1
|
Rodriguez-Algarra F, Whittaker E, Del Castillo Del Rio S, Rakyan VK. Assessing Human Ribosomal DNA Variation and Its Association With Phenotypic Outcomes. Bioessays 2025:e202400232. [PMID: 39834111 DOI: 10.1002/bies.202400232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/18/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025]
Abstract
Although genome-scale analyses have provided insights into the connection between genetic variability and complex human phenotypes, much trait variation is still not fully understood. Genetic variation within repetitive elements, such as the multi-copy, multi-locus ribosomal DNA (rDNA), has emerged as a potential contributor to trait variation. Whereas rDNA was long believed to be largely uniform within a species, recent studies have revealed substantial variability in the locus, both within and across individuals. This variation, which takes the form of copy number, structural arrangement, and sequence differences, has been found to be associated with human phenotypes. This review summarizes what is currently known about human rDNA variation, its causes, and its association with phenotypic outcomes, highlighting the technical challenges the field faces and the solutions proposed to address them. Finally, we suggest experimental approaches that can help clarify the elusive mechanisms underlying the phenotypic consequences of rDNA variation.
Collapse
Affiliation(s)
| | - Elliott Whittaker
- The Blizard Institute, School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | | | - Vardhman K Rakyan
- The Blizard Institute, School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
2
|
Shukla HG, Chakraborty M, Emerson J. Genetic variation in recalcitrant repetitive regions of the Drosophila melanogaster genome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.11.598575. [PMID: 38915508 PMCID: PMC11195212 DOI: 10.1101/2024.06.11.598575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Many essential functions of organisms are encoded in highly repetitive genomic regions, including histones involved in DNA packaging, centromeres that are core components of chromosome segregation, ribosomal RNA comprising the protein translation machinery, telomeres that ensure chromosome integrity, piRNA clusters encoding host defenses against selfish elements, and virtually the entire Y chromosome. These regions, formed by highly similar tandem arrays, pose significant challenges for experimental and informatic study, impeding sequence-level descriptions essential for understanding genetic variation. Here, we report the assembly and variation analysis of such repetitive regions in Drosophila melanogaster, offering significant improvements to the existing community reference assembly. Our work successfully recovers previously elusive segments, including complete reconstructions of the histone locus and the pericentric heterochromatin of the X chromosome, spanning the Stellate locus to the distal flank of the rDNA cluster. To infer structural changes in these regions where alignments are often not practicable, we introduce landmark anchors based on unique variants that are putatively orthologous. These regions display considerable structural variation between different D. melanogaster strains, exhibiting differences in copy number and organization of homologous repeat units between haplotypes. In the histone cluster, although we observe minimal genetic exchange indicative of crossing over, the variation patterns suggest mechanisms such as unequal sister chromatid exchange. We also examine the prevalence and scale of concerted evolution in the histone and Stellate clusters and discuss the mechanisms underlying these observed patterns.
Collapse
Affiliation(s)
- Harsh G. Shukla
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, California 92697, USA
- Graduate Program in Mathematical, Computational and Systems Biology, University of California Irvine, Irvine, California 92697, USA
| | - Mahul Chakraborty
- Department of Biology, Texas A&M University, College Station, Texas 77843, USA
| | - J.J. Emerson
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, California 92697, USA
- Center for Complex Biological Systems, University of California Irvine, Irvine, California 92697, USA
| |
Collapse
|
3
|
Hall AN, Morton E, Queitsch C. First discovered, long out of sight, finally visible: ribosomal DNA. Trends Genet 2022; 38:587-597. [PMID: 35272860 PMCID: PMC10132741 DOI: 10.1016/j.tig.2022.02.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 10/18/2022]
Abstract
With the advent of long-read sequencing, previously unresolvable genomic elements are being revisited in an effort to generate fully complete reference genomes. One such element is ribosomal DNA (rDNA), the highly conserved genomic region that encodes rRNAs. Genomic structure and content of the rDNA are variable in both prokarya and eukarya, posing interesting questions about the biology of rDNA. Here, we consider the types of variation observed in rDNA - including locus structure and number, copy number, and sequence variation - and their known phenotypic consequences. With recent advances in long-read sequencing technology, incorporating the full rDNA sequence into reference genomes is within reach. This knowledge will have important implications for understanding rDNA biology within the context of cell physiology and whole-organism phenotypes.
Collapse
Affiliation(s)
- Ashley N Hall
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Elizabeth Morton
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Christine Queitsch
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
| |
Collapse
|
4
|
Martí E, Milani D, Bardella VB, Albuquerque L, Song H, Palacios-Gimenez OM, Cabral-de-Mello DC. Cytogenomic analysis unveils mixed molecular evolution and recurrent chromosomal rearrangements shaping the multigene families on Schistocerca grasshopper genomes. Evolution 2021; 75:2027-2041. [PMID: 34155627 DOI: 10.1111/evo.14287] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/11/2021] [Accepted: 05/26/2021] [Indexed: 11/26/2022]
Abstract
Multigene families are essential components of eukaryotic genomes and play key roles either structurally and functionally. Their modes of evolution remain elusive even in the era of genomics, because multiple multigene family sequences coexist in genomes, particularly in large repetitive genomes. Here, we investigate how the multigene families 18S rDNA, U2 snDNA, and H3 histone evolved in 10 species of Schistocerca grasshoppers with very large and repeat-enriched genomes. Using sequenced genomes and fluorescence in situ hybridization mapping, we find substantial differences between species, including the number of chromosomal clusters, changes in sequence abundance and nucleotide composition, pseudogenization, and association with transposable elements (TEs). The intragenomic analysis of Schistocerca gregaria using long-read sequencing and genome assembly unveils conservation for H3 histone and recurrent pseudogenization for 18S rDNA and U2 snDNA, likely promoted by association with TEs and sequence truncation. Remarkably, TEs were frequently associated with truncated copies, were also among the most abundant in the genome, and revealed signatures of recent activity. Our findings suggest a combined effect of concerted and birth-and-death models driving the evolution of multigene families in Schistocerca over the last 8 million years, and the occurrence of intra- and interchromosomal rearrangements shaping their chromosomal distribution. Despite the conserved karyotype in Schistocerca, our analysis highlights the extensive reorganization of repetitive DNAs in Schistocerca, contributing to the advance of comparative genomics for this important grasshopper genus.
Collapse
Affiliation(s)
- Emiliano Martí
- Departamento de Biologia Geral e Aplicada, UNESP - Univ Estadual Paulista, Instituto de Biociências/IB, Rio Claro, 13506-900, Brazil
| | - Diogo Milani
- Departamento de Biologia Geral e Aplicada, UNESP - Univ Estadual Paulista, Instituto de Biociências/IB, Rio Claro, 13506-900, Brazil
| | - Vanessa B Bardella
- Departamento de Biologia Geral e Aplicada, UNESP - Univ Estadual Paulista, Instituto de Biociências/IB, Rio Claro, 13506-900, Brazil
| | - Lucas Albuquerque
- Departamento de Biologia Geral e Aplicada, UNESP - Univ Estadual Paulista, Instituto de Biociências/IB, Rio Claro, 13506-900, Brazil
| | - Hojun Song
- Department of Entomology, Texas A&M University, College Station, Texas, 77843
| | - Octavio M Palacios-Gimenez
- Department of Organismal Biology - Systematic Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, SE-75236, Sweden.,Population Ecology Group, Institute of Ecology and Evolution, Friedrich Schiller University Jena, Jena, DE-07743, Germany
| | - Diogo C Cabral-de-Mello
- Departamento de Biologia Geral e Aplicada, UNESP - Univ Estadual Paulista, Instituto de Biociências/IB, Rio Claro, 13506-900, Brazil
| |
Collapse
|
5
|
Abstract
Transposable elements (TEs) are mobile DNA sequences that colonize genomes and threaten genome integrity. As a result, several mechanisms appear to have emerged during eukaryotic evolution to suppress TE activity. However, TEs are ubiquitous and account for a prominent fraction of most eukaryotic genomes. We argue that the evolutionary success of TEs cannot be explained solely by evasion from host control mechanisms. Rather, some TEs have evolved commensal and even mutualistic strategies that mitigate the cost of their propagation. These coevolutionary processes promote the emergence of complex cellular activities, which in turn pave the way for cooption of TE sequences for organismal function.
Collapse
Affiliation(s)
- Rachel L Cosby
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | - Ni-Chen Chang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | - Cédric Feschotte
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
6
|
Nelson JO, Watase GJ, Warsinger-Pepe N, Yamashita YM. Mechanisms of rDNA Copy Number Maintenance. Trends Genet 2019; 35:734-742. [PMID: 31395390 DOI: 10.1016/j.tig.2019.07.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/28/2019] [Accepted: 07/12/2019] [Indexed: 12/21/2022]
Abstract
rDNA, the genes encoding the RNA components of ribosomes (rRNA), are highly repetitive in all eukaryotic genomes, containing 100s to 1000s of copies, to meet the demand for ribosome biogenesis. rDNA genes are arranged in large stretches of tandem repeats, forming loci that are highly susceptible to copy loss due to their repetitiveness and active transcription throughout the cell cycle. Despite this inherent instability, rDNA copy number is generally maintained within a particular range in each species, pointing to the presence of mechanisms that maintain rDNA copy number in a homeostatic range. In this review, we summarize the current understanding of these maintenance mechanisms and how they sustain rDNA copy number throughout populations.
Collapse
Affiliation(s)
- Jonathan O Nelson
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA; Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
| | - George J Watase
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA; Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
| | - Natalie Warsinger-Pepe
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA; Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Yukiko M Yamashita
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA; Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA; Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
7
|
Raje HS, Lieux ME, DiMario PJ. R1 retrotransposons in the nucleolar organizers of Drosophila melanogaster are transcribed by RNA polymerase I upon heat shock. Transcription 2018; 9:273-285. [PMID: 30063880 DOI: 10.1080/21541264.2018.1506682] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The ribosomal RNA genes (rDNA) of Drosophila melanogaster reside within centromere-proximal nucleolar organizers on both the X and Y chromosomes. Each locus contains between 200-300 tandem repeat rDNA units that encode 18S, 5.8S, 2S, and 28S ribosomal RNAs (rRNAs) necessary for ribosome biogenesis. In arthropods like Drosophila, about 60% of the rDNA genes have R1 and/or R2 retrotransposons inserted at specific sites within their 28S regions; these units likely fail to produce functional 28S rRNA. We showed earlier that R2 expression increases upon nucleolar stress caused by the loss of the ribosome assembly factor, Nucleolar Phosphoprotein of 140 kDa (Nopp140). Here we show that R1 expression is selectively induced by heat shock. Actinomycin D, but not α-amanitin, blocked R1 expression in S2 cells upon heat shock, indicating that R1 elements are transcribed by Pol I. A series of RT-PCRs established read-through transcription by Pol I from the 28S gene region into R1. Sequencing the RT-PCR products confirmed the 28S-R1 RNA junction and the expression of R1 elements within nucleolar rDNA rather than R1 elements known to reside in centromeric heterochromatin. Using a genome-wide precision run-on sequencing (PRO-seq) data set available at NCBI-GEO, we show that Pol I activity on R1 elements is negligible under normal non-heat shock conditions but increases upon heat shock. We propose that prior to heat shock Pol I pauses within the 5' end of R1 where we find a consensus "pause button", and that heat shock releases Pol I for read-through transcription farther into R1.
Collapse
Affiliation(s)
- Himanshu S Raje
- a Department of Biological Sciences , Louisiana State University , Baton Rouge , LA , USA
| | - Molly E Lieux
- a Department of Biological Sciences , Louisiana State University , Baton Rouge , LA , USA
| | - Patrick J DiMario
- a Department of Biological Sciences , Louisiana State University , Baton Rouge , LA , USA
| |
Collapse
|
8
|
Song MJ, Schaack S. Evolutionary Conflict between Mobile DNA and Host Genomes. Am Nat 2018; 192:263-273. [DOI: 10.1086/698482] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
9
|
Abstract
R2 elements are sequence specific non-LTR retrotransposons that exclusively insert in the 28S rRNA genes of animals. R2s encode an endonuclease that cleaves the insertion site and a reverse transcriptase that uses the cleaved DNA to prime reverse transcription of the R2 transcript, a process termed target primed reverse transcription. Additional unusual properties of the reverse transcriptase as well as DNA and RNA binding domains of the R2 encoded protein have been characterized. R2 expression is through co-transcription with the 28S gene and self-cleavage by a ribozyme encoded at the R2 5' end. Studies in laboratory stocks and natural populations of Drosophila suggest that R2 expression is tied to the distribution of R2-inserted units within the rDNA locus. Most individuals have no R2 expression because only a small fraction of their rRNA genes need to be active, and a contiguous region of the locus free of R2 insertions can be selected for activation. However, if the R2-free region is not large enough to produce sufficient rRNA, flanking units - including those inserted with R2 - must be activated. Finally, R2 copies rapidly turnover within the rDNA locus, yet R2 has been vertically maintained in animal lineages for hundreds of millions of years. The key to this stability is R2's ability to remain dormant in rDNA units outside the transcribed regions for generations until the stochastic nature of the crossovers that drive the concerted evolution of the rDNA locus inevitably reshuffle the inserted and uninserted units, resulting in transcription of the R2-inserted units.
Collapse
|
10
|
Reduced rDNA copy number does not affect "competitive" chromosome pairing in XYY males of Drosophila melanogaster. G3-GENES GENOMES GENETICS 2014; 4:497-507. [PMID: 24449686 PMCID: PMC3962488 DOI: 10.1534/g3.113.008730] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The ribosomal DNA (rDNA) arrays are causal agents in X-Y chromosome pairing in meiosis I of Drosophila males. Despite broad variation in X-linked and Y-linked rDNA copy number, polymorphisms in regulatory/spacer sequences between rRNA genes, and variance in copy number of interrupting R1 and R2 retrotransposable elements, there is little evidence that different rDNA arrays affect pairing efficacy. I investigated whether induced rDNA copy number polymorphisms affect chromosome pairing in a "competitive" situation in which complex pairing configurations were possible using males with XYY constitution. Using a common normal X chromosome, one of two different full-length Y chromosomes, and a third chromosome from a series of otherwise-isogenic rDNA deletions, I detected no differences in X-Y or Y-Y pairing or chromosome segregation frequencies that could not be attributed to random variation alone. This work was performed in the context of an undergraduate teaching program at Texas A&M University, and I discuss the pedagogical utility of this and other such experiments.
Collapse
|
11
|
Montiel EE, Cabrero J, Ruiz-Estévez M, Burke WD, Eickbush TH, Camacho JPM, López-León MD. Preferential occupancy of R2 retroelements on the B chromosomes of the grasshopper Eyprepocnemis plorans. PLoS One 2014; 9:e91820. [PMID: 24632855 PMCID: PMC3954772 DOI: 10.1371/journal.pone.0091820] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 02/14/2014] [Indexed: 02/02/2023] Open
Abstract
R2 non-LTR retrotransposons exclusively insert into the 28S rRNA genes of their host, and are expressed by co-transcription with the rDNA unit. The grasshopper Eyprepocnemis plorans contains transcribed rDNA clusters on most of its A chromosomes, as well as non-transcribed rDNA clusters on the parasitic B chromosomes found in many populations. Here the structure of the E. plorans R2 element, its abundance relative to the number of rDNA units and its retrotransposition activity were determined. Animals screened from five populations contained on average over 12,000 rDNA units on their A chromosomes, but surprisingly only about 100 R2 elements. Monitoring the patterns of R2 insertions in individuals from these populations revealed only low levels of retrotransposition. The low rates of R2 insertion observed in E. plorans differ from the high levels of R2 insertion previously observed in insect species that have many fewer rDNA units. It is proposed that high levels of R2 are strongly selected against in E. plorans, because the rDNA transcription machinery in this species is unable to differentiate between R2-inserted and uninserted units. The B chromosomes of E. plorans contain an additional 7,000 to 15,000 rDNA units, but in contrast to the A chromosomes, from 150 to over 1,500 R2 elements. The higher concentration of R2 in the inactive B chromosomes rDNA clusters suggests these chromosomes can act as a sink for R2 insertions thus further reducing the level of insertions on the A chromosomes. These studies suggest an interesting evolutionary relationship between the parasitic B chromosomes and R2 elements.
Collapse
Affiliation(s)
- Eugenia E. Montiel
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Josefa Cabrero
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Mercedes Ruiz-Estévez
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - William D. Burke
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| | - Thomas H. Eickbush
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| | - Juan Pedro M. Camacho
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | | |
Collapse
|
12
|
A population genetic model for the maintenance of R2 retrotransposons in rRNA gene loci. PLoS Genet 2013; 9:e1003179. [PMID: 23326244 PMCID: PMC3542110 DOI: 10.1371/journal.pgen.1003179] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 11/02/2012] [Indexed: 01/03/2023] Open
Abstract
R2 retrotransposable elements exclusively insert into the tandemly repeated rRNA genes, the rDNA loci, of their animal hosts. R2 elements form stable long-term associations with their host, in which all individuals in a population contain many potentially active copies, but only a fraction of these individuals show active R2 retrotransposition. Previous studies have found that R2 RNA transcripts are processed from a 28S co-transcript and that the likelihood of R2-inserted units being transcribed is dependent upon their distribution within the rDNA locus. Here we analyze the rDNA locus and R2 elements from nearly 100 R2-active and R2-inactive individuals from natural populations of Drosophila simulans. Along with previous findings concerning the structure and expression of the rDNA loci, these data were incorporated into computer simulations to model the crossover events that give rise to the concerted evolution of the rRNA genes. The simulations that best reproduce the population data assume that only about 40 rDNA units out of the over 200 total units are actively transcribed and that these transcribed units are clustered in a single region of the locus. In the model, the host establishes this transcription domain at each generation in the region with the fewest R2 insertions. Only if the host cannot avoid R2 insertions within this 40-unit domain are R2 elements active in that generation. The simulations also require that most crossover events in the locus occur in the transcription domain in order to explain the empirical observation that R2 elements are seldom duplicated by crossover events. Thus the key to the long-term stability of R2 elements is the stochastic nature of the crossover events within the rDNA locus, and the inevitable expansions and contractions that introduce and remove R2-inserted units from the transcriptionally active domain. Selfish transposable elements survive in eukaryotic genomes despite the elaborate mechanisms developed by the hosts to limit their activity. One accessible system that simplifies the complex interactions between element and host involves the R2 elements, which exclusively insert in the tandemly arranged rRNA genes. R2 exhibits remarkable stability in animal lineages even though each insertion inactivates one rRNA gene. Here we determine the size of the rDNA locus and R2 number in natural isolates of Drosophila simulans. Combined with previous data concerning the expression and regulation of R2, we develop a detailed population genetic model for rRNA gene and R2 evolution that duplicates all properties of the rRNA loci in natural populations. Critical components of the model are that only a contiguous 40 unit array of rRNA gene units are needed for transcription, that R2 elements are active only when present in this transcription domain, and that most of the crossovers in the rDNA loci occur in this domain. These results suggest that the key to the long-term survival of R2 is the redistribution of rDNA units in the locus brought about by the crossovers that maintain sequence identity in all rDNA units.
Collapse
|
13
|
Paris M, Despres L. Identifying insecticide resistance genes in mosquito by combining AFLP genome scans and 454 pyrosequencing. Mol Ecol 2012; 21:1672-86. [PMID: 22348648 DOI: 10.1111/j.1365-294x.2012.05499.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
AFLP-based genome scans are widely used to study the genetics of adaptation and to identify genomic regions potentially under selection. However, this approach usually fails to detect the actual genes or mutations targeted by selection owing to the difficulties of obtaining DNA sequences from AFLP fragments. Here, we combine classical AFLP outlier detection with 454 sequencing of AFLP fragments to obtain sequences from outlier loci. We applied this approach to the study of resistance to Bacillus thuringiensis israelensis (Bti) toxins in the dengue vector Aedes aegypti. A genome scan of Bti-resistant and Bti-susceptible A. aegypti laboratory strains was performed based on 432 AFLP markers. Fourteen outliers were detected using two different population genetic algorithms. Out of these, 11 were successfully sequenced. Three contained transposable elements (TEs) sequences, and the 10 outliers that could be mapped at a unique location in the reference genome were located on different supercontigs. One outlier was in the vicinity of a gene coding for an aminopeptidase potentially involved in Bti toxin-binding. Patterns of sequence variability of this gene showed significant deviation from neutrality in the resistant strain but not in the susceptible strain, even after taking into account the known demographic history of the selected strain. This gene is a promising candidate for future functional analysis.
Collapse
Affiliation(s)
- Margot Paris
- Laboratoire d'Ecologie Alpine (LECA), UMR 5553 CNRS-Université de Grenoble, BP53 38041 Grenoble Cedex 9, France
| | | |
Collapse
|
14
|
Kofler R, Betancourt AJ, Schlötterer C. Sequencing of pooled DNA samples (Pool-Seq) uncovers complex dynamics of transposable element insertions in Drosophila melanogaster. PLoS Genet 2012; 8:e1002487. [PMID: 22291611 PMCID: PMC3266889 DOI: 10.1371/journal.pgen.1002487] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 12/01/2011] [Indexed: 12/16/2022] Open
Abstract
Transposable elements (TEs) are mobile genetic elements that parasitize genomes by semi-autonomously increasing their own copy number within the host genome. While TEs are important for genome evolution, appropriate methods for performing unbiased genome-wide surveys of TE variation in natural populations have been lacking. Here, we describe a novel and cost-effective approach for estimating population frequencies of TE insertions using paired-end Illumina reads from a pooled population sample. Importantly, the method treats insertions present in and absent from the reference genome identically, allowing unbiased TE population frequency estimates. We apply this method to data from a natural Drosophila melanogaster population from Portugal. Consistent with previous reports, we show that low recombining genomic regions harbor more TE insertions and maintain insertions at higher frequencies than do high recombining regions. We conservatively estimate that there are almost twice as many “novel” TE insertion sites as sites known from the reference sequence in our population sample (6,824 novel versus 3,639 reference sites, with on average a 31-fold coverage per insertion site). Different families of transposable elements show large differences in their insertion densities and population frequencies. Our analyses suggest that the history of TE activity significantly contributes to this pattern, with recently active families segregating at lower frequencies than those active in the more distant past. Finally, using our high-resolution TE abundance measurements, we identified 13 candidate positively selected TE insertions based on their high population frequencies and on low Tajima's D values in their neighborhoods. Transposable elements (TE's) are parasitic genetic elements that spread by replicating themselves within a host genome. Most organisms are burdened with transposable elements; in fact, up to 80% of some genomes can consist of TE–derived DNA. Here, we use new sequencing technology to examine variation in genomic TE composition within a population at a finer scale and in a more unbiased fashion than has been possible before. We study a Portuguese population of D. melanogaster and find a large number of TE insertions, most of which occur in few individuals. Our analysis confirms that TE insertions are subject to purifying selection that counteracts their spread, and it suggests that the genome records waves of past TE invasions, with recently active elements occurring at low population frequency. We also find indications that TE insertions may sometimes have beneficial effects.
Collapse
Affiliation(s)
- Robert Kofler
- Institut für Populationsgenetik, Vetmeduni Vienna, Wien, Austria
| | | | | |
Collapse
|
15
|
Abstract
Transposons are DNA sequences capable of moving in genomes. Early evidence showed their accumulation in many species and suggested their continued activity in at least isolated organisms. In the past decade, with the development of various genomic technologies, it has become abundantly clear that ongoing activity is the rule rather than the exception. Active transposons of various classes are observed throughout plants and animals, including humans. They continue to create new insertions, have an enormous variety of structural and functional impact on genes and genomes, and play important roles in genome evolution. Transposon activities have been identified and measured by employing various strategies. Here, we summarize evidence of current transposon activity in various plant and animal genomes.
Collapse
Affiliation(s)
- Cheng Ran Lisa Huang
- Institute of Genetic Medicine and High Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Kathleen H. Burns
- Department of Pathology, Department of Oncology, and High Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Jef D. Boeke
- Molecular Biology and Genetics, Institute of Genetic Medicine, and High Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
16
|
Thompson BK, Christensen SM. Independently derived targeting of 28S rDNA by A- and D-clade R2 retrotransposons: Plasticity of integration mechanism. Mob Genet Elements 2011; 1:29-37. [PMID: 22016843 PMCID: PMC3190273 DOI: 10.4161/mge.1.1.16485] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 05/16/2011] [Accepted: 05/16/2011] [Indexed: 12/24/2022] Open
Abstract
Restriction-like endonuclease (RLE) bearing non-LTR retrotransposons are site-specific elements that integrate into the genome through a target primed reverse transcription mechanism (TPRT). R2 elements have been used as a model system for investigating non-LTR retrotransposon integration. We previously demonstrated that R2 retrotransposons require two subunits of the element-encoded multifunctional protein to integrate-one subunit bound upstream of the insertion site and one bound downstream. R2 elements have been phylogenetically categorized into four clades: R2-A, B, C and D, that diverged from a common ancestor more than 850 million years ago. All R2 elements target the same sequence within 28S rDNA. The amino-terminal domain of R2Bm, an R2-D clade element, contains a single zinc finger and a Myb motif that are responsible for binding R2 protein downstream of the insertion site. Target site recognition is of interest as it is the first step in the integration reaction and may help elucidate evolutionary history and integration mechanism. The amino-terminal domain of R2-A clade members contains three zinc fingers and a Myb motif. We show here that R2Lp, an R2-A clade member, uses its amino-terminal DNA binding motifs to bind upstream of the insertion site. Because the R2-A and R2-D clade elements recognize 28S rDNA differently, we conclude the A- and D-clades represent independent targeting events to the 28S site. Our results also indicate a certain plasticity of insertional mechanics exists between the two clades.
Collapse
Affiliation(s)
- Blaine K Thompson
- Department of Biology; University of Texas at Arlington; Arlington, TX USA
| | | |
Collapse
|
17
|
Marlétaz F, Gyapay G, Le Parco Y. High level of structural polymorphism driven by mobile elements in the Hox genomic region of the Chaetognath Spadella cephaloptera. Genome Biol Evol 2010; 2:665-77. [PMID: 20829282 PMCID: PMC2997562 DOI: 10.1093/gbe/evq047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2010] [Indexed: 11/22/2022] Open
Abstract
Little is known about the relationships between genome polymorphism, mobile element dynamics, and population size among animal populations. The chaetognath species Spadella cephaloptera offers a unique perspective to examine this issue because they display a high level of genetic polymorphism at the population level. Here, we have investigated in detail the extent of nucleotide and structural polymorphism in a region harboring Hox1 and several coding genes and presumptive functional elements. Sequencing of several bacterial artificial chromosome inserts representative of this nuclear region uncovered a high level of structural heterogeneity, which is mainly caused by the polymorphic insertion of a diversity of genetic mobile elements. By anchoring this variation through individual genotyping, we demonstrated that sequence diversity could be attributed to the allelic pool of a single population, which was confirmed by detection of extensive recombination within the genomic region studied. The high average level of nucleotide heterozygosity provides clues of selection in both coding and noncoding domains. This pattern stresses how selective processes remarkably cope with intense sequence turnover due to substitutions, mobile element insertions, and recombination to preserve the integrity of functional landscape. These findings suggest that genome polymorphism could provide pivotal information for future functional annotation of genomes.
Collapse
Affiliation(s)
- Ferdinand Marlétaz
- Centre d'Océanologie de Marseille, CNRS UMR 6540 DIMAR, Université de la Méditerranée (Aix-Marseille II), Station Marine d'Endoume, Marseille, France
| | - Gabor Gyapay
- Genoscope (CEA), CNRS UMR 8030, Université d'Evry, Evry, France
| | - Yannick Le Parco
- Centre d'Océanologie de Marseille, CNRS UMR 6540 DIMAR, Université de la Méditerranée (Aix-Marseille II), Station Marine d'Endoume, Marseille, France
| |
Collapse
|
18
|
R2 dynamics in Triops cancriformis (Bosc, 1801) (Crustacea, Branchiopoda, Notostraca): turnover rate and 28S concerted evolution. Heredity (Edinb) 2010; 106:567-75. [PMID: 20628416 DOI: 10.1038/hdy.2010.86] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The R2 retrotransposon is here characterized in bisexual populations of the European crustacean Triops cancriformis. The isolated element matches well with the general aspects of the R2 family and it is highly differentiated from that of the congeneric North American Triops longicaudatus. The analysis of 5' truncations indicates that R2 dynamics in T. cancriformis populations show a high turnover rate as observed in Drosophila simulans. For the first time in the literature, though, individuals harboring truncation variants, but lacking the complete element, are found. Present results suggest that transposition-mediated deletion mechanisms, possibly involving genomic turnover processes acting on rDNAs, can dramatically decrease the copy number or even delete R2 from the ribosomal locus. The presence of R2 does not seem to impact on the nucleotide variation of inserted 28S rDNA with respect to the uninserted genes. On the other hand, a low level of polymorphism characterizes rDNA units because new 28S variants continuously spread across the ribosomal array. Again, the interplay between transposition-mediated deletion and molecular drive may explain this pattern.
Collapse
|
19
|
Stage DE, Eickbush TH. Origin of nascent lineages and the mechanisms used to prime second-strand DNA synthesis in the R1 and R2 retrotransposons of Drosophila. Genome Biol 2009; 10:R49. [PMID: 19416522 PMCID: PMC2718515 DOI: 10.1186/gb-2009-10-5-r49] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 03/27/2009] [Accepted: 05/05/2009] [Indexed: 01/31/2023] Open
Abstract
Comparative analysis of 12 Drosophila genomes reveals insights into the evolution and mechanism of integration of R1 and R2 retrotransposons. Background Most arthropods contain R1 and R2 retrotransposons that specifically insert into the 28S rRNA genes. Here, the sequencing reads from 12 Drosophila genomes have been used to address two questions concerning these elements. First, to what extent is the evolution of these elements subject to the concerted evolution process that is responsible for sequence homogeneity among the different copies of rRNA genes? Second, how precise are the target DNA cleavages and priming of DNA synthesis used by these elements? Results Most copies of R1 and R2 in each species were found to exhibit less than 0.2% sequence divergence. However, in many species evidence was obtained for the formation of distinct sublineages of elements, particularly in the case of R1. Analysis of the hundreds of R1 and R2 junctions with the 28S gene revealed that cleavage of the first DNA strand was precise both in location and the priming of reverse transcription. Cleavage of the second DNA strand was less precise within a species, differed between species, and gave rise to variable priming mechanisms for second strand synthesis. Conclusions These findings suggest that the high sequence identity amongst R1 and R2 copies is because all copies are relatively new. However, each active element generates its own independent lineage that can eventually populate the locus. Independent lineages occur more often with R1, possibly because these elements contain their own promoter. Finally, both R1 and R2 use imprecise, rapidly evolving mechanisms to cleave the second strand and prime second strand synthesis.
Collapse
Affiliation(s)
- Deborah E Stage
- Biology Department, University of Rochester, Rochester NY 14627-0211, USA.
| | | |
Collapse
|
20
|
The R2 mobile element of Rhynchosciara americana: molecular, cytological and dynamic aspects. Chromosome Res 2009; 17:455-67. [PMID: 19350401 DOI: 10.1007/s10577-009-9038-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 03/03/2009] [Accepted: 03/03/2009] [Indexed: 10/20/2022]
Abstract
Ribosomal RNA genes are encoded by large units clustered (18S, 5S, and 28S) in the nucleolar organizer region in several organisms. Sometimes additional insertions are present in the coding region for the 28S rDNA. These insertions are specific non-long terminal repeat retrotransposons that have very restricted integration targets within the genome. The retrotransposon present in the genome of Rhynchosciara americana, RaR2, was isolated by the screening of a genomic library. Sequence analysis showed the presence of conserved regions, such as a reverse transcriptase domain and a zinc finger motif in the amino terminal region. The insertion site was highly conserved in R. americana and a phylogenetic analysis showed that this element belongs to the R2 clade. The chromosomal localization confirmed that the RaR2 mobile element was inserted into a specific site in the rDNA gene. The expression level of RaR2 in salivary glands during larval development was determined by quantitative RT-PCR, and the increase of relative expression in the 3P of the fourth instar larval could be related to intense gene activity characteristic of this stage. 5'-Truncated elements were identified in different DNA samples. Additionally, in three other Rhynchosciara species, the R2 element was present as a full-length element.
Collapse
|
21
|
Glass SK, Moszczynska A, Crease TJ. The effect of transposon Pokey insertions on sequence variation in the 28S rRNA gene of Daphnia pulex. Genome 2009; 51:988-1000. [PMID: 19088812 DOI: 10.1139/g08-092] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The goal of this study was to determine the impact of breeding system and the presence of the transposon Pokey on intraindividual variation in 28S rRNA genes. We PCR-amplified, cloned, and sequenced 1000 nucleotides downstream of the Pokey insertion site in genes with and without insertions from 10 obligately and 10 cyclically parthenogenetic isolates of Daphnia pulex. Variation among genes with Pokey insertions was higher than variation among genes without insertions in both cyclic and obligate isolates. Although the differences were not quite significant (p = 0.06 in both cases), the results suggest that Pokey insertions are likely to inhibit the homogenization of their host genes to some extent. We also observed that the complement of 28S rRNA alleles differed between genes with and without inserts in some isolates, suggesting that a particular inserted gene can persist for substantial periods of time and even spread within the rDNA array, despite the fact that insertions are deleterious. This apparently contradictory pattern can be explained if homogenization of rRNA genes occurs primarily by gene conversion, but copies with Pokey inserts can occasionally increase in frequency within arrays owing to unequal crossing over events that do not originate in the inserted genes themselves.
Collapse
Affiliation(s)
- Shiona K Glass
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G2W1 Canada
| | | | | |
Collapse
|
22
|
Zhou J, Eickbush TH. The pattern of R2 retrotransposon activity in natural populations of Drosophila simulans reflects the dynamic nature of the rDNA locus. PLoS Genet 2009; 5:e1000386. [PMID: 19229317 PMCID: PMC2637433 DOI: 10.1371/journal.pgen.1000386] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Accepted: 01/20/2009] [Indexed: 11/18/2022] Open
Abstract
The pattern and frequency of insertions that enable transposable elements to remain active in a population are poorly understood. The retrotransposable element R2 exclusively inserts into the 28S rRNA genes where it establishes long-term, stable relationships with its animal hosts. Previous studies with laboratory stocks of Drosophila simulans have suggested that control over R2 retrotransposition resides within the rDNA loci. In this report, we sampled 180 rDNA loci of animals collected from two natural populations of D. simulans. The two populations were found to have similar patterns of R2 activity. About half of the rDNA loci supported no or very low levels of R2 transcripts with no evidence of R2 retrotransposition. The remaining half of the rDNA loci had levels of R2 transcripts that varied in a continuous manner over almost a 100-fold range and did support new retrotransposition events. Structural analysis of the rDNA loci in 18 lines that spanned the range of R2 transcript levels in these populations revealed that R2 number and rDNA locus size varied 2-fold; however, R2 activity was not readily correlated with either of these parameters. Instead R2 activity was best correlated with the distribution of elements within the rDNA locus. Loci with no activity had larger contiguous blocks of rDNA units free of R2-insertions. These data suggest a model in which frequent recombination within the rDNA locus continually redistributes R2-inserted units resulting in changing levels of R2 activity within individual loci and persistent R2 activity within the population.
Collapse
Affiliation(s)
- Jun Zhou
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| | - Thomas H. Eickbush
- Department of Biology, University of Rochester, Rochester, New York, United States of America
- * E-mail:
| |
Collapse
|
23
|
Plata MP, Kang HJ, Zhang S, Kuruganti S, Hsu SJ, Labrador M. Changes in chromatin structure correlate with transcriptional activity of nucleolar rDNA in polytene chromosomes. Chromosoma 2008; 118:303-22. [PMID: 19066928 DOI: 10.1007/s00412-008-0198-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 11/14/2008] [Accepted: 11/19/2008] [Indexed: 12/30/2022]
Abstract
Ribosomal DNA genes (rDNA) are found in tandem arrays of hundreds of repeated genes, but only a fraction of these genes are actively transcribed. The regulatory mechanism controlling the transition between active and inactive rDNA in higher eukaryotes is vital for cell survival. Here, we show that the nucleolus from Drosophila salivary gland cells contains two levels of chromatin organization reflecting differences in transcriptional activity: Decondensed chromatin is highly occupied with TATA-box-binding protein (TBP), phosphorylated H3S10, and acetylated H3K14, suggesting that rDNA in decondensed nucleolar areas is actively transcribed. Condensed chromatin lacks TBP, phosphorylated H3S10, or acetylated H3K14 and is enriched in the rDNA retrotransposons R1 and R2. The data show that R1 and R2 retrotransposons are not actively transcribed in salivary glands and may lead to the epigenetic silencing of flanking rDNA genes and that the silencing mechanisms of these sequences might be partially independent of heterochromatin formation by methylation of histone H3 at lysine 9 and binding of heterochromatin protein 1.
Collapse
Affiliation(s)
- Maria Piedad Plata
- Department of Biochemistry, Cellular and Molecular Biology, M407 Walters Life Sciences, The University of Tennessee, 1414 Cumberland Avenue, Knoxville, TN 37996, USA
| | | | | | | | | | | |
Collapse
|
24
|
Role of recombination in the long-term retention of transposable elements in rRNA gene loci. Genetics 2008; 180:1617-26. [PMID: 18791229 DOI: 10.1534/genetics.108.093716] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Multiple theoretical studies have focused on the concerted evolution of the tandemly repeated rRNA genes of eukaryotes; however, these studies did not consider the transposable elements that interrupt the rRNA genes in many organisms. For example, in insects, R1 and R2 have been stable components of the rDNA locus for hundreds of millions of years, suggesting either that they have minimal effects on fitness or that they are unable to be eliminated. We constructed a simulation model of recombination and retrotransposition within the rDNA locus that addresses the population dynamics and fitness consequences associated with R1 and R2 insertions. The simulations suggest that even without R1 and R2 retrotransposition the frequent sister chromatid exchanges postulated from various empirical studies will, in combination with selection, generate rDNA loci that are much larger than those needed for transcription. These large loci enable the host to tolerate high levels of R1 and R2 insertions with little fitness consequences. Changes in retrotransposition rates are likely to be accommodated by adjustments in sister chromatid exchange (SCE) rate, rather than by direct selection on the number of uninserted rDNA units. These simulations suggest that the rDNA locus serves as an ideal niche for the long-term survival of transposable elements.
Collapse
|
25
|
Epigenetic regulation of retrotransposons within the nucleolus of Drosophila. Mol Cell Biol 2008; 28:6452-61. [PMID: 18678644 DOI: 10.1128/mcb.01015-08] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
R2 retrotransposable elements exclusively insert into a conserved region of the tandemly organized 28S rRNA genes. Despite inactivating a subset of these genes, R2 elements have persisted in the ribosomal DNA (rDNA) loci of insects for hundreds of millions of years. Controlling R2 proliferation was addressed in this study using lines of Drosophila simulans previously shown to have either active or inactive R2 retrotransposition. Lines with active retrotransposition were shown to have high R2 transcript levels, which nuclear run-on transcription experiments revealed were due to increased transcription of R2-inserted genes. Crosses between R2 active and inactive lines indicated that an important component of this transcriptional control is linked to or near the rDNA locus, with the R2 transcription level of the inactive parent being dominant. Pulsed-field gel analysis suggested that the R2 active and inactive states were determined by R2 distribution within the locus. Molecular and cytological analyses further suggested that the entire rDNA locus from the active line can be silenced in favor of the locus from the inactive line. This silencing of entire rDNA loci represents an example of the large-scale epigenetic control of transposable elements and shares features with the nucleolar dominance frequently seen in interspecies hybrids.
Collapse
|
26
|
Kagramanova AS, Kapelinskaya TV, Korolev AL, Mukha DV. R1 and R2 retrotransposons of German cockroach Blatella germanica: A comparative study of 5′-truncated copies integrated into the genome. Mol Biol 2007. [DOI: 10.1134/s0026893307040048] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Ganley ARD, Kobayashi T. Highly efficient concerted evolution in the ribosomal DNA repeats: total rDNA repeat variation revealed by whole-genome shotgun sequence data. Genome Res 2007; 17:184-91. [PMID: 17200233 PMCID: PMC1781350 DOI: 10.1101/gr.5457707] [Citation(s) in RCA: 248] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Repeat families within genomes are often maintained with similar sequences. Traditionally, this has been explained by concerted evolution, where repeats in an array evolve "in concert" with the same sequence via continual turnover of repeats by recombination. Another form of evolution, birth-and-death evolution, can also explain this pattern, although in this case selection is the critical force maintaining the repeats. The level of intragenomic variation is the key difference between these two forms of evolution. The prohibitive size and repetitive nature of large repeat arrays have made determination of the absolute level of intragenomic repeat variability difficult, thus there is little evidence to support concerted evolution over birth-and-death evolution for many large repeat arrays. Here we use whole-genome shotgun sequence data from the genome projects of five fungal species to reveal absolute levels of sequence variation within the ribosomal RNA gene repeats (rDNA). The level of sequence variation is remarkably low. Furthermore, the polymorphisms that are detected are not functionally constrained and seem to exist beneath the level of selection. These results suggest the rDNA is evolving via concerted evolution. Comparisons with a repeat array undergoing birth-and-death evolution provide a clear contrast in the level of repeat array variation between these two forms of evolution, confirming that the rDNA indeed does evolve via concerted evolution. These low levels of intra-genomic variation are consistent with a model of concerted evolution in which homogenization is very rapid and efficiently maintains highly similar repeat arrays.
Collapse
|
28
|
Gillespie JJ, Johnston JS, Cannone JJ, Gutell RR. Characteristics of the nuclear (18S, 5.8S, 28S and 5S) and mitochondrial (12S and 16S) rRNA genes of Apis mellifera (Insecta: Hymenoptera): structure, organization, and retrotransposable elements. INSECT MOLECULAR BIOLOGY 2006; 15:657-86. [PMID: 17069639 PMCID: PMC2048585 DOI: 10.1111/j.1365-2583.2006.00689.x] [Citation(s) in RCA: 189] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Accepted: 06/28/2006] [Indexed: 05/12/2023]
Abstract
As an accompanying manuscript to the release of the honey bee genome, we report the entire sequence of the nuclear (18S, 5.8S, 28S and 5S) and mitochondrial (12S and 16S) ribosomal RNA (rRNA)-encoding gene sequences (rDNA) and related internally and externally transcribed spacer regions of Apis mellifera (Insecta: Hymenoptera: Apocrita). Additionally, we predict secondary structures for the mature rRNA molecules based on comparative sequence analyses with other arthropod taxa and reference to recently published crystal structures of the ribosome. In general, the structures of honey bee rRNAs are in agreement with previously predicted rRNA models from other arthropods in core regions of the rRNA, with little additional expansion in non-conserved regions. Our multiple sequence alignments are made available on several public databases and provide a preliminary establishment of a global structural model of all rRNAs from the insects. Additionally, we provide conserved stretches of sequences flanking the rDNA cistrons that comprise the externally transcribed spacer regions (ETS) and part of the intergenic spacer region (IGS), including several repetitive motifs. Finally, we report the occurrence of retrotransposition in the nuclear large subunit rDNA, as R2 elements are present in the usual insertion points found in other arthropods. Interestingly, functional R1 elements usually present in the genomes of insects were not detected in the honey bee rRNA genes. The reverse transcriptase products of the R2 elements are deduced from their putative open reading frames and structurally aligned with those from another hymenopteran insect, the jewel wasp Nasonia (Pteromalidae). Stretches of conserved amino acids shared between Apis and Nasonia are illustrated and serve as potential sites for primer design, as target amplicons within these R2 elements may serve as novel phylogenetic markers for Hymenoptera. Given the impending completion of the sequencing of the Nasonia genome, we expect our report eventually to shed light on the evolution of the hymenopteran genome within higher insects, particularly regarding the relative maintenance of conserved rDNA genes, related variable spacer regions and retrotransposable elements.
Collapse
Affiliation(s)
- J J Gillespie
- Department of Entomology, Texas A & M University, College Station, TX, USA.
| | | | | | | |
Collapse
|
29
|
Ye J, Eickbush TH. Chromatin structure and transcription of the R1- and R2-inserted rRNA genes of Drosophila melanogaster. Mol Cell Biol 2006; 26:8781-90. [PMID: 17000772 PMCID: PMC1636831 DOI: 10.1128/mcb.01409-06] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
About half of the rRNA gene units (rDNA units) of Drosophila melanogaster are inserted by the retrotransposable elements R1 and R2. Because transcripts to R1 and R2 were difficult to detect on blots and electron microscopic observations of rRNA synthesis suggested that only uninserted rDNA units were transcribed, it has long been postulated that inserted rDNA units are in a repressed (inactive) chromatin structure. Studies described here suggest that inserted and uninserted units are equally accessible to DNase I and micrococcal nuclease and contain similar levels of histone H3 and H4 acetylation and H3K9 methylation. These studies have low sensitivity, because psoralen cross-linking suggested few (estimated <10%) of the rDNA units of any type are transcriptionally active. Nuclear run-on experiments revealed that R1-inserted and R2-inserted units are activated for transcription at about 1/5 and 1/10, respectively, the rate of uninserted units. Most transcription complexes of the inserted units terminate within the elements, thus explaining why previous molecular and electron microscopic methods indicated inserted units are seldom transcribed. The accumulating data suggest that all units within small regions of the rDNA loci are activated for transcription, with most control over R1 and R2 activity involving steps downstream of transcription initiation.
Collapse
Affiliation(s)
- Junqiang Ye
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | | |
Collapse
|
30
|
Kagramanova AS, Korolev AL, Schal C, Mukha DV. Length polymorphism of integrated copies of R1 and R2 retrotransposons in the German cockroach (Blattella germanica) as a potential marker for population and phylogenetic studies. RUSS J GENET+ 2006. [DOI: 10.1134/s1022795406040065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
31
|
Ye J, Pérez-González CE, Eickbush DG, Eickbush TH. Competition between R1 and R2 transposable elements in the 28S rRNA genes of insects. Cytogenet Genome Res 2005; 110:299-306. [PMID: 16093682 DOI: 10.1159/000084962] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2003] [Accepted: 01/13/2004] [Indexed: 11/19/2022] Open
Abstract
R1 and R2 are non-LTR retrotransposons that insert in the 28S rRNA genes of arthropods. R1 elements insert into a site that is 74 bp downstream of the R2 insertion site, thus the presence of an R2 in the same 28S gene may inhibit the expression of R1. Consistent with such a suggestion, the R1 elements of Drosophila melanogaster have a strong bias against inserting into 28S genes already containing an R2 element. R2 elements, on the other hand, are only 2-3 fold inhibited from inserting into a 28S gene already containing an R1. D. melanogaster R1 elements are unusual in that they generate a 23-bp deletion of the target site upstream of the insertion. Using in vitro assays developed to study R2 integration, we show that the presence of R1 sequences 51 bp downstream of the R2 insertion site changes the nucleosomal structure that can be formed by the R2 target site. The R2 endonuclease is inhibited from cleaving these altered nucleosomes. We suggest that R1 elements have been selected to make this large deletion of the 28S gene to block the insertion of an upstream R2 element. These findings are consistent with the model that R1 and R2 are in competition for the limited number of insertion sites available within their host's genome.
Collapse
Affiliation(s)
- J Ye
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | | | | | | |
Collapse
|
32
|
Averbeck KT, Eickbush TH. Monitoring the mode and tempo of concerted evolution in the Drosophila melanogaster rDNA locus. Genetics 2005; 171:1837-46. [PMID: 16143606 PMCID: PMC1456108 DOI: 10.1534/genetics.105.047670] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Non-LTR retrotransposons R1 and R2 have persisted in rRNA gene loci (rDNA) since the origin of arthropods despite their continued elimination by the recombinational mechanisms of concerted evolution. This study evaluated the short-term evolutionary dynamics of the rDNA locus by measuring the divergence among replicate Drosophila melanogaster lines after 400 generations. The total number of rDNA units on the X chromosome of each line varied from 140 to 310, while the fraction of units inserted with R1 and R2 retrotransposons ranged from 37 to 65%. This level of variation is comparable to that found in natural population surveys. Variation in locus size and retrotransposon load was correlated with large changes in the number of uninserted and R1-inserted units, yet the numbers of R2-inserted units were relatively unchanged. Intergenic spacer (IGS) region length variants were also used to evaluate changes in the rDNA loci. All IGS length variants present in the lines showed significant increases and decreases of copy number. These studies, combined with previous data following specific R1 and R2 insertions in these lines, help to define the type and distribution, both within the locus and within the individual units, of recombinational events that give rise to the concerted evolution of the rDNA locus.
Collapse
|
33
|
Kojima KK, Fujiwara H. Long-term inheritance of the 28S rDNA-specific retrotransposon R2. Mol Biol Evol 2005; 22:2157-65. [PMID: 16014872 DOI: 10.1093/molbev/msi210] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
R2 is a non-long-terminal-repeat (LTR) retrotransposon that inserts specifically into 28S rDNA. R2 has been identified in many species of arthropods and three species of chordates. R2 may be even more widely distributed in animals, and its origin may be traceable to early animal evolution. In this study, we identified R2 elements in medaka fish, White Cloud Mountain minnow, Reeves' turtle, hagfish, sea lilies, and some arthropod species, using degenerate polymerase chain reaction methods. We also identified two R2 elements from the public genomic sequence database of the bloodfluke Schistosoma mansoni. One of the two bloodfluke R2 elements has two zinc-finger motifs at the N-terminus; this differs from other known R2 elements, which have one or three zinc-finger motifs. Phylogenetic analysis revealed that the whole phylogeny of R2 can be divided into 11 parts (subclades), in which the local R2 phylogeny and the corresponding host phylogeny are consistent. Divergence-versus-age analysis revealed that there is no reliable evidence for the horizontal transfer of R2 but supports the proposition that R2 has been vertically transferred since before the divergence of the deuterostomes and protostomes. The seeming inconsistency between the R2 phylogeny and the phylogeny of their hosts is due to the existence of paralogous lineages. The number of N-terminal zinc-finger motifs is consistent with the deep phylogeny of R2 and indicates that the common ancestor of R2 had three zinc-finger motifs at the N-terminus. This study revealed the long-term vertical inheritance and the ancient origin of sequence specificity of R2, both of which seem applicable to some other non-LTR retrotransposons.
Collapse
Affiliation(s)
- Kenji K Kojima
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Chiba, Japan
| | | |
Collapse
|
34
|
Anzai T, Osanai M, Hamada M, Fujiwara H. Functional roles of 3'-terminal structures of template RNA during in vivo retrotransposition of non-LTR retrotransposon, R1Bm. Nucleic Acids Res 2005; 33:1993-2002. [PMID: 15814816 PMCID: PMC1074724 DOI: 10.1093/nar/gki347] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
R1Bm is a non-LTR retrotransposon found specifically within 28S rRNA genes of the silkworm. Different from other non-LTR retrotransposons encoding two open reading frames (ORFs), R1Bm structurally lacks a poly (A) tract at its 3' end. To study how R1Bm initiates reverse transcription from the poly (A)-less template RNA, we established an in vivo retrotransposition system using recombinant baculovirus, and characterized retrotransposition activities of R1Bm. Target-primed reverse transcription (TPRT) of R1Bm occurred from the cleavage site generated by endonuclease (EN). The 147 bp of 3'-untranslated region (3'UTR) was essential for efficient retrotransposition of R1Bm. Even using the complete R1Bm element, however, reverse transcription started from various sites of the template RNA mostly with 5'-UG-3' or 5'-UGU-3' at their 3' ends, which are presumably base-paired with 3' end of the EN-digested 28S rDNA target sequence, 5'-AGTAGATAGGGACA-3'. When the downstream sequence of 28S rDNA target was added to the 3' end of R1 unit, reverse transcription started exactly from the 3' end of 3'UTR and retrotransposition efficiency increased. These results indicate that 3'-terminal structure of template RNA including read-through region interacts with its target rDNA sequences of R1Bm, which plays important roles in initial process of TPRT in vivo.
Collapse
Affiliation(s)
| | | | | | - Haruhiko Fujiwara
- To whom correspondence should be addressed. Tel: +81 4 7136 3659; Fax: +81 4 7136 3660;
| |
Collapse
|
35
|
Zhang X, Eickbush TH. Characterization of active R2 retrotransposition in the rDNA locus of Drosophila simulans. Genetics 2005; 170:195-205. [PMID: 15781697 PMCID: PMC1449725 DOI: 10.1534/genetics.104.038703] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The rRNA gene (rDNA) loci of all arthropod lineages contain non-LTR retrotransposable elements that have evolved to specifically insert into the 28S rRNA genes. Extensive in vitro experiments have been conducted to investigate the mechanism of R2 retrotransposition but little is known of the insertion frequency or cellular factors that might regulate R2 activity. In this article, isofemale lines obtained from a population of Drosophila simulans were surveyed for recent R2 insertions. Within most lines, all individuals showed the same collection of R2 insertions, providing no evidence for recent R2 activity. However, in a few of the isofemale lines, virtually all individuals differed in their R2 insertion profiles. The descendants of individual pairs of flies from these "active lines" rapidly accumulated new insertions. The frequent insertion of new R2 elements was associated with the elimination of old R2 elements from the rDNA locus. The existence of lines in which R2 retrotransposes frequently and lines in which the elements appear dormant suggests that cellular mechanisms that can regulate the activity of R2 exist. Retrotransposition activity was correlated with the number of full-length R2 elements but not with the size of the rDNA locus or the number of uninserted units.
Collapse
Affiliation(s)
- Xian Zhang
- Department of Biology, University of Rochester, New York 14627, USA
| | | |
Collapse
|
36
|
Penton EH, Crease TJ. Evolution of the Transposable Element Pokey in the Ribosomal DNA of Species in the Subgenus Daphnia (Crustacea: Cladocera). Mol Biol Evol 2004; 21:1727-39. [PMID: 15201395 DOI: 10.1093/molbev/msh189] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Pokey is a member of the piggyBac (previously called the TTAA-specific) family of transposons and inserts into a conserved region of the large subunit ribosomal RNA gene. This location is a "hot spot" for insertional activity, as it is known to contain other arthropod transposable elements. However, Pokey is unique in that it is the first DNA transposon yet known to insert into this region. All other insertions are class I non-LTR retrotransposons. This study surveyed variation in Pokey elements through phylogenetic analysis of the 3' ends of Pokey elements from ribosomal DNA (rDNA) in species from the nominate subgenus of the genus Daphnia (Crustacea: Cladocera). The results suggest that Pokey has been stably, vertically inherited within rDNA over long periods of evolutionary time. No evidence was found to support horizontal transfer, which commonly occurs in other DNA transposons, such as P and mariner. Furthermore, Pokey has diverged into sublineages that have persisted across speciation events in some groups. In addition, a new highly divergent paralogous Pokey element was discovered in the rDNA of one species.
Collapse
Affiliation(s)
- Erin H Penton
- Department of Zoology, University of Guelph, Guelph, Ontario, Canada
| | | |
Collapse
|
37
|
Pérez-González CE, Burke WD, Eickbush TH. R1 and R2 retrotransposition and deletion in the rDNA loci on the X and Y chromosomes of Drosophila melanogaster. Genetics 2004; 165:675-85. [PMID: 14573479 PMCID: PMC1462780 DOI: 10.1093/genetics/165.2.675] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The non-LTR retrotransposons R1 and R2 insert into the 28S rRNA genes of arthropods. Comparisons among Drosophila lineages have shown that these elements are vertically inherited, while studies within species have indicated a rapid turnover of individual copies (elimination of old copies and the insertion of new copies). To better understand the turnover of R1 and R2, 200 retrotranspositions and nearly 100 eliminations have been scored in the Harwich mutation-accumulation lines of Drosophila melanogaster. Because the rDNA arrays in D. melanogaster are present on the X and Y chromosomes and no exchanges were detected in these lines, it was possible to show that R1 retrotranspositions occur predominantly in the male germ line, while R2 retrotranspositions were more evenly divided between the germ lines of both sexes. The rate of elimination of elements from the Y rDNA array was twice that of the X rDNA array with both chromosomal loci containing regions where the rate of elimination was on average eight times higher. Most R1 and R2 eliminations appear to occur by large intrachromosomal events (i.e., loop-out events) that involve multiple rDNA units. These findings are interpreted in light of the known abundance of R1 and R2 elements in the X and Y rDNA loci of D. melanogaster.
Collapse
|
38
|
Abstract
AbstractFluorescent in situ hybridization was used to examine the distribution of six abundant long terminal repeat (LTR) retroelements, Opie, Huck, Cinful-1, Prem-2/Ji, Grande, and Tekay/Prem-1 on maize pachytene chromosomes. Retroelement staining in euchromatin was remarkably uniform, even when we included the structurally polymorphic abnormal chromosome 10 (Ab10) in our analysis. This uniformity made it possible to use euchromatin as a control for quantitative staining intensity measurements in other regions of the genome. The data show that knobs, known to function as facultative neocentromeres when Ab10 is present, tend to exclude retroelements. A notable exception is Cinful-1, which accumulates in TR-1 knob arrays. Staining for each of the six retroelements was also substantially reduced in centromeric satellite arrays to an average of 30% of the staining in euchromatin. This contrasted with two previously described centromere-specific retrotransposable (CR) elements that were readily detected in centromeres. We suggest that retroelements are relatively rare in centromeres because they interrupt the long satellite arrays thought to be required for efficient centromere function. CR elements may have evolved mutualistic relationships with their plant hosts: they are known to interact with the kinetochore protein CENH3 and appear to accumulate in clusters, leaving long satellite arrays intact.
Collapse
Affiliation(s)
- Rebecca J Mroczek
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602, USA
| | | |
Collapse
|
39
|
Robin S, Chambeyron S, Bucheton A, Busseau I. Gene silencing triggered by non-LTR retrotransposons in the female germline of Drosophila melanogaster. Genetics 2003; 164:521-31. [PMID: 12807773 PMCID: PMC1462600 DOI: 10.1093/genetics/164.2.521] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Several studies have recently shown that the activity of some eukaryotic transposable elements is sensitive to the presence of homologous transgenes, suggesting the involvement of homology-dependent gene-silencing mechanisms in their regulation. Here we provide data indicating that two non-LTR retrotransposons of Drosophila melanogaster are themselves natural triggers of homology-dependent gene silencing. We show that, in the female germline of D. melanogaster, fragments from the R1 or from the I retrotransposons can mediate silencing of chimeric transcription units into which they are inserted. This silencing is probably mediated by sequence identity with endogenous copies of the retrotransposons because it does not occur with a fragment from the divergent R1 elements of Bombyx mori, and, when a fragment of I is used, it occurs only in females containing functional copies of the I element. This silencing is not accompanied by cosuppression of the endogenous gene homologous to the chimeric transcription unit, which contrasts to some other silencing mechanisms in Drosophila. These observations suggest that in the female germline of D. melanogaster the R1 and I retrotransposons may self-regulate their own activity and their copy number by triggering homology-dependent gene silencing.
Collapse
Affiliation(s)
- Stéphanie Robin
- Institut de Génétique Humaine, CNRS, 34396 Montpellier, Cedex 5, France
| | | | | | | |
Collapse
|
40
|
Eickbush DG, Eickbush TH. Transcription of endogenous and exogenous R2 elements in the rRNA gene locus of Drosophila melanogaster. Mol Cell Biol 2003; 23:3825-36. [PMID: 12748285 PMCID: PMC155226 DOI: 10.1128/mcb.23.11.3825-3836.2003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
R2 retrotransposons insert into the rRNA-encoding units (rDNA units) that form the nucleoli of insects. We have utilized an R2 integration system in Drosophila melanogaster to study transcription of foreign sequences integrated into the R2 target site of the 28S rRNA genes. The exogenous sequences were cotranscribed at dramatically different levels which closely paralleled the level of transcription of the endogenous R1 and R2 elements. Transcription levels were inversely correlated with the number of uninserted rDNA units, variation in this number having been brought about by the R2 integration system itself. Females with as few as 20 uninserted rDNA units per X chromosome had expression levels of endogenous and exogenous insertion sequences that were 2 orders of magnitude higher than lines that contained over 80 uninserted rDNA units per chromosome. R2 insertions only 167 bp in length exhibited this range of transcriptional regulation. Analysis of transcript levels in males suggested R2 insertions on the Y chromosome are not down-regulated to the same extent as insertions on the X chromosome. These results suggest that transcription of the rDNA units can be tightly regulated, but this regulation gradually breaks down as the cell approaches the minimum number of uninserted genes needed for survival.
Collapse
Affiliation(s)
- Danna G Eickbush
- Department of Biology, University of Rochester, Rochester, New York 146270-0211, USA
| | | |
Collapse
|