably resulted from a contamination event, showed much slower viability declines than did the majority of lines. Because different genotypes may show very different mutational behavior, only studies using many founding genotypes can determine the average rate and distribution of effects of mutations relevant to natural populations.
Collapse
Affiliation(s)
- James D Fry
- Department of Biology, University of Rochester, Rochester, NY 14627, USA.
| |
Collapse
|
46
|
Fry JD. On the Rate and Linearity of Viability Declines in Drosophila Mutation-Accumulation Experiments: Genomic Mutation Rates and Synergistic Epistasis Revisited. Genetics 2004. [DOI: 10.1093/genetics/166.2.797] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract
High rates of deleterious mutations could severely reduce the fitness of populations, even endangering their persistence; these effects would be mitigated if mutations synergize each others’ effects. An experiment by Mukai in the 1960s gave evidence that in Drosophila melanogaster, viability-depressing mutations occur at the surprisingly high rate of around one per zygote and that the mutations interact synergistically. A later experiment by Ohnishi seemed to support the high mutation rate, but gave no evidence for synergistic epistasis. Both of these studies, however, were flawed by the lack of suitable controls for assessing viability declines of the mutation-accumulation (MA) lines. By comparing homozygous viability of the MA lines to simultaneously estimated heterozygous viability and using estimates of the dominance of mutations in the experiments, I estimate the viability declines relative to an appropriate control. This approach yields two unexpected conclusions. First, in Ohnishi’s experiment as well as in Mukai’s, MA lines showed faster-than-linear declines in viability, indicative of synergistic epistasis. Second, while Mukai’s estimate of the genomic mutation rate is supported, that from Ohnishi’s experiment is an order of magnitude lower. The different results of the experiments most likely resulted from differences in the starting genotypes; even within Mukai’s experiment, a subset of MA lines, which I argue probably resulted from a contamination event, showed much slower viability declines than did the majority of lines. Because different genotypes may show very different mutational behavior, only studies using many founding genotypes can determine the average rate and distribution of effects of mutations relevant to natural populations.
Collapse
Affiliation(s)
- James D Fry
- Department of Biology, University of Rochester, Rochester, New York 14627
| |
Collapse
|
47
|
Chang SM, Shaw RG. The contribution of spontaneous mutation to variation in environmental response in Arabidopsis thaliana: responses to nutrients. Evolution 2003; 57:984-94. [PMID: 12836817 DOI: 10.1111/j.0014-3820.2003.tb00310.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Although the evolutionary importance of spontaneous mutation is evident, its contribution to the evolution of ecological specificity remains unclear, because the environmental sensitivity of effects of new mutations has received little empirical attention. To address this issue, we report a greenhouse in which we grew plants from 20 mutation-accumulation (MA) lines, advanced by selfing and single-seed descent from a single common founder to generation 17, as well as plants from five lines representing the founder, in high and low nutrient conditions. We examined 11 traits throughout life history, including germination, survivorship, bolting date, flowering date, leaf number, leaf size, early and late height, mean fruit size, total seed weight, and reproductive biomass. Comparison of trait means between the two generations did not support the commonly held view that new mutations affecting fitness in these MA lines are strongly biased toward deleterious effects. We detected significant variance among MA lines for one fitness component, mean fruit size, but we did not detect a significant contribution of mutations accumulated in these MA lines to genotype by environment interaction (GEI). These results suggest that other evolutionary mechanisms play a more important role than spontaneous mutation alone in establishing the GEI found for wild collections and lab accessions of Arabidopsis thaliana in previous studies.
Collapse
Affiliation(s)
- Shu-Mei Chang
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602-7271, USA.
| | | |
Collapse
|
48
|
Abstract
Deleterious mutation accumulation has been implicated in many biological phenomena and as a potentially significant threat to human health and the persistence of small populations. The vast majority of mutations with effects on fitness are known to be deleterious in a given environment, and their accumulation results in mean population fitness decline. However, whether populations are capable of recovering from negative effects of prolonged genetic bottlenecks via beneficial or compensatory mutation accumulation has not previously been tested. To address this question, long-term mutation-accumulation lines of the nematode Caenorhabditis elegans, previously propagated as single individuals each generation, were maintained in large population sizes under competitive conditions. Fitness assays of these lines and comparison to parallel mutation-accumulation lines and the ancestral control show that, while the process of fitness restoration was incomplete for some lines, full recovery of mean fitness was achieved in fewer than 80 generations. Several lines of evidence indicate that this fitness restoration was at least partially driven by compensatory mutation accumulation rather than a result of a generic form of laboratory adaptation. This surprising result has broad implications for the influence of the mutational process on many issues in evolutionary and conservation biology.
Collapse
Affiliation(s)
- Suzanne Estes
- Department of Biology, University of Oregon, Eugene, Oregon 97403, USA.
| | | |
Collapse
|
49
|
Abstract
There have been several attempts to estimate the average dominance (ratio of heterozygous to homozygous effects) of spontaneous deleterious mutations in Drosophila melanogaster, but these have given inconsistent results. We investigated whether transposable element (TE) insertions have higher average dominance for egg-to-adult viability than do point mutations, a possibility suggested by the types of fitness-depressing effects that TEs are believed to have. If so, then variation in dominance estimates among strains and crosses would be expected as a consequence of variation in TE activity. As a first test, we estimated the average dominance of all mutations and of copia insertions in a set of lines that had accumulated spontaneous mutations for 33 generations. A traditional regression method gave a dominance estimate for all mutations of 0.17, whereas average dominance of copia insertions was 0.51; the difference between these two estimates approached significance (P = 0.08). As a second test, we reanalyzed Ohnishi 1974 data on dominance of spontaneous and EMS-induced mutations. Because a considerable fraction of spontaneous mutations are caused by TE insertions, whereas EMS induces mainly point mutations, we predicted that average dominance would decline with increasing EMS concentration. This pattern was observed, but again fell short of formal significance (P = 0.07). Taken together, however, the two results give modest support for the hypothesis that TE insertions have greater average dominance in their viability effects than do point mutations, possibly as a result of deleterious effects of expression of TE-encoded genes.
Collapse
Affiliation(s)
- James D Fry
- Department of Biology, University of Rochester, Rochester, New York 14627, USA.
| | | |
Collapse
|
50
|
Moore P. Stress, sex and evolution. J Biol 2003; 2:10. [PMID: 12831401 PMCID: PMC193682 DOI: 10.1186/1475-4924-2-10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Despite the widespread view that the effects of mutations are exacerbated by environmental stresses, some stresses have been found to alleviate the effects of mutations in bacteria.
Collapse
|