1
|
Cisternas‐Fuentes A, Forehand C, Morris K, Busch JW, Koski MH. Drift in small populations predicts mate availability and the breakdown of self-incompatibility in a clonal polyploid. THE NEW PHYTOLOGIST 2025; 245:2268-2278. [PMID: 39716778 PMCID: PMC11798892 DOI: 10.1111/nph.20338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/22/2024] [Indexed: 12/25/2024]
Abstract
Mate limitation in small populations can reduce reproductive fitness, hinder population growth, and increase extinction risk. Mate limitation is exacerbated in self-incompatible (SI) taxa, where shared S-alleles further restrict mating. Theory suggests genetic drift as a predictor of mate limitation and the breakdown of SI systems. We tested this prediction by evaluating mate availability and S-allele number in populations of a tetraploid herb with gametophytic SI (GSI) spanning a range of effective population sizes. We performed controlled crosses in 13 populations of Argentina anserina to quantify mate availability and S-allele diversity, which were compared with simulations of tetraploid populations with GSI. We further evaluated mechanisms at the pollen-pistil interface contributing to outcross failure and leakiness in self-recognition. Mate availability declined in small populations, and closely fit tetraploid GSI population genetic models where maternal plants receive pollen with diverse S-alleles generated through tetrasomic inheritance. The failure to arrest self-pollen in the style was common in some populations. Specifically, leaky SI was more common in small populations with low mate availability, where it explained higher seed production in natural populations. The restriction of leaky self-recognition to the smallest populations is consistent with mate limitation as a pressure driving the breakdown of self-incompatibility.
Collapse
Affiliation(s)
- Anita Cisternas‐Fuentes
- Departamento de Botánica, Facultad de Ciencias Naturales y OceanográficasUniversidad de ConcepciónCasilla 160‐CConcepciónChile
- Department of Biological SciencesClemson UniversityClemsonSC29634USA
| | - Cameron Forehand
- Department of Biological SciencesClemson UniversityClemsonSC29634USA
- Department of BiologyUniversity of OklahomaNormanOK73019USA
| | - Kate Morris
- Department of Biological SciencesClemson UniversityClemsonSC29634USA
| | - Jeremiah W. Busch
- School of Biological SciencesWashington State UniversityPullmanWA99164‐4236USA
| | - Matthew H. Koski
- Department of Biological SciencesClemson UniversityClemsonSC29634USA
| |
Collapse
|
2
|
Ferrer MM, Vásquez-Cruz M, Verde-Cáceres MA, Magaña-Rosado UC, Good SV. The distribution of self-incompatibility systems in angiosperms: the relationship between mating system diversity, life span, growth habit and latitude in a changing global environment. ANNALS OF BOTANY 2025; 135:25-42. [PMID: 38716780 PMCID: PMC11805948 DOI: 10.1093/aob/mcae056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/25/2024] [Indexed: 02/09/2025]
Abstract
BACKGROUND AND AIMS There is ample theoretical and experimental evidence that angiosperms harbouring self-incompatibility (SI) systems are likely to respond to global changes in unique ways relative to taxa with other mating systems. In this paper, we present an updated database on the prevalence of SI systems across angiosperms and examine the relationship between the presence of SI and latitude, biomes, life-history traits and management conditions to evaluate the potential vulnerability of SI taxa to climate change and habitat disturbance. METHODS We performed literature searches to identify studies that employed controlled crosses, microscopic analyses and/or genetic data to classify taxa as having SI, self-compatibility (SC), partial self-compatibility (PSC) or self-sterility (SS). Where described, the site of the SI reaction and the presence of dimorphic versus monomorphic flowers were also recorded. We then combined this database on the distribution of mating systems with information about the life span, growth habit, management conditions and geographic distribution of taxa. Information about the geographic distribution of taxa was obtained from a manually curated version of the Global Biodiversity Information Facility database, and from vegetation surveys encompassing nine biomes. We employed multinomial logit regression to assess the relationship between mating system and life-history traits, management condition, latitude and latitude-squared using self-compatible taxa as the baseline. Additionally, we employed LOESS regression to examine the relationship between the probability of SI and latitude. Finally, by summarizing information at the family level, we plotted the distribution of SI systems across angiosperms, including information about the presence of SI or dioecy and the inferred reaction site of the SI system when known, as well as the proportion of taxa in a family for which information is available. KEY RESULTS We obtained information about the SI status of 5686 hermaphroditic taxa, of which 55% exhibit SC and the remaining 45% harbour SI, SS or PSC. Highlights of the multinomial logit regression include that taxa with PSC have a greater odds of being short-lived (OR = 1.3) or long-lived (OR = 1.57) perennials relative to SC ones, and that SS/SI taxa (pooled) are less likely to be annuals (OR = 0.64) and more likely to be long-lived perennials (OR = 1.32). SS/SI taxa had a greater odds of being succulent (OR = 2.4) or a tree (OR = 2.05), and were less likely to be weeds (OR = 0.34). Further, we find a quadratic relationship between the probability of being self-incompatible with latitude: SI taxa were more common in the tropics, a finding that was further supported by the vegetation surveys, which showed fewer species with SS/SI in temperate and northern latitudes compared with Mediterranean and tropical biomes. CONCLUSIONS We conclude that in the short-term habitat fragmentation, pollinator loss and temperature increases may negatively impact plants with SI systems, particularly long-lived perennial and woody species dominant in tropical forests. In the longer term, these and other global changes are likely to select for self-compatible or partially self-compatible taxa, which, due to the apparent importance of SI as a driver of plant diversification across the angiosperm tree of life, may globally influence plant species richness.
Collapse
Affiliation(s)
- Miriam Monserrat Ferrer
- Departamento de Manejo y Conservación de Recursos Naturales Tropicales, Universidad Autónoma de Yucatán, Mérida Yucatán, México
| | | | - Mirley Arlyn Verde-Cáceres
- Departamento de Manejo y Conservación de Recursos Naturales Tropicales, Universidad Autónoma de Yucatán, Mérida Yucatán, México
| | - Uriel Christopher Magaña-Rosado
- Departamento de Manejo y Conservación de Recursos Naturales Tropicales, Universidad Autónoma de Yucatán, Mérida Yucatán, México
| | - Sara Victoria Good
- Department of Biology, The University of Winnipeg, Winnipeg, Manitoba, Canada
- Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
3
|
Ramanauskas K, Jiménez‐López FJ, Sánchez‐Cabrera M, Escudero M, Ortiz PL, Arista M, Igić B. Rapid detection of RNase-based self-incompatibility in Lysimachia monelli (Primulaceae). AMERICAN JOURNAL OF BOTANY 2025; 112:e16449. [PMID: 39806558 PMCID: PMC11744440 DOI: 10.1002/ajb2.16449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 01/16/2025]
Abstract
PREMISE Primroses famously employ a system that simultaneously expresses distyly and filters out self-pollen. Other species in the Primulaceae family, including Lysimachia monelli (blue pimpernel), also express self-incompatibility (SI), but involving a system with distinct features and an unknown molecular genetic basis. METHODS We utilize a candidate-based transcriptome sequencing (RNA-seq) approach, relying on candidate T2/S-RNase Class III and S-linked F-box-motif-containing genes and harnessing the unusual evolutionary and genetic features of SI, to examine whether an RNase-based mechanism underlies SI in L. monelli. We term this approach "SI detection with RNA-seq" (SIDR). RESULTS The results of sequencing, crossing, population genetics, and molecular evolutionary features each support a causal association linking the recovered genotypes with SI phenotypes. The finding of RNase-based SI in Primulaceae (Ericales) all but cements the long-held view that this mechanism was present in the ancestral pentapetal eudicot, whose descendants now comprise two-thirds of angiosperms. It also significantly narrows the plausible maximum age for the heterostyly evolution within the family. CONCLUSIONS SIDR is powerful, flexible, inexpensive, and most critically enables work in often-neglected species. It may be used with or without candidate genes to close enormous gaps in understanding the genetic basis of SI and the history of breeding system evolution.
Collapse
Affiliation(s)
- Karolis Ramanauskas
- Department of Biological SciencesUniversity of Illinois at ChicagoChicago60607ILUSA
| | | | | | - Marcial Escudero
- Departamento de Biología Vegetal y EcologíaUniversidad de SevillaApdo. 1095Sevilla41080Spain
| | - Pedro L. Ortiz
- Departamento de Biología Vegetal y EcologíaUniversidad de SevillaApdo. 1095Sevilla41080Spain
| | - Montserrat Arista
- Departamento de Biología Vegetal y EcologíaUniversidad de SevillaApdo. 1095Sevilla41080Spain
| | - Boris Igić
- Department of Biological SciencesUniversity of Illinois at ChicagoChicago60607ILUSA
| |
Collapse
|
4
|
Maenosono T, Isono K, Kuronuma T, Hatai M, Chimura K, Kubo KI, Kokubun H, Greppi JA, Watanabe H, Uehara K, Tsuchimatsu T. Exploring the Allelic Diversity of the Self-Incompatibility Gene Across Natural Populations in Petunia (Solanaceae). Genome Biol Evol 2024; 16:evae270. [PMID: 39673752 DOI: 10.1093/gbe/evae270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/19/2024] [Accepted: 12/02/2024] [Indexed: 12/16/2024] Open
Abstract
Self-incompatibility (SI) is a genetic mechanism to prevent self-fertilization and thereby promote outcrossing in hermaphroditic plant species through discrimination of self and nonself-pollen by pistils. In many SI systems, recognition between pollen and pistils is controlled by a single multiallelic locus (called the S-locus), in which multiple alleles (called S-alleles) are segregating. Because of the extreme level of polymorphism of the S-locus, identification of S-alleles has been a major issue in many SI studies for decades. Here, we report an RNA-seq-based method to explore allelic diversity of the S-locus by employing the long-read sequencing technology of the Oxford Nanopore MinION and applied it for the gametophytic SI system of Petunia (Solanaceae), in which the female determinant is a secreted ribonuclease called S-RNase that inhibits the elongation of self-pollen tubes by degrading RNA. We developed a method to identify S-alleles by the search of S-RNase sequences, using the previously reported sequences as queries, and found in total 62 types of S-RNase including 45 novel types. We validated this method through Sanger sequencing and crossing experiments, confirming the sequencing accuracy and SI phenotypes corresponding to genotypes. Then, using the obtained sequence data together with polymerase chain reaction-based genotyping in a larger sample set of 187 plants, we investigated the diversity, frequency, and the level of shared polymorphism of S-alleles across populations and species. The method and the dataset obtained in Petunia will be an important basis for further studying the evolution of S-RNase-based gametophytic SI systems in natural populations.
Collapse
Affiliation(s)
- Taiga Maenosono
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku 113-0033, Tokyo, Japan
- Graduate School of Science and Technology, Chiba University, Chiba 263-8522, Japan
| | - Kazuho Isono
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku 113-0033, Tokyo, Japan
| | - Takanori Kuronuma
- Center for Environment, Health and Field Sciences, Chiba University, Kashiwa 277-0882, Japan
| | - Miho Hatai
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku 113-0033, Tokyo, Japan
| | - Kaori Chimura
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku 113-0033, Tokyo, Japan
| | - Ken-Ichi Kubo
- Department of Frontier Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Japan
| | - Hisashi Kokubun
- Graduate School of Horticulture, Chiba University, Matsudo 271-8510, Japan
| | | | - Hitoshi Watanabe
- Center for Environment, Health and Field Sciences, Chiba University, Kashiwa 277-0882, Japan
| | - Koichi Uehara
- College of Liberal Arts and Sciences, Chiba University, Chiba 263-8522, Japan
| | - Takashi Tsuchimatsu
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku 113-0033, Tokyo, Japan
| |
Collapse
|
5
|
Siljestam M, Rueffler C. Heterozygote advantage can explain the extraordinary diversity of immune genes. eLife 2024; 13:e94587. [PMID: 39589392 PMCID: PMC11723581 DOI: 10.7554/elife.94587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 11/11/2024] [Indexed: 11/27/2024] Open
Abstract
The majority of highly polymorphic genes are related to immune functions and with over 100 alleles within a population, genes of the major histocompatibility complex (MHC) are the most polymorphic loci in vertebrates. How such extraordinary polymorphism arose and is maintained is controversial. One possibility is heterozygote advantage (HA), which can in principle maintain any number of alleles, but biologically explicit models based on this mechanism have so far failed to reliably predict the coexistence of significantly more than 10 alleles. We here present an eco-evolutionary model showing that evolution can result in the emergence and maintenance of more than 100 alleles under HA if the following two assumptions are fulfilled: first, pathogens are lethal in the absence of an appropriate immune defence; second, the effect of pathogens depends on host condition, with hosts in poorer condition being affected more strongly. Thus, our results show that HA can be a more potent force in explaining the extraordinary polymorphism found at MHC loci than currently recognised.
Collapse
Affiliation(s)
- Mattias Siljestam
- Department of Ecology and Genetics, Animal Ecology, Uppsala UniversityUppsalaSweden
| | - Claus Rueffler
- Department of Ecology and Genetics, Animal Ecology, Uppsala UniversityUppsalaSweden
| |
Collapse
|
6
|
Yamamoto M, Ohtake S, Shinozawa A, Shirota M, Mitsui Y, Kitashiba H. Analysis of randomly mutated AlSRKb genes reveals that most loss-of-function mutations cause defects in plasma membrane localization. THE NEW PHYTOLOGIST 2024; 244:1644-1657. [PMID: 39279039 DOI: 10.1111/nph.20111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/24/2024] [Indexed: 09/18/2024]
Abstract
Only very limited information is available on why some nonsynonymous variants severely alter gene function while others have no effect. To identify the characteristic features of mutations that strongly influence gene function, this study focused on SRK which encodes a highly polymorphic receptor kinase expressed in stigma papillary cells that underlies a female determinant of self-incompatibility in Brassicaceae. A set of 300 Arabidopsis thaliana transformants expressing mutated SRKb from A. lyrata was constructed using error-prone PCR and the genotype and self-incompatibility phenotype of each transformant were determined. Almost all the transformants showing the self-incompatibility defect contained mutations in AlSRKb that altered localization to the plasma membrane. The observed mutations occurred in amino acid residues that were highly conserved across S haplotypes and whose predicted locations were in the interior of the protein. Our findings suggested that mutations causing the self-incompatibility defect were more likely to result from changes to AlSRKb biosynthesis than from loss of AlSRKb function. In addition, we examined whether the RandomForest and Extreme Gradient Boosting methods could predict the self-incompatibility phenotypes of SRK mutants.
Collapse
Affiliation(s)
- Masaya Yamamoto
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi, 980-8572, Japan
| | - Shotaro Ohtake
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi, 980-8572, Japan
| | - Akihisa Shinozawa
- NODAI Genome Research Center, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan
| | - Matsuyuki Shirota
- Graduate School of Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Yuki Mitsui
- Graduate School of Agricultural Science, Tokyo University of Agriculture, 1237 Funako, Atsugi, Kanagawa, 243-0034, Japan
| | - Hiroyasu Kitashiba
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi, 980-8572, Japan
| |
Collapse
|
7
|
Smith ML, Hahn MW. Selection leads to false inferences of introgression using popular methods. Genetics 2024; 227:iyae089. [PMID: 38805070 DOI: 10.1093/genetics/iyae089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 10/28/2023] [Accepted: 05/21/2024] [Indexed: 05/29/2024] Open
Abstract
Detecting introgression between closely related populations or species is a fundamental objective in evolutionary biology. Existing methods for detecting migration and inferring migration rates from population genetic data often assume a neutral model of evolution. Growing evidence of the pervasive impact of selection on large portions of the genome across diverse taxa suggests that this assumption is unrealistic in most empirical systems. Further, ignoring selection has previously been shown to negatively impact demographic inferences (e.g. of population size histories). However, the impacts of biologically realistic selection on inferences of migration remain poorly explored. Here, we simulate data under models of background selection, selective sweeps, balancing selection, and adaptive introgression. We show that ignoring selection sometimes leads to false inferences of migration in popularly used methods that rely on the site frequency spectrum. Specifically, balancing selection and some models of background selection result in the rejection of isolation-only models in favor of isolation-with-migration models and lead to elevated estimates of migration rates. BPP, a method that analyzes sequence data directly, showed false positives for all conditions at recent divergence times, but balancing selection also led to false positives at medium-divergence times. Our results suggest that such methods may be unreliable in some empirical systems, such that new methods that are robust to selection need to be developed.
Collapse
Affiliation(s)
- Megan L Smith
- Department of Biological Sciences, Mississippi State University, Starkville, MS 39762, USA
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Matthew W Hahn
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
- Department of Computer Science, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
8
|
Erez K, Jangid A, Feldheim ON, Friedlander T. The role of promiscuous molecular recognition in the evolution of RNase-based self-incompatibility in plants. Nat Commun 2024; 15:4864. [PMID: 38849350 PMCID: PMC11161657 DOI: 10.1038/s41467-024-49163-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 05/22/2024] [Indexed: 06/09/2024] Open
Abstract
How do biological networks evolve and expand? We study these questions in the context of the plant collaborative-non-self recognition self-incompatibility system. Self-incompatibility evolved to avoid self-fertilization among hermaphroditic plants. It relies on specific molecular recognition between highly diverse proteins of two families: female and male determinants, such that the combination of genes an individual possesses determines its mating partners. Though highly polymorphic, previous models struggled to pinpoint the evolutionary trajectories by which new specificities evolved. Here, we construct a novel theoretical framework, that crucially affords interaction promiscuity and multiple distinct partners per protein, as is seen in empirical findings disregarded by previous models. We demonstrate spontaneous self-organization of the population into distinct "classes" with full between-class compatibility and a dynamic long-term balance between class emergence and decay. Our work highlights the importance of molecular recognition promiscuity to network evolvability. Promiscuity was found in additional systems suggesting that our framework could be more broadly applicable.
Collapse
Affiliation(s)
- Keren Erez
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot, 7610001, Israel
| | - Amit Jangid
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot, 7610001, Israel
| | - Ohad Noy Feldheim
- The Einstein Institute of Mathematics, Faculty of Natural Sciences, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Tamar Friedlander
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot, 7610001, Israel.
| |
Collapse
|
9
|
Castric V, Batista RA, Carré A, Mousavi S, Mazoyer C, Godé C, Gallina S, Ponitzki C, Theron A, Bellec A, Marande W, Santoni S, Mariotti R, Rubini A, Legrand S, Billiard S, Vekemans X, Vernet P, Saumitou-Laprade P. The homomorphic self-incompatibility system in Oleaceae is controlled by a hemizygous genomic region expressing a gibberellin pathway gene. Curr Biol 2024; 34:1967-1976.e6. [PMID: 38626763 DOI: 10.1016/j.cub.2024.03.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 02/29/2024] [Accepted: 03/25/2024] [Indexed: 04/18/2024]
Abstract
In flowering plants, outcrossing is commonly ensured by self-incompatibility (SI) systems. These can be homomorphic (typically with many different allelic specificities) or can accompany flower heteromorphism (mostly with just two specificities and corresponding floral types). The SI system of the Oleaceae family is unusual, with the long-term maintenance of only two specificities but often without flower morphology differences. To elucidate the genomic architecture and molecular basis of this SI system, we obtained chromosome-scale genome assemblies of Phillyrea angustifolia individuals and related them to a genetic map. The S-locus region proved to have a segregating 543-kb indel unique to one specificity, suggesting a hemizygous region, as observed in all distylous systems so far studied at the genomic level. Only one of the predicted genes in this indel region is found in the olive tree, Olea europaea, genome, also within a segregating indel. We describe complete association between the presence/absence of this gene and the SI types determined for individuals of seven distantly related Oleaceae species. This gene is predicted to be involved in catabolism of the gibberellic acid (GA) hormone, and experimental manipulation of GA levels in developing buds modified the male and female SI responses of the two specificities in different ways. Our results provide a unique example of a homomorphic SI system, where a single conserved gibberellin-related gene in a hemizygous indel underlies the long-term maintenance of two groups of reproductive compatibility.
Collapse
Affiliation(s)
- Vincent Castric
- Univ. Lille, CNRS, UMR 8198, Evo-Eco-Paleo, F-59000 Lille, France
| | - Rita A Batista
- Univ. Lille, CNRS, UMR 8198, Evo-Eco-Paleo, F-59000 Lille, France
| | - Amélie Carré
- Univ. Lille, CNRS, UMR 8198, Evo-Eco-Paleo, F-59000 Lille, France
| | - Soraya Mousavi
- CNR, Institute of Biosciences and Bioresources (IBBR), 06128 Perugia, Italy
| | - Clément Mazoyer
- Univ. Lille, CNRS, UMR 8198, Evo-Eco-Paleo, F-59000 Lille, France
| | - Cécile Godé
- Univ. Lille, CNRS, UMR 8198, Evo-Eco-Paleo, F-59000 Lille, France
| | - Sophie Gallina
- Univ. Lille, CNRS, UMR 8198, Evo-Eco-Paleo, F-59000 Lille, France
| | - Chloé Ponitzki
- Univ. Lille, CNRS, UMR 8198, Evo-Eco-Paleo, F-59000 Lille, France
| | - Anthony Theron
- INRAE, CNRGV French Plant Genomic Resource Center, F-31326 Castanet Tolosan, France
| | - Arnaud Bellec
- INRAE, CNRGV French Plant Genomic Resource Center, F-31326 Castanet Tolosan, France
| | - William Marande
- INRAE, CNRGV French Plant Genomic Resource Center, F-31326 Castanet Tolosan, France
| | - Sylvain Santoni
- UMR DIAPC Diversité et adaptation des plantes cultivées, F-34398 Montpellier, France
| | - Roberto Mariotti
- CNR, Institute of Biosciences and Bioresources (IBBR), 06128 Perugia, Italy
| | - Andrea Rubini
- CNR, Institute of Biosciences and Bioresources (IBBR), 06128 Perugia, Italy
| | - Sylvain Legrand
- Univ. Lille, CNRS, UMR 8198, Evo-Eco-Paleo, F-59000 Lille, France
| | - Sylvain Billiard
- Univ. Lille, CNRS, UMR 8198, Evo-Eco-Paleo, F-59000 Lille, France
| | - Xavier Vekemans
- Univ. Lille, CNRS, UMR 8198, Evo-Eco-Paleo, F-59000 Lille, France
| | - Philippe Vernet
- Univ. Lille, CNRS, UMR 8198, Evo-Eco-Paleo, F-59000 Lille, France
| | | |
Collapse
|
10
|
Hu J, Liu C, Du Z, Guo F, Song D, Wang N, Wei Z, Jiang J, Cao Z, Shi C, Zhang S, Zhu C, Chen P, Larkin RM, Lin Z, Xu Q, Ye J, Deng X, Bosch M, Franklin‐Tong VE, Chai L. Transposable elements cause the loss of self-incompatibility in citrus. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1113-1131. [PMID: 38038155 PMCID: PMC11022811 DOI: 10.1111/pbi.14250] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/25/2023] [Accepted: 11/11/2023] [Indexed: 12/02/2023]
Abstract
Self-incompatibility (SI) is a widespread prezygotic mechanism for flowering plants to avoid inbreeding depression and promote genetic diversity. Citrus has an S-RNase-based SI system, which was frequently lost during evolution. We previously identified a single nucleotide mutation in Sm-RNase, which is responsible for the loss of SI in mandarin and its hybrids. However, little is known about other mechanisms responsible for conversion of SI to self-compatibility (SC) and we identify a completely different mechanism widely utilized by citrus. Here, we found a 786-bp miniature inverted-repeat transposable element (MITE) insertion in the promoter region of the FhiS2-RNase in Fortunella hindsii Swingle (a model plant for citrus gene function), which does not contain the Sm-RNase allele but are still SC. We demonstrate that this MITE plays a pivotal role in the loss of SI in citrus, providing evidence that this MITE insertion prevents expression of the S-RNase; moreover, transgenic experiments show that deletion of this 786-bp MITE insertion recovers the expression of FhiS2-RNase and restores SI. This study identifies the first evidence for a role for MITEs at the S-locus affecting the SI phenotype. A family-wide survey of the S-locus revealed that MITE insertions occur frequently adjacent to S-RNase alleles in different citrus genera, but only certain MITEs appear to be responsible for the loss of SI. Our study provides evidence that insertion of MITEs into a promoter region can alter a breeding strategy and suggests that this phenomenon may be broadly responsible for SC in species with the S-RNase system.
Collapse
Affiliation(s)
- Jianbing Hu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanP. R. China
- Hubei Hongshan LaboratoryWuhanP. R. China
| | - Chenchen Liu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanP. R. China
- Hubei Hongshan LaboratoryWuhanP. R. China
| | - Zezhen Du
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanP. R. China
- Hubei Hongshan LaboratoryWuhanP. R. China
| | - Furong Guo
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanP. R. China
| | - Dan Song
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanP. R. China
| | - Nan Wang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanP. R. China
| | - Zhuangmin Wei
- Guangxi Subtropical Crops Research InstituteNanningP. R. China
| | - Jingdong Jiang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanP. R. China
| | - Zonghong Cao
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanP. R. China
| | - Chunmei Shi
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanP. R. China
| | - Siqi Zhang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanP. R. China
| | - Chenqiao Zhu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanP. R. China
| | - Peng Chen
- Horticultural Institute, Hunan Academy of Agricultural SciencesChangshaChina
| | - Robert M. Larkin
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanP. R. China
- Hubei Hongshan LaboratoryWuhanP. R. China
| | - Zongcheng Lin
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanP. R. China
- Hubei Hongshan LaboratoryWuhanP. R. China
| | - Qiang Xu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanP. R. China
- Hubei Hongshan LaboratoryWuhanP. R. China
| | - Junli Ye
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanP. R. China
| | - Xiuxin Deng
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanP. R. China
- Hubei Hongshan LaboratoryWuhanP. R. China
| | - Maurice Bosch
- Institute of Biological, Environmental and Rural Sciences (IBERS)Aberystwyth UniversityAberystwythUK
| | | | - Lijun Chai
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanP. R. China
- Hubei Hongshan LaboratoryWuhanP. R. China
| |
Collapse
|
11
|
Yamamoto M, Ohtake S, Shinosawa A, Shirota M, Mitsui Y, Kitashiba H. Self-incompatibility phenotypes of SRK mutants can be predicted with high accuracy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.10.588956. [PMID: 38645205 PMCID: PMC11030437 DOI: 10.1101/2024.04.10.588956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Only very limited information is available on why some non-synonymous variants severely alter gene function while others have no effect. To identify the characteristic features of mutations that strongly influence gene function, this study focused on S-locus receptor kinase, SRK, which encodes a highly polymorphic receptor kinase expressed in stigma papillary cells that underlies a female determinant of self-incompatibility in Brassicaceae. A set of 299 Arabidopsis thaliana transformants expressing mutated SRKb from A. lyrata was constructed and analyzed to determine the genotype and self-incompatibility phenotype of each transformant. Almost all the transformants showing the self-incompatibility defect contained mutations in AlSRKb that altered localization to the plasma membrane. The observed mutations occurred in amino acid residues that were highly conserved across S haplotypes and whose predicted locations were in the interior of the protein. These mutations were likely to underlie the self-incompatibility defect as they caused significant changes to amino acid properties. Such findings suggested that mutations causing the self-incompatibility defect were more likely to result from changes to AlSRKb biosynthesis than from loss of function. In addition, this study showed the RandomForest and Extreme Gradient Boosting methods could predict self-incompatibility phenotypes of SRK mutants with high accuracy.
Collapse
Affiliation(s)
- Masaya Yamamoto
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| | - Shotaro Ohtake
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| | - Akihisa Shinosawa
- NODAI Genome Research Center, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan
| | - Matsuyuki Shirota
- Graduate School of Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Yuki Mitsui
- Graduate School of Agricultural Science, Tokyo University of Agriculture, 1237 Funako, Atsugi, Kanagawa 243-0034, Japan
| | - Hiroyasu Kitashiba
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| |
Collapse
|
12
|
Kolesnikova UK, Scott AD, Van de Velde JD, Burns R, Tikhomirov NP, Pfordt U, Clarke AC, Yant L, Seregin AP, Vekemans X, Laurent S, Novikova PY. Transition to Self-compatibility Associated With Dominant S-allele in a Diploid Siberian Progenitor of Allotetraploid Arabidopsis kamchatica Revealed by Arabidopsis lyrata Genomes. Mol Biol Evol 2023; 40:msad122. [PMID: 37432770 PMCID: PMC10335350 DOI: 10.1093/molbev/msad122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023] Open
Abstract
A transition to selfing can be beneficial when mating partners are scarce, for example, due to ploidy changes or at species range edges. Here, we explain how self-compatibility evolved in diploid Siberian Arabidopsis lyrata, and how it contributed to the establishment of allotetraploid Arabidopsis kamchatica. First, we provide chromosome-level genome assemblies for two self-fertilizing diploid A. lyrata accessions, one from North America and one from Siberia, including a fully assembled S-locus for the latter. We then propose a sequence of events leading to the loss of self-incompatibility in Siberian A. lyrata, date this independent transition to ∼90 Kya, and infer evolutionary relationships between Siberian and North American A. lyrata, showing an independent transition to selfing in Siberia. Finally, we provide evidence that this selfing Siberian A. lyrata lineage contributed to the formation of the allotetraploid A. kamchatica and propose that the selfing of the latter is mediated by the loss-of-function mutation in a dominant S-allele inherited from A. lyrata.
Collapse
Affiliation(s)
- Uliana K Kolesnikova
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Alison Dawn Scott
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Jozefien D Van de Velde
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Robin Burns
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Nikita P Tikhomirov
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Russia
| | - Ursula Pfordt
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Andrew C Clarke
- Future Food Beacon of Excellence and School of Biosciences, University of Nottingham, Sutton Bonington, United Kingdom
| | - Levi Yant
- Future Food Beacon of Excellence and School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Alexey P Seregin
- Herbarium (MW), Faculty of Biology, M. V. Lomonosov Moscow State University, Moscow, Russia
| | - Xavier Vekemans
- University Lille, CNRS, UMR 8198—Evo-Eco-Paleo, Lille, France
| | - Stefan Laurent
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Polina Yu Novikova
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| |
Collapse
|
13
|
Palumbo F, Draga S, Magon G, Gabelli G, Vannozzi A, Farinati S, Scariolo F, Lucchin M, Barcaccia G. MIK2 is a candidate gene of the S-locus for sporophytic self-incompatibility in chicory ( Cichorium intybus, Asteraceae). FRONTIERS IN PLANT SCIENCE 2023; 14:1204538. [PMID: 37332702 PMCID: PMC10272723 DOI: 10.3389/fpls.2023.1204538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/22/2023] [Indexed: 06/20/2023]
Abstract
The Cichorium genus offers a unique opportunity to study the sporophytic self-incompatibility (SSI) system, being composed of species characterized by highly efficient self-incompatibility (e.g., C. intybus) and complete self-compatibility (e.g., C. endivia). To this end, the chicory genome was used to map seven previously identified SSI locus-associated markers. The region containing the S-locus was therefore restricted to an ~4 M bp window on chromosome 5. Among the genes predicted in this region, MDIS1 INTERACTING RECEPTOR LIKE KINASE 2 (ciMIK2) was particularly promising as a candidate for SSI. Its ortholog in Arabidopsis (atMIK2) is involved in pollen-stigma recognition reactions, and its protein structure is similar to that of S-receptor kinase (SRK), a key component of the SSI system in the Brassica genus. The amplification and sequencing of MIK2 in chicory and endive accessions revealed two contrasting scenarios. In C. endivia, MIK2 was fully conserved even when comparing different botanical varieties (i.e., smooth and curly endive). In C. intybus, 387 polymorphic positions and 3 INDELs were identified when comparing accessions of different biotypes all belonging to the same botanical variety (i.e., radicchio). The polymorphism distribution throughout the gene was uneven, with hypervariable domains preferentially localized in the LRR-rich extracellular region, putatively identified as the receptor domain. The gene was hypothesized to be under positive selection, as the nonsynonymous mutations were more than double the synonymous ones (dN/dS = 2.17). An analogous situation was observed when analyzing the first 500 bp of the MIK2 promoter: no SNPs were observed among the endive samples, whereas 44 SNPs and 6 INDELs were detected among the chicory samples. Further analyses are needed to confirm the role of MIK2 in SSI and to demonstrate whether the 23 species-specific nonsynonymous SNPs in the CDS and/or the species-specific 10 bp-INDEL found in a CCAAT box region of the promoter are responsible for the contrasting sexual behaviors of chicory and endive.
Collapse
|
14
|
Bernos TA, Chang SL, Giglio RM, Davenport K, Fisher J, Lowery E, Bearlin A, Simmons R, Fortin M, Day CC, Landguth EL. Evaluating the evolutionary mechanisms maintaining alternative mating strategies in a simulated bull trout ( Salvelinus confluentus) population. Ecol Evol 2023; 13:e9965. [PMID: 37038529 PMCID: PMC10082177 DOI: 10.1002/ece3.9965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 04/12/2023] Open
Abstract
The coexistence of distinct alternative mating strategies (AMS) is often explained by mechanisms involving trade-offs between reproductive traits and lifetime fitness; yet their relative importance remains poorly understood. Here, we used an established individual-based, spatially explicit model to simulate bull trout (Salvelinus confluentus) in the Skagit River (Washington, USA) and investigated the influence of female mating preference, sneaker-specific mortality, and variation in age-at-maturity on AMS persistence using global sensitivity analyses and boosted regression trees. We assumed that two genetically fixed AMS coexisted within the population: sneaker males (characterized by younger age-at-maturity, greater AMS-specific mortality, and lower reproductive fitness) and territorial males. After 300 years, variation in relative sneaker success in the system was explained by sneaker males' reproductive fitness (72%) and, to a lesser extent, the length of their reproductive lifespan (21%) and their proportion in the initial population (8%). However, under a wide range of parameter values, our simulated scenarios predicted the extinction of territorial males or their persistence in small, declining populations. Although these results do not resolve the coexistence of AMS in salmonids, they reinforce the importance of mechanisms reducing sneaker's lifetime reproductive success in favoring AMS coexistence within salmonid populations but also limit the prediction that, without any other selective mechanisms at play, strong female preference for mating with territorial males and differences in reproductive lifespan allow the stable coexistence of distinct AMS.
Collapse
Affiliation(s)
- Thaïs A. Bernos
- Department of Ecology and Evolutionary BiologyUniversity of TorontoTorontoOntarioCanada
- Department of Biological SciencesUniversity of Toronto ScarboroughTorontoOntarioCanada
| | - Sarah L. Chang
- Department of BiologyUniversity of British Columbia OkanaganKelownaBritish ColumbiaCanada
| | - Rachael M. Giglio
- Department of Ecology, Evolution, and Organismal BiologyOhio State UniversityColumbusOhioUSA
- United States Department of AgricultureNational Wildlife Research CenterOttawaOntarioUSA
| | - Kaeli Davenport
- Department of Wildlife BiologyUniversity of MontanaMissoulaMontanaUSA
| | | | | | | | | | - Marie‐Josée Fortin
- Department of Ecology and Evolutionary BiologyUniversity of TorontoTorontoOntarioCanada
| | - Casey C. Day
- School of Public and Community Health SciencesUniversity of MontanaMissoulaMontanaUSA
| | - Erin L. Landguth
- School of Public and Community Health SciencesUniversity of MontanaMissoulaMontanaUSA
| |
Collapse
|
15
|
Novikova PY, Kolesnikova UK, Scott AD. Ancestral self-compatibility facilitates the establishment of allopolyploids in Brassicaceae. PLANT REPRODUCTION 2023; 36:125-138. [PMID: 36282331 PMCID: PMC9957919 DOI: 10.1007/s00497-022-00451-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/20/2022] [Indexed: 05/15/2023]
Abstract
Self-incompatibility systems based on self-recognition evolved in hermaphroditic plants to maintain genetic variation of offspring and mitigate inbreeding depression. Despite these benefits in diploid plants, for polyploids who often face a scarcity of mating partners, self-incompatibility can thwart reproduction. In contrast, self-compatibility provides an immediate advantage: a route to reproductive viability. Thus, diploid selfing lineages may facilitate the formation of new allopolyploid species. Here, we describe the mechanism of establishment of at least four allopolyploid species in Brassicaceae (Arabidopsis suecica, Arabidopsis kamchatica, Capsella bursa-pastoris, and Brassica napus), in a manner dependent on the prior loss of the self-incompatibility mechanism in one of the ancestors. In each case, the degraded S-locus from one parental lineage was dominant over the functional S-locus of the outcrossing parental lineage. Such dominant loss-of-function mutations promote an immediate transition to selfing in allopolyploids and may facilitate their establishment.
Collapse
Affiliation(s)
- Polina Yu Novikova
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, 50829, Cologne, Germany.
| | - Uliana K Kolesnikova
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, 50829, Cologne, Germany
| | - Alison Dawn Scott
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, 50829, Cologne, Germany
| |
Collapse
|
16
|
Hedhly A, Guerra ME, Grimplet J, Rodrigo J. S-Locus Genotyping in Japanese Plum by High Throughput Sequencing Using a Synthetic S-Loci Reference Sequence. Int J Mol Sci 2023; 24:3932. [PMID: 36835346 PMCID: PMC9960950 DOI: 10.3390/ijms24043932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
Self-incompatibility in Prunus species is governed by a single locus consisting of two highly multi-allelic and tightly linked genes, one coding for an F-box protein-i.e., SFB in Prunus- controlling the pollen specificity and one coding for an S-RNase gene controlling the pistil specificity. Genotyping the allelic combination in a fruit tree species is an essential procedure both for cross-based breeding and for establishing pollination requirements. Gel-based PCR techniques using primer pairs designed from conserved regions and spanning polymorphic intronic regions are traditionally used for this task. However, with the great advance of massive sequencing techniques and the lowering of sequencing costs, new genotyping-by-sequencing procedures are emerging. The alignment of resequenced individuals to reference genomes, commonly used for polymorphism detection, yields little or no coverage in the S-locus region due to high polymorphism between different alleles within the same species, and cannot be used for this purpose. Using the available sequences of Japanese plum S-loci concatenated in a rosary-like structure as synthetic reference sequence, we describe a procedure to accurately genotype resequenced individuals that allowed the analysis of the S-genotype in 88 Japanese plum cultivars, 74 of them are reported for the first time. In addition to unraveling two new S-alleles from published reference genomes, we identified at least two S-alleles in 74 cultivars. According to their S-allele composition, they were assigned to 22 incompatibility groups, including nine new incompatibility groups reported here for the first time (XXVII-XXXV).
Collapse
Affiliation(s)
- Afif Hedhly
- Departamento de Ciencia Vegetal, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda Montañana 930, 50059 Zaragoza, Spain
| | - María Engracia Guerra
- Área de Fruticultura Mediterránea, CICYTEX-Centro de Investigación ‘Finca La Orden-Valdesequera’, A-V, KM 372, Guadajira, 06187 Badajoz, Spain
| | - Jerome Grimplet
- Departamento de Ciencia Vegetal, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda Montañana 930, 50059 Zaragoza, Spain
- Instituto Agroalimentario de Aragón-IA2, CITA-Universidad de Zaragoza, 50013 Zaragoza, Spain
| | - Javier Rodrigo
- Departamento de Ciencia Vegetal, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda Montañana 930, 50059 Zaragoza, Spain
- Instituto Agroalimentario de Aragón-IA2, CITA-Universidad de Zaragoza, 50013 Zaragoza, Spain
| |
Collapse
|
17
|
Origin and persistence of polymorphism in loci targeted by disassortative preference: a general model. J Math Biol 2022; 86:4. [PMID: 36441252 DOI: 10.1007/s00285-022-01832-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 10/17/2022] [Accepted: 11/03/2022] [Indexed: 11/29/2022]
Abstract
The emergence and persistence of polymorphism within populations generally requires specific regimes of natural or sexual selection. Here, we develop a unified theoretical framework to explore how polymorphism at targeted loci can be generated and maintained by either disassortative mating choice or balancing selection due to, for example, heterozygote advantage. To this aim, we model the dynamics of alleles at a single locus A in a population of haploid individuals, where reproductive success depends on the combination of alleles carried by the parents at locus A. Our theoretical study of the model confirms that the conditions for the persistence of a given level of allelic polymorphism depend on the relative reproductive advantages among pairs of individuals. Interestingly, equilibria with unbalanced allelic frequencies were shown to emerge from successive introduction of mutants. We then investigate the role of the function linking allelic divergence to reproductive advantage on the evolutionary fate of alleles within the population. Our results highlight the significance of the shape of this function for both the number of alleles maintained and their level of genetic divergence. Large number of alleles are maintained with substantial replacement of alleles, when disassortative advantage slowly increases with allelic differentiation . In contrast, few highly differentiated alleles are predicted to be maintained when genetic differentiation has a strong effect on disassortative advantage. These opposite effects predicted by our model explain how disassortative mate choice may lead to various levels of allelic differentiation and polymorphism, and shed light on the effect of mate preferences on the persistence of balanced and unbalanced polymorphism in natural population.
Collapse
|
18
|
Czuppon P, Billiard S. Revisiting the number of self-incompatibility alleles in finite populations: From old models to new results. J Evol Biol 2022; 35:1296-1308. [PMID: 35852940 DOI: 10.1111/jeb.14061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 05/26/2022] [Accepted: 06/26/2022] [Indexed: 11/30/2022]
Abstract
Under gametophytic self-incompatibility (GSI), plants are heterozygous at the self-incompatibility locus (S-locus) and can only be fertilized by pollen with a different allele at that locus. The last century has seen a heated debate about the correct way of modelling the allele diversity in a GSI population that was never formally resolved. Starting from an individual-based model, we derive the deterministic dynamics as proposed by Fisher (The genetical theory of natural selection - A complete, Variorum edition, Oxford University Press, 1958) and compute the stationary S-allele frequency distribution. We find that the stationary distribution proposed by Wright (Evolution, 18, 609, 1964) is close to our theoretical prediction, in line with earlier numerical confirmation. Additionally, we approximate the invasion probability of a new S-allele, which scales inversely with the number of resident S-alleles. Lastly, we use the stationary allele frequency distribution to estimate the population size of a plant population from an empirically obtained allele frequency spectrum, which complements the existing estimator of the number of S-alleles. Our expression of the stationary distribution resolves the long-standing debate about the correct approximation of the number of S-alleles and paves the way for new statistical developments for the estimation of the plant population size based on S-allele frequencies.
Collapse
Affiliation(s)
- Peter Czuppon
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | | |
Collapse
|
19
|
Charlesworth B. Fisher's historic 1922 paper On the dominance ratio. Genetics 2022; 220:iyac006. [PMID: 35239967 PMCID: PMC8893247 DOI: 10.1093/genetics/iyac006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/07/2022] [Indexed: 11/13/2022] Open
Abstract
R.A. Fisher's 1922 paper On the dominance ratio has a strong claim to be the foundation paper for modern population genetics. It greatly influenced subsequent work by Haldane and Wright, and contributed 3 major innovations to the study of evolution at the genetic level. First, the introduction of a general model of selection at a single locus, which showed how variability could be maintained by heterozygote advantage. Second, the use of the branching process approach to show that a beneficial mutation has a substantial chance of loss from the population, even when the population size is extremely large. Third, the invention of the concept of a probability distribution of allele frequency, caused by random sampling of allele frequencies due to finite population size, and the first use of a diffusion equation to investigate the properties of such a distribution. Although Fisher was motivated by an inference that later turned out to lack strong empirical support (a substantial contribution of dominance to quantitative trait variability), and his use of a diffusion equation was marred by a technical mistake, the paper introduced concepts and methods that pervade much subsequent work in population genetics.
Collapse
Affiliation(s)
- Brian Charlesworth
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| |
Collapse
|
20
|
Peris D, Lu DS, Kinneberg VB, Methlie IS, Dahl MS, James TY, Kauserud H, Skrede I. Large-scale fungal strain sequencing unravels the molecular diversity in mating loci maintained by long-term balancing selection. PLoS Genet 2022; 18:e1010097. [PMID: 35358178 PMCID: PMC8970355 DOI: 10.1371/journal.pgen.1010097] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/14/2022] [Indexed: 11/19/2022] Open
Abstract
Balancing selection, an evolutionary force that retains genetic diversity, has been detected in multiple genes and organisms, such as the sexual mating loci in fungi. However, to quantify the strength of balancing selection and define the mating-related genes require a large number of strains. In tetrapolar basidiomycete fungi, sexual type is determined by two unlinked loci, MATA and MATB. Genes in both loci define mating type identity, control successful mating and completion of the life cycle. These loci are usually highly diverse. Previous studies have speculated, based on culture crosses, that species of the non-model genus Trichaptum (Hymenochaetales, Basidiomycota) possess a tetrapolar mating system, with multiple alleles. Here, we sequenced a hundred and eighty strains of three Trichaptum species. We characterized the chromosomal location of MATA and MATB, the molecular structure of MAT regions and their allelic richness. The sequencing effort was sufficient to molecularly characterize multiple MAT alleles segregating before the speciation event of Trichaptum species. Analyses suggested that long-term balancing selection has generated trans-species polymorphisms. Mating sequences were classified in different allelic classes based on an amino acid identity (AAI) threshold supported by phylogenetics. 17,550 mating types were predicted based on the allelic classes. In vitro crosses allowed us to support the degree of allelic divergence needed for successful mating. Even with the high amount of divergence, key amino acids in functional domains are conserved. We conclude that the genetic diversity of mating loci in Trichaptum is due to long-term balancing selection, with limited recombination and duplication activity. The large number of sequenced strains highlighted the importance of sequencing multiple individuals from different species to detect the mating-related genes, the mechanisms generating diversity and the evolutionary forces maintaining them.
Collapse
Affiliation(s)
- David Peris
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
- Department of Health, Valencian International University (VIU), Valencia, Spain
| | - Dabao Sun Lu
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Vilde Bruhn Kinneberg
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Ine-Susanne Methlie
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Malin Stapnes Dahl
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Timothy Y. James
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Håvard Kauserud
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Inger Skrede
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
21
|
Chevin L, Gompert Z, Nosil P. Frequency dependence and the predictability of evolution in a changing environment. Evol Lett 2021; 6:21-33. [PMID: 35127135 PMCID: PMC8802243 DOI: 10.1002/evl3.266] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/28/2021] [Accepted: 11/22/2021] [Indexed: 11/09/2022] Open
Abstract
Frequency‐dependent (FD) selection, whereby fitness and selection depend on the genetic or phenotypic composition of the population, arises in numerous ecological contexts (competition, mate choice, crypsis, mimicry, etc.) and can strongly impact evolutionary dynamics. In particular, negative frequency‐dependent selection (NFDS) is well known for its ability to potentially maintain stable polymorphisms, but it has also been invoked as a source of persistent, predictable frequency fluctuations. However, the conditions under which such fluctuations persist are not entirely clear. In particular, previous work rarely considered that FD is unlikely to be the sole driver of evolutionary dynamics when it occurs, because most environments are not static but instead change dynamically over time. Here, we investigate how FD interacts with a temporally fluctuating environment to shape the dynamics of population genetic change. We show that a simple metric introduced by Lewontin, the slope of frequency change against frequency near equilibrium, works as a key criterion for distinguishing microevolutionary outcomes, even in a changing environment. When this slope D is between 0 and –2 (consistent with the empirical examples we review), substantial fluctuations would not persist on their own in a large population occupying a constant environment, but they can still be maintained indefinitely as quasi‐cycles fueled by environmental noise or genetic drift. However, such moderate NFDS buffers and temporally shifts evolutionary responses to periodic environments (e.g., seasonality). Stronger FD, with slope D < –2, can produce self‐sustained cycles that may overwhelm responses to a changing environment, or even chaos that fundamentally limits predictability. This diversity of expected outcomes, together with the empirical evidence for both FD and environment‐dependent selection, suggests that the interplay of internal dynamics with external forcing should be investigated more systematically to reach a better understanding and prediction of evolution.
Collapse
Affiliation(s)
| | | | - Patrik Nosil
- CEFE, Univ Montpellier, CNRS, EPHE, IRD Montpellier 34090 France
- Department of Biology Utah State University Logan Utah 84322 USA
| |
Collapse
|
22
|
Ramanauskas K, Igić B. RNase-based self-incompatibility in cacti. THE NEW PHYTOLOGIST 2021; 231:2039-2049. [PMID: 34101188 DOI: 10.1111/nph.17541] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/28/2021] [Indexed: 06/12/2023]
Abstract
Approximately one-half of all flowering plants express genetically based physiological mechanisms that prevent self-fertilisation. One such mechanism, termed RNase-based self-incompatibility, employs ribonucleases as the pistil component. Although it is widespread, it has only been characterised in a handful of distantly related families, partly due to the difficulties presented by life history traits of many plants, which complicate genetic research. Many species in the cactus family are known to express self-incompatibility but the underlying mechanisms remain unknown. We demonstrate the utility of a candidate-based RNA-seq approach, combined with some unusual features of self-incompatibility-causing genes, which we use to uncover the genetic basis of the underlying mechanisms. Specifically, we assembled transcriptomes from Schlumbergera truncata (crab cactus or false Christmas cactus), and interrogated them for tissue-specific expression of candidate genes, structural characteristics, correlation with expressed phenotype(s), and phylogenetic placement. The results were consistent with operation of the RNase-based self-incompatibility mechanism in Cactaceae. The finding yields additional evidence that the ancestor of nearly all eudicots possessed RNase-based self-incompatibility, as well as a clear path to better conservation practices for one of the most charismatic plant families.
Collapse
Affiliation(s)
- Karolis Ramanauskas
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Il, 60607, USA
| | - Boris Igić
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Il, 60607, USA
| |
Collapse
|
23
|
Harkness A, Brandvain Y. Non-self recognition-based self-incompatibility can alternatively promote or prevent introgression. THE NEW PHYTOLOGIST 2021; 231:1630-1643. [PMID: 33533069 DOI: 10.1111/nph.17249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/19/2021] [Indexed: 06/12/2023]
Abstract
Self-incompatibility alleles (S-alleles), which prevent self-fertilisation in plants, have historically been expected to benefit from negative frequency-dependent selection and invade when introduced to a new population through gene flow. However, the most taxonomically widespread form of self-incompatibility, the ribonuclease-based system ancestral to the core eudicots, functions through collaborative non-self recognition, which can affect both short-term patterns of gene flow and the long-term process of S-allele diversification. We analysed a model of S-allele evolution in two populations connected by migration, focussing on comparisons among the fates of S-alleles initially unique to each population and those shared among populations. We found that both shared and unique S-alleles from the population with more unique S-alleles were usually fitter compared with S-alleles from the population with fewer S-alleles. Resident S-alleles often became extinct and were replaced by migrant S-alleles, although this outcome could be averted by pollen limitation or biased migration. Collaborative non-self recognition will usually either result in the whole-sale replacement of S-alleles from one population with those from another or else disfavour introgression of S-alleles altogether.
Collapse
Affiliation(s)
- Alexander Harkness
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St Paul, MN, 55108, USA
| | - Yaniv Brandvain
- Department of Plant and Microbial Biology, University of Minnesota, St Paul, MN, 55108, USA
| |
Collapse
|
24
|
Vekemans X, Castric V. When the genetic architecture matters: evolutionary and ecological implications of self versus nonself recognition in plant self-incompatibility. THE NEW PHYTOLOGIST 2021; 231:1304-1307. [PMID: 34146416 DOI: 10.1111/nph.17471] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Affiliation(s)
- Xavier Vekemans
- CNRS, Univ. Lille, UMR 8198 - Evo-Eco-Paleo, Lille, F-59000, France
| | - Vincent Castric
- CNRS, Univ. Lille, UMR 8198 - Evo-Eco-Paleo, Lille, F-59000, France
| |
Collapse
|
25
|
Huene AL, Chen T, Nicotra ML. New binding specificities evolve via point mutation in an invertebrate allorecognition gene. iScience 2021; 24:102811. [PMID: 34296075 PMCID: PMC8282982 DOI: 10.1016/j.isci.2021.102811] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 06/16/2021] [Accepted: 06/28/2021] [Indexed: 01/04/2023] Open
Abstract
Many organisms use genetic self-recognition systems to distinguish themselves from conspecifics. In the cnidarian, Hydractinia symbiolongicarpus, self-recognition is partially controlled by allorecognition 2 (Alr2). Alr2 encodes a highly polymorphic transmembrane protein that discriminates self from nonself by binding in trans to other Alr2 proteins with identical or similar sequences. Here, we focused on the N-terminal domain of Alr2, which can determine its binding specificity. We pair ancestral sequence reconstruction and experimental assays to show that amino acid substitutions can create sequences with novel binding specificities either directly (via one mutation) or via sequential mutations and intermediates with relaxed specificities. We also show that one side of the domain has experienced positive selection and likely forms the binding interface. Our results provide direct evidence that point mutations can generate Alr2 proteins with novel binding specificities. This provides a plausible mechanism for the generation and maintenance of functional variation in nature.
Collapse
Affiliation(s)
- Aidan L. Huene
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Traci Chen
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Matthew L. Nicotra
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
26
|
Genete M, Castric V, Vekemans X. Genotyping and De Novo Discovery of Allelic Variants at the Brassicaceae Self-Incompatibility Locus from Short-Read Sequencing Data. Mol Biol Evol 2021; 37:1193-1201. [PMID: 31688901 DOI: 10.1093/molbev/msz258] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Plant self-incompatibility (SI) is a genetic system that prevents selfing and enforces outcrossing. Because of strong balancing selection, the genes encoding SI are predicted to maintain extraordinarily high levels of polymorphism, both in terms of the number of functionally distinct S-alleles that segregate in SI species and in terms of their nucleotide sequence divergence. However, because of these two combined features, documenting polymorphism of these genes also presents important methodological challenges that have so far largely prevented the comprehensive analysis of complete allelic series in natural populations, and also precluded the obtention of complete genic sequences for many S-alleles. Here, we develop a powerful methodological approach based on a computationally optimized comparison of short Illumina sequencing reads from genomic DNA to a database of known nucleotide sequences of the extracellular domain of SRK (eSRK). By examining mapping patterns along the reference sequences, we obtain highly reliable predictions of S-genotypes from individuals collected from natural populations of Arabidopsis halleri. Furthermore, using a de novo assembly approach of the filtered short reads, we obtain full-length sequences of eSRK even when the initial sequence in the database was only partial, and we discover putative new SRK alleles that were not initially present in the database. When including those new alleles in the reference database, we were able to resolve the complete diploid SI genotypes of all individuals. Beyond the specific case of Brassicaceae S-alleles, our approach can be readily applied to other polymorphic loci, given reference allelic sequences are available.
Collapse
Affiliation(s)
- Mathieu Genete
- Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, F-59000 Lille, France
| | - Vincent Castric
- Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, F-59000 Lille, France
| | - Xavier Vekemans
- Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, F-59000 Lille, France
| |
Collapse
|
27
|
Harkness A, Goldberg EE, Brandvain Y. Diversification or Collapse of Self-Incompatibility Haplotypes as a Rescue Process. Am Nat 2021; 197:E89-E109. [DOI: 10.1086/712424] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
28
|
Raduski AR, Igić B. Biosystematic studies on the status of Solanum chilense. AMERICAN JOURNAL OF BOTANY 2021; 108:520-537. [PMID: 33783814 DOI: 10.1002/ajb2.1621] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 11/19/2020] [Indexed: 06/12/2023]
Abstract
PREMISE Common taxonomic practices, which condition species' descriptions on diagnostic morphological traits, may systematically lump outcrossing species and unduly split selfing species. Specifically, higher effective population sizes and genetic diversity of obligate outcrossers are expected to result less reliable phenotypic diagnoses. Wild tomatoes, members of Solanum sect. Lycopersicum, are commonly used as a source of exotic germplasm for improvement of the cultivated tomato, and are increasingly employed in basic research. Although the section experienced significant early work, which continues presently, the taxonomic status of many wild species has undergone a number of significant revisions and remains uncertain. Species in this section vary in their breeding systems, notably the expression of self-incompatibility, which determines individual propensity for outcrossing METHODS: Here, we examine the taxonomic status of obligately outcrossing Chilean wild tomato (Solanum chilense) using reduced-representation sequencing (RAD-seq), a range of phylogenetic and population genetic analyses, as well as analyses of crossing and morphological data. RESULTS Overall, each of our analyses provides a considerable weight of evidence that the Pacific coastal populations and Andean inland populations of the currently described Solanum chilense represent separately evolving populations, and conceal at least one undescribed cryptic species. CONCLUSIONS Despite its vast economic importance, Solanum sect. Lycopersicon still exhibits considerable taxonomic instability. A pattern of under-recognition of outcrossing species may be common, not only in tomatoes, but across flowering plants. We discuss the possible causes and implications of this observation, with a focus on macroevolutionary inference.
Collapse
Affiliation(s)
- Andrew R Raduski
- Dept. of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, 60607, U.S.A
- Dept. of Plant & Microbial Biology, University of Minnesota - Twin Cities, St. Paul, Minnesota, 55108, U.S.A
| | - Boris Igić
- Dept. of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, 60607, U.S.A
| |
Collapse
|
29
|
Maisonneuve L, Chouteau M, Joron M, Llaurens V. Evolution and genetic architecture of disassortative mating at a locus under heterozygote advantage. Evolution 2020; 75:149-165. [PMID: 33210282 DOI: 10.1111/evo.14129] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/04/2020] [Indexed: 02/02/2023]
Abstract
The evolution of mate choice is a major topic in evolutionary biology because it is thought to be a key factor in trait and species diversification. Here, we aim at uncovering the ecological conditions and genetic architecture enabling the puzzling evolution of disassortative mating based on adaptive traits. This rare form of mate choice is observed for some polymorphic traits but theoretical predictions on the emergence and persistence of this behavior are largely lacking. Thus, we developed a mathematical model to specifically understand the evolution of disassortative mating based on mimetic color pattern in the polymorphic butterfly Heliconius numata. We confirm that heterozygote advantage favors the evolution of disassortative mating and show that disassortative mating is more likely to emerge if at least one allele at the trait locus is free from any recessive deleterious mutations. We modeled different possible genetic architectures underlying mate choice behavior, such as self-referencing alleles, or specific preference or rejection alleles. Our results showed that self-referencing or rejection alleles linked to the color pattern locus enable the emergence of disassortative mating. However, rejection alleles allow the emergence of disassortative mating only when the color pattern and preference loci are tightly linked.
Collapse
Affiliation(s)
- Ludovic Maisonneuve
- Institut de Systematique, Evolution, Biodiversité (UMR7205), Museum National d'Histoire Naturelle, CNRS, Sorbonne-Université, EPHE, Université des Antilles, CP50, 57 rue Cuvier, Paris, 75005, France
| | - Mathieu Chouteau
- Laboratoire Ecologie, Evolution, Interactions Des Systèmes Amazoniens (LEEISA), USR 3456, Université De Guyane, IFREMER, CNRS Guyane, 275 route de Montabo, 97334 Cayenne, French Guiana
| | - Mathieu Joron
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3, Montpellier, France
| | - Violaine Llaurens
- Institut de Systematique, Evolution, Biodiversité (UMR7205), Museum National d'Histoire Naturelle, CNRS, Sorbonne-Université, EPHE, Université des Antilles, CP50, 57 rue Cuvier, Paris, 75005, France
| |
Collapse
|
30
|
O'Keeffe KR, Oppler ZJ, Brisson D. Evolutionary ecology of Lyme Borrelia. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2020; 85:104570. [PMID: 32998077 PMCID: PMC8349510 DOI: 10.1016/j.meegid.2020.104570] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 01/02/2023]
Abstract
The bacterial genus, Borrelia, is comprised of vector-borne spirochete species that infect and are transmitted from multiple host species. Some Borrelia species cause highly-prevalent diseases in humans and domestic animals. Evolutionary, ecological, and molecular research on many Borrelia species have resulted in tremendous progress toward understanding the biology and natural history of these species. Yet, many outstanding questions, such as how Borrelia populations will be impacted by climate and land-use change, will require an interdisciplinary approach. The evolutionary ecology research framework incorporates theory and data from evolutionary, ecological, and molecular studies while overcoming common assumptions within each field that can hinder integration across these disciplines. Evolutionary ecology offers a framework to evaluate the ecological consequences of evolved traits and to predict how present-day ecological processes may result in further evolutionary change. Studies of microbes with complex transmission cycles, like Borrelia, which interact with multiple vertebrate hosts and arthropod vectors, are poised to leverage the power of the evolutionary ecology framework to identify the molecular interactions involved in ecological processes that result in evolutionary change. Using existing data, we outline how evolutionary ecology theory can delineate how interactions with other species and the physical environment create selective forces or impact migration of Borrelia populations and result in micro-evolutionary changes. We further discuss the ecological and molecular consequences of those micro-evolutionary changes. While many of the currently outstanding questions will necessitate new experimental designs and additional empirical data, many others can be addressed immediately by integrating existing molecular and ecological data within an evolutionary ecology framework.
Collapse
Affiliation(s)
| | - Zachary J Oppler
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Dustin Brisson
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
31
|
Abdallah D, Baraket G, Perez V, Salhi Hannachi A, Hormaza JI. Self-compatibility in peach [ Prunus persica (L.) Batsch]: patterns of diversity surrounding the S-locus and analysis of SFB alleles. HORTICULTURE RESEARCH 2020; 7:170. [PMID: 33082976 PMCID: PMC7527504 DOI: 10.1038/s41438-020-00392-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/08/2020] [Accepted: 08/12/2020] [Indexed: 05/07/2023]
Abstract
Self-incompatibility (SI) to self-compatibility (SC) transition is one of the most frequent and prevalent evolutionary shifts in flowering plants. Prunus L. (Rosaceae) is a genus of over 200 species most of which exhibit a Gametophytic SI system. Peach [Prunus persica (L.) Batsch; 2n = 16] is one of the few exceptions in the genus known to be a fully self-compatible species. However, the evolutionary process of the complete and irreversible loss of SI in peach is not well understood and, in order to fill that gap, in this study 24 peach accessions were analyzed. Pollen tube growth was controlled in self-pollinated flowers to verify their self-compatible phenotypes. The linkage disequilibrium association between alleles at the S-locus and linked markers at the end of the sixth linkage group was not significant (P > 0.05), except with the closest markers suggesting the absence of a signature of negative frequency dependent selection at the S-locus. Analysis of SFB1 and SFB2 protein sequences allowed identifying the absence of some variable and hypervariable domains and the presence of additional α-helices at the C-termini. Molecular and evolutionary analysis of SFB nucleotide sequences showed a signature of purifying selection in SFB2, while the SFB1 seemed to evolve neutrally. Thus, our results show that the SFB2 allele diversified after P. persica and P. dulcis (almond) divergence, a period which is characterized by an important bottleneck, while SFB1 diversified at a transition time between the bottleneck and population expansion.
Collapse
Affiliation(s)
- Donia Abdallah
- Faculté des Sciences de Tunis, Département Biologie, Université de Tunis El Manar, 2092 Tunis, Tunisie
| | - Ghada Baraket
- Faculté des Sciences de Tunis, Département Biologie, Université de Tunis El Manar, 2092 Tunis, Tunisie
| | - Veronica Perez
- Laboratorio de Agrobiología Juan José Bravo Rodríguez (Cabildo Insular de La Palma), Unidad Técnica del Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), 38700 S/C La Palma, Canary Islands, Spain
| | - Amel Salhi Hannachi
- Faculté des Sciences de Tunis, Département Biologie, Université de Tunis El Manar, 2092 Tunis, Tunisie
| | - Jose I. Hormaza
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora (IHSM La Mayora-UMA-CSIC), 29750 Algarrobo-Costa, Malaga Spain
| |
Collapse
|
32
|
Global allele polymorphism indicates a high rate of allele genesis at a locus under balancing selection. Heredity (Edinb) 2020; 126:163-177. [PMID: 32855546 DOI: 10.1038/s41437-020-00358-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/13/2020] [Accepted: 08/16/2020] [Indexed: 11/08/2022] Open
Abstract
When selection favours rare alleles over common ones (balancing selection in the form of negative frequency-dependent selection), a locus may maintain a large number of alleles, each at similar frequency. To better understand how allelic richness is generated and maintained at such loci, we assessed 201 sequences of the complementary sex determiner (csd) of the Asian honeybee (Apis cerana), sampled from across its range. Honeybees are haplodiploid; hemizygotes at csd develop as males and heterozygotes as females, while homozygosity is lethal. Thus, csd is under strong negative frequency-dependent selection because rare alleles are less likely to end up in the lethal homozygous form. We find that in A. cerana, as in other Apis, just a few amino acid differences between csd alleles in the hypervariable region are sufficient to trigger female development. We then show that while allelic lineages are spread across geographical regions, allelic differentiation is high between populations, with most csd alleles (86.3%) detected in only one sample location. Furthermore, nucleotide diversity in the hypervariable region indicates an excess of recently arisen alleles, possibly associated with population expansion across Asia since the last glacial maximum. Only the newly invasive populations of the Austral-Pacific share most of their csd alleles. In all, the geographic patterns of csd diversity in A. cerana indicate that high mutation rates and balancing selection act together to produce high rates of allele genesis and turnover at the honeybee sex locus, which in turn leads to its exceptionally high local and global polymorphism.
Collapse
|
33
|
Encinas-Viso F, Young AG, Pannell JR. The loss of self-incompatibility in a range expansion. J Evol Biol 2020; 33:1235-1244. [PMID: 32557922 DOI: 10.1111/jeb.13665] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 11/27/2022]
Abstract
It is commonly observed that plant species' range margins are enriched for increased selfing rates and, in otherwise self-incompatible species, for self-compatibility (SC). This has often been attributed to a response to selection under mate and/or pollinator limitation. However, range expansion can also cause reduced inbreeding depression, and this could facilitate the evolution of selfing in the absence of mate or pollinator limitation. Here, we explore this idea using spatially explicit individual-based simulations of a range expansion, in which inbreeding depression, variation in self-incompatibility (SI), and mate availability evolve. Under a wide range of conditions, the simulated range expansion brought about the evolution of selfing after the loss of SI in range-marginal populations. Under conditions of high recombination between the self-incompatibility locus (S-locus) and viability loci, SC remained marginal in the expanded metapopulation and could not invade the range core, which remained self-incompatible. In contrast, under low recombination and migration rates, SC was frequently able to displace SI in the range core by maintaining its association with a genomic background with purged genetic load. We conclude that the evolution of inbreeding depression during a range expansion promotes the evolution of SC at range margins, especially under high rates of recombination..
Collapse
Affiliation(s)
- Francisco Encinas-Viso
- Centre for Australian National Biodiversity Research, CSIRO National Research Collections, Canberra, ACT, Australia
| | - Andrew G Young
- Centre for Australian National Biodiversity Research, CSIRO National Research Collections, Canberra, ACT, Australia.,Centre for Biodiversity Analysis, The Australian National University, Canberra, ACT, Australia
| | - John R Pannell
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
34
|
Durand E, Chantreau M, Le Veve A, Stetsenko R, Dubin M, Genete M, Llaurens V, Poux C, Roux C, Billiard S, Vekemans X, Castric V. Evolution of self-incompatibility in the Brassicaceae: Lessons from a textbook example of natural selection. Evol Appl 2020; 13:1279-1297. [PMID: 32684959 PMCID: PMC7359833 DOI: 10.1111/eva.12933] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/25/2020] [Accepted: 01/29/2020] [Indexed: 12/14/2022] Open
Abstract
Self-incompatibility (SI) is a self-recognition genetic system enforcing outcrossing in hermaphroditic flowering plants and results in one of the arguably best understood forms of natural (balancing) selection maintaining genetic variation over long evolutionary times. A rich theoretical and empirical population genetics literature has considerably clarified how the distribution of SI phenotypes translates into fitness differences among individuals by a combination of inbreeding avoidance and rare-allele advantage. At the same time, the molecular mechanisms by which self-pollen is specifically recognized and rejected have been described in exquisite details in several model organisms, such that the genotype-to-phenotype map is also pretty well understood, notably in the Brassicaceae. Here, we review recent advances in these two fronts and illustrate how the joint availability of detailed characterization of genotype-to-phenotype and phenotype-to-fitness maps on a single genetic system (plant self-incompatibility) provides the opportunity to understand the evolutionary process in a unique perspective, bringing novel insight on general questions about the emergence, maintenance, and diversification of a complex genetic system.
Collapse
Affiliation(s)
| | | | - Audrey Le Veve
- CNRSUniv. LilleUMR 8198 ‐ Evo‐Eco‐PaleoF-59000 LilleFrance
| | | | - Manu Dubin
- CNRSUniv. LilleUMR 8198 ‐ Evo‐Eco‐PaleoF-59000 LilleFrance
| | - Mathieu Genete
- CNRSUniv. LilleUMR 8198 ‐ Evo‐Eco‐PaleoF-59000 LilleFrance
| | - Violaine Llaurens
- Institut de Systématique, Evolution et Biodiversité (ISYEB)Muséum national d'Histoire naturelleCNRS, Sorbonne Université, EPHE, Université des Antilles CP 5057 rue Cuvier, 75005 ParisFrance
| | - Céline Poux
- CNRSUniv. LilleUMR 8198 ‐ Evo‐Eco‐PaleoF-59000 LilleFrance
| | - Camille Roux
- CNRSUniv. LilleUMR 8198 ‐ Evo‐Eco‐PaleoF-59000 LilleFrance
| | | | | | | |
Collapse
|
35
|
DeCasien AR, Sherwood CC, Schapiro SJ, Higham JP. Greater variability in chimpanzee ( Pan troglodytes) brain structure among males. Proc Biol Sci 2020; 287:20192858. [PMID: 32315585 PMCID: PMC7211446 DOI: 10.1098/rspb.2019.2858] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/23/2020] [Indexed: 01/15/2023] Open
Abstract
Across the animal kingdom, males tend to exhibit more behavioural and morphological variability than females, consistent with the 'greater male variability hypothesis'. This may reflect multiple mechanisms operating at different levels, including selective mechanisms that produce and maintain variation, extended male development, and X chromosome effects. Interestingly, human neuroanatomy shows greater male variability, but this pattern has not been demonstrated in any other species. To address this issue, we investigated sex-specific neuroanatomical variability in chimpanzees by examining relative and absolute surface areas of 23 cortical sulci across 226 individuals (135F/91M), using permutation tests of the male-to-female variance ratio of residuals from MCMC generalized linear mixed models controlling for relatedness. We used these models to estimate sulcal size heritability, simulations to assess the significance of heritability, and Pearson correlations to examine inter-sulcal correlations. Our results show that: (i) male brain structure is relatively more variable; (ii) sulcal surface areas are heritable and therefore potentially subject to selection; (iii) males exhibit lower heritability values, possibly reflecting longer development; and (iv) males exhibit stronger inter-sulcal correlations, providing indirect support for sex chromosome effects. These results provide evidence that greater male neuroanatomical variability extends beyond humans, and suggest both evolutionary and developmental explanations for this phenomenon.
Collapse
Affiliation(s)
- Alex R. DeCasien
- Department of Anthropology, New York University, New York, NY, USA
- New York Consortium in Evolutionary Primatology, New York, NY, USA
| | - Chet C. Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC, USA
| | - Steven J. Schapiro
- Department of Comparative Medicine, The University of Texas MD Anderson Cancer Center, Bastrop, TX, USA
- Department of Experimental Medicine, The University of Copenhagen, Copenhagen, Denmark
| | - James P. Higham
- Department of Anthropology, New York University, New York, NY, USA
- New York Consortium in Evolutionary Primatology, New York, NY, USA
| |
Collapse
|
36
|
Tan Y, Barnbrook M, Wilson Y, Molnár A, Bukys A, Hudson A. Shared Mutations in a Novel Glutaredoxin Repressor of Multicellular Trichome Fate Underlie Parallel Evolution of Antirrhinum Species. Curr Biol 2020; 30:1357-1366.e4. [DOI: 10.1016/j.cub.2020.01.060] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 10/25/2019] [Accepted: 01/17/2020] [Indexed: 01/24/2023]
|
37
|
Krumbeck Y, Constable GWA, Rogers T. Fitness differences suppress the number of mating types in evolving isogamous species. ROYAL SOCIETY OPEN SCIENCE 2020; 7:192126. [PMID: 32257356 PMCID: PMC7062084 DOI: 10.1098/rsos.192126] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 01/31/2020] [Indexed: 06/11/2023]
Abstract
Sexual reproduction is not always synonymous with the existence of two morphologically different sexes; isogamous species produce sex cells of equal size, typically falling into multiple distinct self-incompatible classes, termed mating types. A long-standing open question in evolutionary biology is: what governs the number of these mating types across species? Simple theoretical arguments imply an advantage to rare types, suggesting the number of types should grow consistently; however, empirical observations are very different. While some isogamous species exhibit thousands of mating types, such species are exceedingly rare, and most have fewer than 10. In this paper, we present a mathematical analysis to quantify the role of fitness variation-characterized by different mortality rates-in determining the number of mating types emerging in simple evolutionary models. We predict that the number of mating types decreases as the variance of mortality increases.
Collapse
Affiliation(s)
- Yvonne Krumbeck
- Department of Mathematical Sciences, University of Bath, Bath BA2 7AY, UK
| | | | - Tim Rogers
- Department of Mathematical Sciences, University of Bath, Bath BA2 7AY, UK
| |
Collapse
|
38
|
Besnard G, Cheptou P, Debbaoui M, Lafont P, Hugueny B, Dupin J, Baali‐Cherif D. Paternity tests support a diallelic self-incompatibility system in a wild olive ( Olea europaea subsp. laperrinei, Oleaceae). Ecol Evol 2020; 10:1876-1888. [PMID: 32128122 PMCID: PMC7042767 DOI: 10.1002/ece3.5993] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/16/2019] [Accepted: 12/20/2019] [Indexed: 01/31/2023] Open
Abstract
Self-incompatibility (SI) is the main mechanism that favors outcrossing in plants. By limiting compatible matings, SI interferes in fruit production and breeding of new cultivars. In the Oleeae tribe (Oleaceae), an unusual diallelic SI system (DSI) has been proposed for three distantly related species including the olive (Olea europaea), but empirical evidence has remained controversial for this latter. The olive domestication is a complex process with multiple origins. As a consequence, the mixing of S-alleles from two distinct taxa, the possible artificial selection of self-compatible mutants and the large phenological variation of blooming may constitute obstacles for deciphering SI in olive. Here, we investigate cross-genotype compatibilities in the Saharan wild olive (O. e. subsp. laperrinei). As this taxon was geographically isolated for thousands of years, SI should not be affected by human selection. A population of 37 mature individuals maintained in a collection was investigated. Several embryos per mother were genotyped with microsatellites in order to identify compatible fathers that contributed to fertilization. While the pollination was limited by distance inside the collection, our results strongly support the DSI hypothesis, and all individuals were assigned to two incompatibility groups (G1 and G2). No self-fertilization was observed in our conditions. In contrast, crosses between full or half siblings were frequent (ca. 45%), which is likely due to a nonrandom assortment of related trees in the collection. Finally, implications of our results for orchard management and the conservation of olive genetic resources are discussed.
Collapse
Affiliation(s)
| | - Pierre‐Olivier Cheptou
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valery Montpellier 3MontpellierFrance
| | - Malik Debbaoui
- EDBUMR 5174CNRS‐IRD‐UPSUniversité Paul SabatierToulouse cedexFrance
| | - Pierre Lafont
- EDBUMR 5174CNRS‐IRD‐UPSUniversité Paul SabatierToulouse cedexFrance
| | - Bernard Hugueny
- EDBUMR 5174CNRS‐IRD‐UPSUniversité Paul SabatierToulouse cedexFrance
| | - Julia Dupin
- EDBUMR 5174CNRS‐IRD‐UPSUniversité Paul SabatierToulouse cedexFrance
| | | |
Collapse
|
39
|
Liang M, Cao Z, Zhu A, Liu Y, Tao M, Yang H, Xu Q, Wang S, Liu J, Li Y, Chen C, Xie Z, Deng C, Ye J, Guo W, Xu Q, Xia R, Larkin RM, Deng X, Bosch M, Franklin-Tong VE, Chai L. Evolution of self-compatibility by a mutant S m-RNase in citrus. NATURE PLANTS 2020; 6:131-142. [PMID: 32055045 PMCID: PMC7030955 DOI: 10.1038/s41477-020-0597-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 01/08/2020] [Indexed: 05/07/2023]
Abstract
Self-incompatibility (SI) is an important mechanism that prevents self-fertilization and inbreeding in flowering plants. The most widespread SI system utilizes S ribonucleases (S-RNases) and S-locus F-boxes (SLFs) as S determinants. In citrus, SI is ancestral, and Citrus maxima (pummelo) is self-incompatible, while Citrus reticulata (mandarin) and its hybrids are self-compatible (SC). Here, we identify nine highly polymorphic pistil-specific, developmentally expressed S-RNases from pummelo that segregate with S haplotypes in a gametophytic manner and cluster with authentic S-RNases. We provide evidence that these S-RNases function as the female S determinants in citrus. Moreover, we show that each S-RNase is linked to approximately nine SLFs. In an analysis of 117 citrus SLF and SFL-like (SLFL) genes, we reveal that they cluster into 12 types and that the S-RNases and intra-haplotypic SLF and SLFL genes co-evolved. Our data support the notion that citrus have a S locus comprising a S-RNase and several SLFs that fit the non-self-recognition model. We identify a predominant single nucleotide mutation, Sm-RNase, in SC citrus, which provides a 'natural' loss of function. We show that SI-SC transitions due to the Sm-RNase initially arose in mandarin, spreading to its hybrids and became fixed. Identification of an evolutionarily distant new genus utilizing the S-RNase-based SI system, >100 million years separated from the nearest S-RNase family, is a milestone for evolutionary comparative studies.
Collapse
Affiliation(s)
- Mei Liang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, P. R. China
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - Zonghong Cao
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, P. R. China
| | - Andan Zhu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, P. R. China
| | - Yuanlong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, P. R. China
| | - Mengqin Tao
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, P. R. China
| | - Huayan Yang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, P. R. China
| | - Qiang Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, P. R. China
| | - Shaohua Wang
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Kunming, P. R. China
| | - Junjie Liu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, P. R. China
| | - Yongping Li
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, P. R. China
| | - Chuanwu Chen
- Guangxi Key Laboratory of Citrus Biology, Guangxi Academy of Specialty Crops, Guilin, P. R. China
| | - Zongzhou Xie
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, P. R. China
| | - Chongling Deng
- Guangxi Key Laboratory of Citrus Biology, Guangxi Academy of Specialty Crops, Guilin, P. R. China
| | - Junli Ye
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, P. R. China
| | - Wenwu Guo
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, P. R. China
| | - Qiang Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, P. R. China
| | - Rui Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, P. R. China
| | - Robert M Larkin
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, P. R. China
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, P. R. China
| | - Maurice Bosch
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Plas Gogerddan, Aberystwyth, UK
| | - Vernonica E Franklin-Tong
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Lijun Chai
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, P. R. China.
| |
Collapse
|
40
|
Brom T, Castric V, Billiard S. Breakdown of gametophytic self-incompatibility in subdivided populations. Evolution 2020; 74:270-282. [PMID: 31845323 DOI: 10.1111/evo.13897] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/04/2019] [Accepted: 11/11/2019] [Indexed: 01/11/2023]
Abstract
In many hermaphroditic flowering plants, self-fertilization is prevented by self-incompatibility (SI), often controlled by a single locus, the S-locus. In single isolated populations, the maintenance of SI depends chiefly on inbreeding depression and the number of SI alleles at the S-locus. In subdivided populations, however, population subdivision has complicated effects on both the number of SI alleles and the level of inbreeding depression, rendering the maintenance of SI difficult to predict. Here, we explore the conditions for the invasion of a self-compatible mutant in a structured population. We find that the maintenance of SI is strongly compromised when a population becomes subdivided. We show that this effect is mainly caused by the decrease in the local diversity of SI alleles rather than by a change in the dynamics of inbreeding depression. Strikingly, we also find that the diversity of SI alleles at the whole population level is a poor predictor of the maintenance of SI. We discuss the implications of our results for the interpretation of empirical data on the loss of SI in natural populations.
Collapse
Affiliation(s)
- Thomas Brom
- University Lille, UMR 8198 - Evo-Eco-Paleo, F-59000, Lille, France.,CNRS, UMR 8198, F-59000, Lille, France
| | - Vincent Castric
- University Lille, UMR 8198 - Evo-Eco-Paleo, F-59000, Lille, France.,CNRS, UMR 8198, F-59000, Lille, France
| | - Sylvain Billiard
- University Lille, UMR 8198 - Evo-Eco-Paleo, F-59000, Lille, France.,CNRS, UMR 8198, F-59000, Lille, France
| |
Collapse
|
41
|
Pickup M, Brandvain Y, Fraïsse C, Yakimowski S, Barton NH, Dixit T, Lexer C, Cereghetti E, Field DL. Mating system variation in hybrid zones: facilitation, barriers and asymmetries to gene flow. THE NEW PHYTOLOGIST 2019; 224:1035-1047. [PMID: 31505037 PMCID: PMC6856794 DOI: 10.1111/nph.16180] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 08/19/2019] [Indexed: 05/11/2023]
Abstract
Plant mating systems play a key role in structuring genetic variation both within and between species. In hybrid zones, the outcomes and dynamics of hybridization are usually interpreted as the balance between gene flow and selection against hybrids. Yet, mating systems can introduce selective forces that alter these expectations; with diverse outcomes for the level and direction of gene flow depending on variation in outcrossing and whether the mating systems of the species pair are the same or divergent. We present a survey of hybridization in 133 species pairs from 41 plant families and examine how patterns of hybridization vary with mating system. We examine if hybrid zone mode, level of gene flow, asymmetries in gene flow and the frequency of reproductive isolating barriers vary in relation to mating system/s of the species pair. We combine these results with a simulation model and examples from the literature to address two general themes: (1) the two-way interaction between introgression and the evolution of reproductive systems, and (2) how mating system can facilitate or restrict interspecific gene flow. We conclude that examining mating system with hybridization provides unique opportunities to understand divergence and the processes underlying reproductive isolation.
Collapse
Affiliation(s)
- Melinda Pickup
- Institute of Science and Technology AustriaAm Campus 1Klosterneuburg3400Austria
| | - Yaniv Brandvain
- Department of Plant and Microbial BiologyUniversity of Minnesota1500 Gortner AveSt Paul, MinneapolisMN55108USA
| | - Christelle Fraïsse
- Institute of Science and Technology AustriaAm Campus 1Klosterneuburg3400Austria
| | - Sarah Yakimowski
- Department of BiologyQueen's University116 Barrie StKingstonONK7L 3N6Canada
| | - Nicholas H. Barton
- Institute of Science and Technology AustriaAm Campus 1Klosterneuburg3400Austria
| | - Tanmay Dixit
- Department of ZoologyUniversity of CambridgeDowning StreetCambridgeCB2 3EJUK
| | - Christian Lexer
- Department of Botany and Biodiversity ResearchFaculty of Life SciencesUniversity of ViennaA‐1030ViennaAustria
| | - Eva Cereghetti
- Institute of Science and Technology AustriaAm Campus 1Klosterneuburg3400Austria
| | - David L. Field
- Department of Botany and Biodiversity ResearchFaculty of Life SciencesUniversity of ViennaA‐1030ViennaAustria
- School of ScienceEdith Cowan University270 Joondalup DriveJoondalupWestern Australia6027Australia
| |
Collapse
|
42
|
Czuppon P, Constable GWA. Invasion and Extinction Dynamics of Mating Types Under Facultative Sexual Reproduction. Genetics 2019; 213:567-580. [PMID: 31391266 PMCID: PMC6781889 DOI: 10.1534/genetics.119.302306] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/04/2019] [Indexed: 01/08/2023] Open
Abstract
In sexually reproducing isogamous species, syngamy between gametes is generally not indiscriminate, but rather restricted to occurring between complementary self-incompatible mating types. A longstanding question regards the evolutionary pressures that control the number of mating types observed in natural populations, which ranges from two to many thousands. Here, we describe a population genetic null model of this reproductive system, and derive expressions for the stationary probability distribution of the number of mating types, the establishment probability of a newly arising mating type, and the mean time to extinction of a resident type. Our results yield that the average rate of sexual reproduction in a population correlates positively with the expected number of mating types observed. We further show that the low number of mating types predicted in the rare-sex regime is primarily driven by low invasion probabilities of new mating type alleles, with established resident alleles being very stable over long evolutionary periods. Moreover, our model naturally exhibits varying selection strength dependent on the number of resident mating types. This results in higher extinction and lower invasion rates for an increasing number of residents.
Collapse
Affiliation(s)
- Peter Czuppon
- Center for Interdisciplinary Research in Biology, CNRS, Collège de France, PSL Research University, 75231 Paris, France
- Institute of Ecology and Environmental Sciences of Paris, Sorbonne Université, UPEC, CNRS, IRD, INRA, 75252 Paris, France
| | - George W A Constable
- Department of Mathematical Sciences, The University of Bath, BA2 7AY, United Kingdom
| |
Collapse
|
43
|
Bachmann JA, Tedder A, Laenen B, Fracassetti M, Désamoré A, Lafon-Placette C, Steige KA, Callot C, Marande W, Neuffer B, Bergès H, Köhler C, Castric V, Slotte T. Genetic basis and timing of a major mating system shift in Capsella. THE NEW PHYTOLOGIST 2019; 224:505-517. [PMID: 31254395 DOI: 10.1111/nph.16035] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 06/20/2019] [Indexed: 05/23/2023]
Abstract
A crucial step in the transition from outcrossing to self-fertilization is the loss of genetic self-incompatibility (SI). In the Brassicaceae, SI involves the interaction of female and male specificity components, encoded by the genes SRK and SCR at the self-incompatibility locus (S-locus). Theory predicts that S-linked mutations, and especially dominant mutations in SCR, are likely to contribute to loss of SI. However, few studies have investigated the contribution of dominant mutations to loss of SI in wild plant species. Here, we investigate the genetic basis of loss of SI in the self-fertilizing crucifer species Capsella orientalis, by combining genetic mapping, long-read sequencing of complete S-haplotypes, gene expression analyses and controlled crosses. We show that loss of SI in C. orientalis occurred < 2.6 Mya and maps as a dominant trait to the S-locus. We identify a fixed frameshift deletion in the male specificity gene SCR and confirm loss of male SI specificity. We further identify an S-linked small RNA that is predicted to cause dominance of self-compatibility. Our results agree with predictions on the contribution of dominant S-linked mutations to loss of SI, and thus provide new insights into the molecular basis of mating system transitions.
Collapse
Affiliation(s)
- Jörg A Bachmann
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Andrew Tedder
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Benjamin Laenen
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Marco Fracassetti
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Aurélie Désamoré
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Clément Lafon-Placette
- Department of Plant Biology, Swedish University of Agricultural Sciences & Linnean Center for Plant Biology, SE-750 07, Uppsala, Sweden
| | - Kim A Steige
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Caroline Callot
- Institut National de la Recherche Agronomique, UPR 1258, Centre National des Ressources Génomiques Végétales, 31326, Castanet-Tolosan, France
| | - William Marande
- Institut National de la Recherche Agronomique, UPR 1258, Centre National des Ressources Génomiques Végétales, 31326, Castanet-Tolosan, France
| | - Barbara Neuffer
- Department of Botany, University of Osnabruck, 49076, Osnabrück, Germany
| | - Hélène Bergès
- Institut National de la Recherche Agronomique, UPR 1258, Centre National des Ressources Génomiques Végétales, 31326, Castanet-Tolosan, France
| | - Claudia Köhler
- Department of Plant Biology, Swedish University of Agricultural Sciences & Linnean Center for Plant Biology, SE-750 07, Uppsala, Sweden
| | - Vincent Castric
- Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, F-59000, Lille, France
| | - Tanja Slotte
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, SE-106 91, Stockholm, Sweden
| |
Collapse
|
44
|
Czuppon P, Rogers DW. Evolution of mating types in finite populations: The precarious advantage of being rare. J Evol Biol 2019; 32:1290-1299. [PMID: 31479547 DOI: 10.1111/jeb.13528] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/28/2019] [Accepted: 08/19/2019] [Indexed: 01/03/2023]
Abstract
Sexually reproducing populations with self-incompatibility bear the cost of limiting potential mates to individuals of a different type. Rare mating types escape this cost since they are unlikely to encounter incompatible partners, leading to the deterministic prediction of continuous invasion by new mutants and an ever-increasing number of types. However, rare types are also at an increased risk of being lost by random drift. Calculating the number of mating types that a population can maintain requires consideration of both the deterministic advantages and the stochastic risks. By comparing the relative importance of selection and drift, we show that a population of size N can maintain a maximum of approximately N1/3 mating types for intermediate population sizes, whereas for large N, we derive a formal estimate. Although the number of mating types in a population is quite stable, the rare-type advantage promotes turnover of types. We derive explicit formulas for both the invasion and turnover probabilities in finite populations.
Collapse
Affiliation(s)
- Peter Czuppon
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plön, Germany.,Centre Interdisciplinaire de Recherche en Biologie, CNRS Collège de France, PSL Research University, Paris, France.,Institut d'Ecologie et des Sciences de l'Environnement (IEES), UPEC, CNRS, IRD, INRA, Sorbonne Université, Paris, France
| | - David W Rogers
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|
45
|
Vieira J, Rocha S, Vázquez N, López-Fernández H, Fdez-Riverola F, Reboiro-Jato M, Vieira CP. Predicting Specificities Under the Non-self Gametophytic Self-Incompatibility Recognition Model. FRONTIERS IN PLANT SCIENCE 2019; 10:879. [PMID: 31379893 PMCID: PMC6649718 DOI: 10.3389/fpls.2019.00879] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/20/2019] [Indexed: 06/10/2023]
Abstract
Non-self gametophytic self-incompatibility (GSI) recognition system is characterized by the presence of multiple F-box genes tandemly located in the S-locus, that regulate pollen specificity. This reproductive barrier is present in Solanaceae, Plantaginacea and Maleae (Rosaceae), but only in Petunia functional assays have been performed to get insight on how this recognition mechanism works. In this system, each of the encoded S-pollen proteins (called SLFs in Solanaceae and Plantaginaceae /SFBBs in Maleae) recognizes and interacts with a sub-set of non-self S-pistil proteins, called S-RNases, mediating their ubiquitination and degradation. In Petunia there are 17 SLF genes per S-haplotype, making impossible to determine experimentally each SLF specificity. Moreover, domain -swapping experiments are unlikely to be performed in large scale to determine S-pollen and S-pistil specificities. Phylogenetic analyses of the Petunia SLFs and those from two Solanum genomes, suggest that diversification of SLFs predate the two genera separation. Here we first identify putative SLF genes from nine Solanum and 10 Nicotiana genomes to determine how many gene lineages are present in the three genera, and the rate of origin of new SLF gene lineages. The use of multiple genomes per genera precludes the effect of incompleteness of the genome at the S-locus. The similar number of gene lineages in the three genera implies a comparable effective population size for these species, and number of specificities. The rate of origin of new specificities is one per 10 million years. Moreover, here we determine the amino acids positions under positive selection, those involved in SLF specificity recognition, using 10 Petunia S-haplotypes with more than 11 SLF genes. These 16 amino acid positions account for the differences of self-incompatible (SI) behavior described in the literature. When SLF and S-RNase proteins are divided according to the SI behavior, and the positively selected amino acids classified according to hydrophobicity, charge, polarity and size, we identified fixed differences between SI groups. According to the in silico 3D structure of the two proteins these amino acid positions interact. Therefore, this methodology can be used to infer SLF/S-RNase specificity recognition.
Collapse
Affiliation(s)
- Jorge Vieira
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Sara Rocha
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Noé Vázquez
- Escuela Superior de Ingeniería Informática (ESEI), Edificio Politécnico, Universidad de Vigo, Ourense, Spain
- Centro de Investigaciones Biomédicas (Centro Singular de Investigación de Galicia), Vigo, Spain
| | - Hugo López-Fernández
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Escuela Superior de Ingeniería Informática (ESEI), Edificio Politécnico, Universidad de Vigo, Ourense, Spain
- Centro de Investigaciones Biomédicas (Centro Singular de Investigación de Galicia), Vigo, Spain
- SING Research Group, Instituto de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Florentino Fdez-Riverola
- Escuela Superior de Ingeniería Informática (ESEI), Edificio Politécnico, Universidad de Vigo, Ourense, Spain
- Centro de Investigaciones Biomédicas (Centro Singular de Investigación de Galicia), Vigo, Spain
- SING Research Group, Instituto de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Miguel Reboiro-Jato
- Escuela Superior de Ingeniería Informática (ESEI), Edificio Politécnico, Universidad de Vigo, Ourense, Spain
- Centro de Investigaciones Biomédicas (Centro Singular de Investigación de Galicia), Vigo, Spain
- SING Research Group, Instituto de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Cristina P. Vieira
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| |
Collapse
|
46
|
Li M, Zhang D, Gao Q, Luo Y, Zhang H, Ma B, Chen C, Whibley A, Zhang Y, Cao Y, Li Q, Guo H, Li J, Song Y, Zhang Y, Copsey L, Li Y, Li X, Qi M, Wang J, Chen Y, Wang D, Zhao J, Liu G, Wu B, Yu L, Xu C, Li J, Zhao S, Zhang Y, Hu S, Liang C, Yin Y, Coen E, Xue Y. Genome structure and evolution of Antirrhinum majus L. NATURE PLANTS 2019; 5:174-183. [PMID: 30692677 PMCID: PMC6784882 DOI: 10.1038/s41477-018-0349-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 12/14/2018] [Indexed: 05/18/2023]
Abstract
Snapdragon (Antirrhinum majus L.), a member of the Plantaginaceae family, is an important model for plant genetics and molecular studies on plant growth and development, transposon biology and self-incompatibility. Here we report a near-complete genome assembly of A. majus cultivar JI7 (A. majus cv.JI7) comprising 510 Megabases (Mb) of genomic sequence and containing 37,714 annotated protein-coding genes. Scaffolds covering 97.12% of the assembled genome were anchored on eight chromosomes. Comparative and evolutionary analyses revealed that a whole-genome duplication event occurred in the Plantaginaceae around 46-49 million years ago (Ma). We also uncovered the genetic architectures associated with complex traits such as flower asymmetry and self-incompatibility, identifying a unique duplication of TCP family genes dated to around 46-49 Ma and reconstructing a near-complete ψS-locus of roughly 2 Mb. The genome sequence obtained in this study not only provides a representative genome sequenced from the Plantaginaceae but also brings the popular plant model system of Antirrhinum into the genomic age.
Collapse
Affiliation(s)
- Miaomiao Li
- State Key Laboratory of Plant Cell and Chromosome Engineering and National Center of Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dongfen Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering and National Center of Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Qiang Gao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yingfeng Luo
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Hui Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering and National Center of Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bin Ma
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | | | | | - Yu'e Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering and National Center of Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yinghao Cao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Qun Li
- State Key Laboratory of Plant Cell and Chromosome Engineering and National Center of Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Han Guo
- State Key Laboratory of Plant Cell and Chromosome Engineering and National Center of Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Junhui Li
- State Key Laboratory of Plant Cell and Chromosome Engineering and National Center of Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanzhai Song
- State Key Laboratory of Plant Cell and Chromosome Engineering and National Center of Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yue Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering and National Center of Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | | | - Yan Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xiuxiu Li
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Ming Qi
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jiawei Wang
- National Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | - Bin Wu
- BGI-Shenzhen, Shenzhen, China
| | - Lili Yu
- BGI-Shenzhen, Shenzhen, China
| | | | | | | | - Yijing Zhang
- National Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Songnian Hu
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Chengzhi Liang
- University of Chinese Academy of Sciences, Beijing, China.
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
| | - Ye Yin
- BGI-Shenzhen, Shenzhen, China.
| | | | - Yongbiao Xue
- State Key Laboratory of Plant Cell and Chromosome Engineering and National Center of Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
47
|
Li M, Zhang D, Gao Q, Luo Y, Zhang H, Ma B, Chen C, Whibley A, Zhang Y, Cao Y, Li Q, Guo H, Li J, Song Y, Zhang Y, Copsey L, Li Y, Li X, Qi M, Wang J, Chen Y, Wang D, Zhao J, Liu G, Wu B, Yu L, Xu C, Li J, Zhao S, Zhang Y, Hu S, Liang C, Yin Y, Coen E, Xue Y. Genome structure and evolution of Antirrhinum majus L. NATURE PLANTS 2019. [PMID: 30692677 DOI: 10.1038/s41477-018-0349-349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Snapdragon (Antirrhinum majus L.), a member of the Plantaginaceae family, is an important model for plant genetics and molecular studies on plant growth and development, transposon biology and self-incompatibility. Here we report a near-complete genome assembly of A. majus cultivar JI7 (A. majus cv.JI7) comprising 510 Megabases (Mb) of genomic sequence and containing 37,714 annotated protein-coding genes. Scaffolds covering 97.12% of the assembled genome were anchored on eight chromosomes. Comparative and evolutionary analyses revealed that a whole-genome duplication event occurred in the Plantaginaceae around 46-49 million years ago (Ma). We also uncovered the genetic architectures associated with complex traits such as flower asymmetry and self-incompatibility, identifying a unique duplication of TCP family genes dated to around 46-49 Ma and reconstructing a near-complete ψS-locus of roughly 2 Mb. The genome sequence obtained in this study not only provides a representative genome sequenced from the Plantaginaceae but also brings the popular plant model system of Antirrhinum into the genomic age.
Collapse
Affiliation(s)
- Miaomiao Li
- State Key Laboratory of Plant Cell and Chromosome Engineering and National Center of Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dongfen Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering and National Center of Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Qiang Gao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yingfeng Luo
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Hui Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering and National Center of Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bin Ma
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | | | | | - Yu'e Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering and National Center of Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yinghao Cao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Qun Li
- State Key Laboratory of Plant Cell and Chromosome Engineering and National Center of Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Han Guo
- State Key Laboratory of Plant Cell and Chromosome Engineering and National Center of Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Junhui Li
- State Key Laboratory of Plant Cell and Chromosome Engineering and National Center of Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanzhai Song
- State Key Laboratory of Plant Cell and Chromosome Engineering and National Center of Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yue Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering and National Center of Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | | | - Yan Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xiuxiu Li
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Ming Qi
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jiawei Wang
- National Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | - Bin Wu
- BGI-Shenzhen, Shenzhen, China
| | - Lili Yu
- BGI-Shenzhen, Shenzhen, China
| | | | | | | | - Yijing Zhang
- National Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Songnian Hu
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Chengzhi Liang
- University of Chinese Academy of Sciences, Beijing, China.
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
| | - Ye Yin
- BGI-Shenzhen, Shenzhen, China.
| | | | - Yongbiao Xue
- State Key Laboratory of Plant Cell and Chromosome Engineering and National Center of Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
48
|
Nelson TC, Monnahan PJ, McIntosh MK, Anderson K, MacArthur-Waltz E, Finseth FR, Kelly JK, Fishman L. Extreme copy number variation at a tRNA ligase gene affecting phenology and fitness in yellow monkeyflowers. Mol Ecol 2018; 28:1460-1475. [PMID: 30346101 DOI: 10.1111/mec.14904] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/03/2018] [Accepted: 10/08/2018] [Indexed: 12/15/2022]
Abstract
Copy number variation (CNV) is a major part of the genetic diversity segregating within populations, but remains poorly understood relative to single nucleotide variation. Here, we report on a tRNA ligase gene (Migut.N02091; RLG1a) exhibiting unprecedented, and fitness-relevant, CNV within an annual population of the yellow monkeyflower Mimulus guttatus. RLG1a variation was associated with multiple traits in pooled population sequencing (PoolSeq) scans of phenotypic and phenological cohorts. Resequencing of inbred lines revealed intermediate-frequency three-copy variants of RLG1a (trip+; 5/35 = 14%), and trip+ lines exhibited elevated RLG1a expression under multiple conditions. trip+ carriers, in addition to being over-represented in late-flowering and large-flowered PoolSeq populations, flowered later under stressful conditions in a greenhouse experiment (p < 0.05). In wild population samples, we discovered an additional rare RLG1a variant (high+) that carries 250-300 copies of RLG1a totalling ~5.7 Mb (20-40% of a chromosome). In the progeny of a high+ carrier, Mendelian segregation of diagnostic alleles and qPCR-based copy counts indicate that high+ is a single tandem array unlinked to the single-copy RLG1a locus. In the wild, high+ carriers had highest fitness in two particularly dry and/or hot years (2015 and 2017; both p < 0.01), while single-copy individuals were twice as fecund as either CNV type in a lush year (2016: p < 0.005). Our results demonstrate fluctuating selection on CNVs affecting phenological traits in a wild population, suggest that plant tRNA ligases mediate stress-responsive life-history traits, and introduce a novel system for investigating the molecular mechanisms of gene amplification.
Collapse
Affiliation(s)
- Thomas C Nelson
- Division of Biological Sciences, University of Montana, Missoula, Montana
| | - Patrick J Monnahan
- Department of Ecology and Evolution, University of Kansas, Lawrence, Kansas
| | - Mariah K McIntosh
- Division of Biological Sciences, University of Montana, Missoula, Montana
| | - Kayli Anderson
- Division of Biological Sciences, University of Montana, Missoula, Montana
| | | | - Findley R Finseth
- Division of Biological Sciences, University of Montana, Missoula, Montana
| | - John K Kelly
- Department of Ecology and Evolution, University of Kansas, Lawrence, Kansas
| | - Lila Fishman
- Division of Biological Sciences, University of Montana, Missoula, Montana
| |
Collapse
|
49
|
Fenster CB, Ballou JD, Dudash MR, Eldridge MDB, Frankham R, Lacy RC, Ralls K, Sunnucks P. Conservation and Genetics. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2018; 91:491-501. [PMID: 30588214 PMCID: PMC6302618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Humans are responsible for a cataclysm of species extinction that will change the world as we see it, and will adversely affect human health and wellbeing. We need to understand at individual and societal levels why species conservation is important. Accepting the premise that species have value, we need to next consider the mechanisms underlying species extinction and what we can do to reverse the process. One of the last stages of species extinction is the reduction of a species to a few populations of relatively few individuals, a scenario that leads invariably to inbreeding and its adverse consequences, inbreeding depression. Inbreeding depression can be so severe that populations become at risk of extinction not only because of the expression of harmful recessive alleles (alleles having no phenotypic effect when in the heterozygous condition, e.g., Aa, where a is the recessive allele), but also because of their inability to respond genetically with sufficient speed to adapt to changing environmental conditions. However, new conservation approaches based on foundational quantitative and population genetic theory advocate for active genetic management of fragmented populations by facilitating gene movements between populations, i.e., admixture, or genetic rescue. Why species conservation is critical, the genetic consequences of small population size that often lead to extinction, and possible solutions to the problem of small population size are discussed and presented.
Collapse
Affiliation(s)
- Charles B. Fenster
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD
| | - Jonathan D. Ballou
- Center for Conservation Genomics, Smithsonian Conservation Biology Institute, Washington, DC
| | - Michele R. Dudash
- Department of Natural Resource Management, South Dakota State University, Brookings, SD
| | - Mark D. B. Eldridge
- Australian Museum Research Institute, Australian Museum, Sydney, NSW, Australia
| | - Richard Frankham
- Macquarie University and Australian Museum, Sydney, NSW, Australia
| | | | - Katherine Ralls
- Center for Conservation Genomics, Smithsonian Conservation Biology Institute, Washington, DC
| | | |
Collapse
|
50
|
Affiliation(s)
- Lee C. Hanson
- Department of Botany, University of California, Davis, California 95616
| | - Kenneth Wells
- Department of Botany, University of California, Davis, California 95616
| |
Collapse
|