1
|
Stutzman AV, Hill CA, Armstrong RL, Gohil R, Duronio RJ, Dowen JM, McKay DJ. Heterochromatic 3D genome organization is directed by HP1a- and H3K9-dependent and independent mechanisms. Mol Cell 2024; 84:2017-2035.e6. [PMID: 38795706 PMCID: PMC11185254 DOI: 10.1016/j.molcel.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 03/07/2024] [Accepted: 05/02/2024] [Indexed: 05/28/2024]
Abstract
Whether and how histone post-translational modifications and the proteins that bind them drive 3D genome organization remains unanswered. Here, we evaluate the contribution of H3K9-methylated constitutive heterochromatin to 3D genome organization in Drosophila tissues. We find that the predominant organizational feature of wild-type tissues is the segregation of euchromatic chromosome arms from heterochromatic pericentromeres. Reciprocal perturbation of HP1a⋅H3K9me binding, using a point mutation in the HP1a chromodomain or replacement of the replication-dependent histone H3 with H3K9R mutant histones, revealed that HP1a binding to methylated H3K9 in constitutive heterochromatin is required to limit contact frequency between pericentromeres and chromosome arms and regulate the distance between arm and pericentromeric regions. Surprisingly, the self-association of pericentromeric regions is largely preserved despite the loss of H3K9 methylation and HP1a occupancy. Thus, the HP1a⋅H3K9 interaction contributes to but does not solely drive the segregation of euchromatin and heterochromatin inside the nucleus.
Collapse
Affiliation(s)
- Alexis V Stutzman
- Curriculum in Genetics & Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Christina A Hill
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Robin L Armstrong
- Curriculum in Genetics & Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Riya Gohil
- Curriculum in Genetics & Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Robert J Duronio
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA.
| | - Jill M Dowen
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Biochemistry & Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA.
| | - Daniel J McKay
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
2
|
Nishitani A, Hiramatsu K, Kadooka C, Mori K, Okutsu K, Yoshizaki Y, Takamine K, Tashiro K, Goto M, Tamaki H, Futagami T. Expression of heterochromatin protein 1 affects citric acid production in Aspergillus luchuensis mut. kawachii. J Biosci Bioeng 2023; 136:443-451. [PMID: 37775438 DOI: 10.1016/j.jbiosc.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/17/2023] [Accepted: 09/07/2023] [Indexed: 10/01/2023]
Abstract
A putative methyltransferase, LaeA, controls citric acid production through epigenetic regulation of the citrate exporter gene, cexA, in the white koji fungus Aspergillus luchuensis mut. kawachii. In this study, we investigated the role of another epigenetic regulator, heterochromatin protein 1, HepA, in citric acid production. The ΔhepA strain exhibited reduced citric acid production in liquid culture, although to a lesser extent compared to the ΔlaeA strain. In addition, the ΔlaeA ΔhepA strain showed citric acid production similar to the ΔlaeA strain, indicating that HepA plays a role in citric acid production, albeit with a less-significant regulatory effect than LaeA. RNA-seq analysis revealed that the transcriptomic profiles of the ΔhepA and ΔlaeA strains were similar, and the expression level of cexA was reduced in both strains. These findings suggest that the genes regulated by HepA are similar to those regulated by LaeA in A. luchuensis mut. kawachii. However, the reductions in citric acid production and cexA expression observed in the disruptants were mitigated in rice koji, a solid-state culture. Thus, the mechanism by which citric acid production is regulated differs between liquid and solid cultivation. Further investigation is thus needed to understand the regulatory mechanism in koji.
Collapse
Affiliation(s)
- Atsushi Nishitani
- United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan; Center for Advanced Science Research and Promotion, Kagoshima University, Kagoshima 890-0065, Japan
| | - Kentaro Hiramatsu
- Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Kagoshima 890-0065, Japan
| | - Chihiro Kadooka
- Department of Biotechnology and Life Sciences, Faculty of Biotechnology and Life Sciences, Sojo University, Kumamoto 860-0082, Japan
| | - Kazuki Mori
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Kayu Okutsu
- Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Kagoshima 890-0065, Japan; Education and Research Center for Fermentation Studies, Faculty of Agriculture, Kagoshima University, Kagoshima 890-0065, Japan
| | - Yumiko Yoshizaki
- United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan; Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Kagoshima 890-0065, Japan; Education and Research Center for Fermentation Studies, Faculty of Agriculture, Kagoshima University, Kagoshima 890-0065, Japan
| | - Kazunori Takamine
- United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan; Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Kagoshima 890-0065, Japan; Education and Research Center for Fermentation Studies, Faculty of Agriculture, Kagoshima University, Kagoshima 890-0065, Japan
| | - Kosuke Tashiro
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Masatoshi Goto
- United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan; Department of Applied Biochemistry and Food Science, Faculty of Agriculture, Saga University, Saga 840-8502, Japan
| | - Hisanori Tamaki
- United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan; Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Kagoshima 890-0065, Japan; Education and Research Center for Fermentation Studies, Faculty of Agriculture, Kagoshima University, Kagoshima 890-0065, Japan
| | - Taiki Futagami
- United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan; Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Kagoshima 890-0065, Japan; Education and Research Center for Fermentation Studies, Faculty of Agriculture, Kagoshima University, Kagoshima 890-0065, Japan.
| |
Collapse
|
3
|
de la Cruz-Ruiz P, Rodríguez-Palero MJ, Askjaer P, Artal-Sanz M. Tissue-specific chromatin-binding patterns of Caenorhabditis elegans heterochromatin proteins HPL-1 and HPL-2 reveal differential roles in the regulation of gene expression. Genetics 2023; 224:iyad081. [PMID: 37119802 PMCID: PMC10324947 DOI: 10.1093/genetics/iyad081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/01/2023] Open
Abstract
Heterochromatin is characterized by an enrichment of repetitive elements and low gene density and is often maintained in a repressed state across cell division and differentiation. The silencing is mainly regulated by repressive histone marks such as H3K9 and H3K27 methylated forms and the heterochromatin protein 1 (HP1) family. Here, we analyzed in a tissue-specific manner the binding profile of the two HP1 homologs in Caenorhabditis elegans, HPL-1 and HPL-2, at the L4 developmental stage. We identified the genome-wide binding profile of intestinal and hypodermal HPL-2 and intestinal HPL-1 and compared them with heterochromatin marks and other features. HPL-2 associated preferentially to the distal arms of autosomes and correlated positively with the methylated forms of H3K9 and H3K27. HPL-1 was also enriched in regions containing H3K9me3 and H3K27me3 but exhibited a more even distribution between autosome arms and centers. HPL-2 showed a differential tissue-specific enrichment for repetitive elements conversely with HPL-1, which exhibited a poor association. Finally, we found a significant intersection of genomic regions bound by the BLMP-1/PRDM1 transcription factor and intestinal HPL-1, suggesting a corepressive role during cell differentiation. Our study uncovers both shared and singular properties of conserved HP1 proteins, providing information about genomic binding preferences in relation to their role as heterochromatic markers.
Collapse
Affiliation(s)
- Patricia de la Cruz-Ruiz
- Andalusian Centre for Developmental Biology, Consejo Superior de Investigaciones Científicas/Junta de Andalucía/Universidad Pablo de Olavide, Seville 41013, Spain
| | - María Jesús Rodríguez-Palero
- Andalusian Centre for Developmental Biology, Consejo Superior de Investigaciones Científicas/Junta de Andalucía/Universidad Pablo de Olavide, Seville 41013, Spain
- Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Seville 41013, Spain
| | - Peter Askjaer
- Andalusian Centre for Developmental Biology, Consejo Superior de Investigaciones Científicas/Junta de Andalucía/Universidad Pablo de Olavide, Seville 41013, Spain
| | - Marta Artal-Sanz
- Andalusian Centre for Developmental Biology, Consejo Superior de Investigaciones Científicas/Junta de Andalucía/Universidad Pablo de Olavide, Seville 41013, Spain
- Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Seville 41013, Spain
| |
Collapse
|
4
|
Structural and developmental dynamics of Matrix associated regions in Drosophila melanogaster genome. BMC Genomics 2022; 23:725. [PMID: 36284304 PMCID: PMC9597980 DOI: 10.1186/s12864-022-08944-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 10/10/2022] [Indexed: 11/18/2022] Open
Abstract
Background Eukaryotic genome is compartmentalized into structural and functional domains. One of the concepts of higher order organization of chromatin posits that the DNA is organized in constrained loops that behave as independent functional domains. Nuclear Matrix (NuMat), a ribo-proteinaceous nucleoskeleton, provides the structural basis for this organization. DNA sequences located at base of the loops are known as the Matrix Attachment Regions (MARs). NuMat relates to multiple nuclear processes and is partly cell type specific in composition. It is a biochemically defined structure and several protocols have been used to isolate the NuMat where some of the steps have been critically evaluated. These sequences play an important role in genomic organization it is imperative to know their dynamics during development and differentiation. Results Here we look into the dynamics of MARs when the preparation process is varied and during embryonic development of D. melanogaster. A subset of MARs termed as “Core-MARs” present abundantly in pericentromeric heterochromatin, are constant unalterable anchor points as they associate with NuMat through embryonic development and are independent of the isolation procedure. Euchromatic MARs are dynamic and reflect the transcriptomic profile of the cell. New MARs are generated by nuclear stabilization, and during development, mostly at paused RNA polymerase II promoters. Paused Pol II MARs depend on RNA transcripts for NuMat association. Conclusions Our data reveals the role of MARs in functionally dynamic nucleus and contributes to the current understanding of nuclear architecture in genomic context. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08944-4.
Collapse
|
5
|
HP1a-mediated heterochromatin formation promotes antimicrobial responses against Pseudomonas aeruginosa infection. BMC Biol 2022; 20:234. [PMID: 36266682 PMCID: PMC9583553 DOI: 10.1186/s12915-022-01435-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 10/10/2022] [Indexed: 11/23/2022] Open
Abstract
Background Pseudomonas aeruginosa is a Gram-negative bacterium that causes severe infectious disease in diverse host organisms, including humans. Effective therapeutic options for P. aeruginosa infection are limited due to increasing multidrug resistance and it is therefore critical to understand the regulation of host innate immune responses to guide development of effective therapeutic options. The epigenetic mechanisms by which hosts regulate their antimicrobial responses against P. aeruginosa infection remain unclear. Here, we used Drosophila melanogaster to investigate the role of heterochromatin protein 1a (HP1a), a key epigenetic regulator, and its mediation of heterochromatin formation in antimicrobial responses against PA14, a highly virulent P. aeruginosa strain. Results Animals with decreased heterochromatin levels showed less resistance to P. aeruginosa infection. In contrast, flies with increased heterochromatin formation, either in the whole organism or specifically in the fat body—an organ important in humoral immune response—showed greater resistance to P. aeruginosa infection, as demonstrated by increased host survival and reduced bacterial load. Increased heterochromatin formation in the fat body promoted the antimicrobial responses via upregulation of fat body immune deficiency (imd) pathway-mediated antimicrobial peptides (AMPs) before and in the middle stage of P. aeruginosa infection. The fat body AMPs were required to elicit HP1a-mediated antimicrobial responses against P. aeruginosa infection. Moreover, the levels of heterochromatin in the fat body were downregulated in the early stage, but upregulated in the middle stage, of P. aeruginosa infection. Conclusions These data indicate that HP1a-mediated heterochromatin formation in the fat body promotes antimicrobial responses by epigenetically upregulating AMPs of the imd pathway. Our study provides novel molecular, cellular, and organismal insights into new epigenetic strategies targeting heterochromatin that have the potential to combat P. aeruginosa infection. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01435-8.
Collapse
|
6
|
Boatwright JL, Sapkota S, Myers M, Kumar N, Cox A, Jordan KE, Kresovich S. Dissecting the Genetic Architecture of Carbon Partitioning in Sorghum Using Multiscale Phenotypes. FRONTIERS IN PLANT SCIENCE 2022; 13:790005. [PMID: 35665170 PMCID: PMC9159972 DOI: 10.3389/fpls.2022.790005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
Carbon partitioning in plants may be viewed as a dynamic process composed of the many interactions between sources and sinks. The accumulation and distribution of fixed carbon is not dictated simply by the sink strength and number but is dependent upon the source, pathways, and interactions of the system. As such, the study of carbon partitioning through perturbations to the system or through focus on individual traits may fail to produce actionable developments or a comprehensive understanding of the mechanisms underlying this complex process. Using the recently published sorghum carbon-partitioning panel, we collected both macroscale phenotypic characteristics such as plant height, above-ground biomass, and dry weight along with microscale compositional traits to deconvolute the carbon-partitioning pathways in this multipurpose crop. Multivariate analyses of traits resulted in the identification of numerous loci associated with several distinct carbon-partitioning traits, which putatively regulate sugar content, manganese homeostasis, and nitrate transportation. Using a multivariate adaptive shrinkage approach, we identified several loci associated with multiple traits suggesting that pleiotropic and/or interactive effects may positively influence multiple carbon-partitioning traits, or these overlaps may represent molecular switches mediating basal carbon allocating or partitioning networks. Conversely, we also identify a carbon tradeoff where reduced lignin content is associated with increased sugar content. The results presented here support previous studies demonstrating the convoluted nature of carbon partitioning in sorghum and emphasize the importance of taking a holistic approach to the study of carbon partitioning by utilizing multiscale phenotypes.
Collapse
Affiliation(s)
- J. Lucas Boatwright
- Advanced Plant Technology, Clemson University, Clemson, SC, United States
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, United States
| | - Sirjan Sapkota
- Advanced Plant Technology, Clemson University, Clemson, SC, United States
| | - Matthew Myers
- Advanced Plant Technology, Clemson University, Clemson, SC, United States
| | - Neeraj Kumar
- Advanced Plant Technology, Clemson University, Clemson, SC, United States
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, United States
| | - Alex Cox
- Advanced Plant Technology, Clemson University, Clemson, SC, United States
| | - Kathleen E. Jordan
- Advanced Plant Technology, Clemson University, Clemson, SC, United States
| | - Stephen Kresovich
- Advanced Plant Technology, Clemson University, Clemson, SC, United States
- Feed the Future Innovation Lab for Crop Improvement, Cornell University, Ithaca, NY, United States
| |
Collapse
|
7
|
Schoelz JM, Riddle NC. Functions of HP1 proteins in transcriptional regulation. Epigenetics Chromatin 2022; 15:14. [PMID: 35526078 PMCID: PMC9078007 DOI: 10.1186/s13072-022-00453-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/18/2022] [Indexed: 01/24/2023] Open
Abstract
In eukaryotes, DNA is packaged into chromatin, which presents significant barriers to transcription. Non-histone chromatin proteins such as the Heterochromatin Protein 1 (HP1) proteins are critical regulators of transcription, contributing to gene regulation through a variety of molecular mechanisms. HP1 proteins are highly conserved, and many eukaryotic genomes contain multiple HP1 genes. Given the presence of multiple HP1 family members within a genome, HP1 proteins can have unique as well as shared functions. Here, we review the mechanisms by which HP1 proteins contribute to the regulation of transcription. Focusing on the Drosophila melanogaster HP1 proteins, we examine the role of these proteins in regulating the transcription of genes, transposable elements, and piRNA clusters. In D. melanogaster, as in other species, HP1 proteins can act as transcriptional repressors and activators. The available data reveal that the precise impact of HP1 proteins on gene expression is highly context dependent, on the specific HP1 protein involved, on its protein partners present, and on the specific chromatin context the interaction occurs in. As a group, HP1 proteins utilize a variety of mechanisms to contribute to transcriptional regulation, including both transcriptional (i.e. chromatin-based) and post-transcriptional (i.e. RNA-based) processes. Despite extensive studies of this important protein family, open questions regarding their functions in gene regulation remain, specifically regarding the role of hetero- versus homodimerization and post-translational modifications of HP1 proteins.
Collapse
Affiliation(s)
- John M Schoelz
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nicole C Riddle
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|