1
|
Di C, Lohmueller KE. Revisiting Dominance in Population Genetics. Genome Biol Evol 2024; 16:evae147. [PMID: 39114967 PMCID: PMC11306932 DOI: 10.1093/gbe/evae147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2024] [Indexed: 08/11/2024] Open
Abstract
Dominance refers to the effect of a heterozygous genotype relative to that of the two homozygous genotypes. The degree of dominance of mutations for fitness can have a profound impact on how deleterious and beneficial mutations change in frequency over time as well as on the patterns of linked neutral genetic variation surrounding such selected alleles. Since dominance is such a fundamental concept, it has received immense attention throughout the history of population genetics. Early work from Fisher, Wright, and Haldane focused on understanding the conceptual basis for why dominance exists. More recent work has attempted to test these theories and conceptual models by estimating dominance effects of mutations. However, estimating dominance coefficients has been notoriously challenging and has only been done in a few species in a limited number of studies. In this review, we first describe some of the early theoretical and conceptual models for understanding the mechanisms for the existence of dominance. Second, we discuss several approaches used to estimate dominance coefficients and summarize estimates of dominance coefficients. We note trends that have been observed across species, types of mutations, and functional categories of genes. By comparing estimates of dominance coefficients for different types of genes, we test several hypotheses for the existence of dominance. Lastly, we discuss how dominance influences the dynamics of beneficial and deleterious mutations in populations and how the degree of dominance of deleterious mutations influences the impact of inbreeding on fitness.
Collapse
Affiliation(s)
- Chenlu Di
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
| | - Kirk E Lohmueller
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
- Interdepartmental Program in Bioinformatics, University of California, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
2
|
Sudbrack V, Mullon C. Fixation times of de novo and standing beneficial variants in subdivided populations. Genetics 2024; 227:iyae043. [PMID: 38527860 DOI: 10.1093/genetics/iyae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 01/17/2024] [Accepted: 03/11/2024] [Indexed: 03/27/2024] Open
Abstract
The rate at which beneficial alleles fix in a population depends on the probability of and time to fixation of such alleles. Both of these quantities can be significantly impacted by population subdivision and limited gene flow. Here, we investigate how limited dispersal influences the rate of fixation of beneficial de novo mutations, as well as fixation time from standing genetic variation. We investigate this for a population structured according to the island model of dispersal allowing us to use the diffusion approximation, which we complement with simulations. We find that fixation may take on average fewer generations under limited dispersal than under panmixia when selection is moderate. This is especially the case if adaptation occurs from de novo recessive mutations, and dispersal is not too limited (such that approximately FST<0.2). The reason is that mildly limited dispersal leads to only a moderate increase in effective population size (which slows down fixation), but is sufficient to cause a relative excess of homozygosity due to inbreeding, thereby exposing rare recessive alleles to selection (which accelerates fixation). We also explore the effect of metapopulation dynamics through local extinction followed by recolonization, finding that such dynamics always accelerate fixation from standing genetic variation, while de novo mutations show faster fixation interspersed with longer waiting times. Finally, we discuss the implications of our results for the detection of sweeps, suggesting that limited dispersal mitigates the expected differences between the genetic signatures of sweeps involving recessive and dominant alleles.
Collapse
Affiliation(s)
- Vitor Sudbrack
- Department of Ecology and Evolution, University of Lausanne, Lausanne 1015, Vaud, Switzerland
| | - Charles Mullon
- Department of Ecology and Evolution, University of Lausanne, Lausanne 1015, Vaud, Switzerland
| |
Collapse
|
3
|
Vellnow N, Gossmann TI, Waxman D. The pseudoentropy of allele frequency trajectories, the persistence of variation, and the effective population size. Biosystems 2024; 238:105176. [PMID: 38479654 DOI: 10.1016/j.biosystems.2024.105176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 03/24/2024]
Abstract
To concisely describe how genetic variation, at individual loci or across whole genomes, changes over time, and to follow transitory allelic changes, we introduce a quantity related to entropy, that we term pseudoentropy. This quantity emerges in a diffusion analysis of the mean time a mutation segregates in a population. For a neutral locus with an arbitrary number of alleles, the mean time of segregation is generally proportional to the pseudoentropy of initial allele frequencies. After the initial time point, pseudoentropy generally decreases, but other behaviours are possible, depending on the genetic diversity and selective forces present. For a biallelic locus, pseudoentropy and entropy coincide, but they are distinct quantities with more than two alleles. Thus for populations with multiple biallelic loci, the language of entropy suffices. Then entropy, combined across loci, serves as a concise description of genetic variation. We used individual based simulations to explore how this entropy behaves under different evolutionary scenarios. In agreement with predictions, the entropy associated with unlinked neutral loci decreases over time. However, deviations from free recombination and neutrality have clear and informative effects on the entropy's behaviour over time. Analysis of publicly available data of a natural D. melanogaster population, that had been sampled over seven years, using a sliding-window approach, yielded considerable variation in entropy trajectories of different genomic regions. These mostly follow a pattern that suggests a substantial effective population size and a limited effect of positive selection on genome-wide diversity over short time scales.
Collapse
Affiliation(s)
- Nikolas Vellnow
- TU Dortmund University, Computational Systems Biology, Faculty of Biochemical and Chemical Engineering, Emil-Figge-Str. 66, 44227 Dortmund, Germany.
| | - Toni I Gossmann
- TU Dortmund University, Computational Systems Biology, Faculty of Biochemical and Chemical Engineering, Emil-Figge-Str. 66, 44227 Dortmund, Germany.
| | - David Waxman
- Fudan University, Centre for Computational Systems Biology, ISTBI, 220 Handan Road, Shanghai 200433, People's Republic of China.
| |
Collapse
|
4
|
Charlesworth B. The fitness consequences of genetic divergence between polymorphic gene arrangements. Genetics 2024; 226:iyad218. [PMID: 38147527 PMCID: PMC11090464 DOI: 10.1093/genetics/iyad218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 12/28/2023] Open
Abstract
Inversions restrict recombination when heterozygous with standard arrangements, but often have few noticeable phenotypic effects. Nevertheless, there are several examples of inversions that can be maintained polymorphic by strong selection under laboratory conditions. A long-standing model for the source of such selection is divergence between arrangements with respect to recessive or partially recessive deleterious mutations, resulting in a selective advantage to heterokaryotypic individuals over homokaryotypes. This paper uses a combination of analytical and numerical methods to investigate this model, for the simple case of an autosomal inversion with multiple independent nucleotide sites subject to mildly deleterious mutations. A complete lack of recombination in heterokaryotypes is assumed, as well as constancy of the frequency of the inversion over space and time. It is shown that a significantly higher mutational load will develop for the less frequent arrangement. A selective advantage to heterokaryotypes is only expected when the two alternative arrangements are nearly equal in frequency, so that their mutational loads are very similar in size. The effects of some Drosophila pseudoobscura polymorphic inversions on fitness traits seem to be too large to be explained by this process, although it may contribute to some of the observed effects. Several population genomic statistics can provide evidence for signatures of a reduced efficacy of selection associated with the rarer of two arrangements, but there is currently little published data that are relevant to the theoretical predictions.
Collapse
Affiliation(s)
- Brian Charlesworth
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| |
Collapse
|
5
|
Devi A, Speyer G, Lynch M. The divergence of mean phenotypes under persistent directional selection. Genetics 2023; 224:iyad091. [PMID: 37200616 PMCID: PMC10552002 DOI: 10.1093/genetics/iyad091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 02/26/2023] [Accepted: 05/04/2023] [Indexed: 05/20/2023] Open
Abstract
Numerous organismal traits, particularly at the cellular level, are likely to be under persistent directional selection across phylogenetic lineages. Unless all mutations affecting such traits have large enough effects to be efficiently selected in all species, gradients in mean phenotypes are expected to arise as a consequence of differences in the power of random genetic drift, which varies by approximately five orders of magnitude across the Tree of Life. Prior theoretical work examining the conditions under which such gradients can arise focused on the simple situation in which all genomic sites affecting the trait have identical and constant mutational effects. Here, we extend this theory to incorporate the more biologically realistic situation in which mutational effects on a trait differ among nucleotide sites. Pursuit of such modifications leads to the development of semi-analytic expressions for the ways in which selective interference arises via linkage effects in single-effects models, which then extend to more complex scenarios. The theory developed clarifies the conditions under which mutations of different selective effects mutually interfere with each others' fixation and shows how variance in effects among sites can substantially modify and extend the expected scaling relationships between mean phenotypes and effective population sizes.
Collapse
Affiliation(s)
- Archana Devi
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ 85287, USA
| | - Gil Speyer
- Knowledge Enterprise, Arizona State University, Tempe, AZ 85287, USA
| | - Michael Lynch
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
6
|
Kapun M, Mitchell ED, Kawecki TJ, Schmidt P, Flatt T. An Ancestral Balanced Inversion Polymorphism Confers Global Adaptation. Mol Biol Evol 2023; 40:msad118. [PMID: 37220650 PMCID: PMC10234209 DOI: 10.1093/molbev/msad118] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/17/2023] [Accepted: 05/19/2023] [Indexed: 05/25/2023] Open
Abstract
Since the pioneering work of Dobzhansky in the 1930s and 1940s, many chromosomal inversions have been identified, but how they contribute to adaptation remains poorly understood. In Drosophila melanogaster, the widespread inversion polymorphism In(3R)Payne underpins latitudinal clines in fitness traits on multiple continents. Here, we use single-individual whole-genome sequencing, transcriptomics, and published sequencing data to study the population genomics of this inversion on four continents: in its ancestral African range and in derived populations in Europe, North America, and Australia. Our results confirm that this inversion originated in sub-Saharan Africa and subsequently became cosmopolitan; we observe marked monophyletic divergence of inverted and noninverted karyotypes, with some substructure among inverted chromosomes between continents. Despite divergent evolution of this inversion since its out-of-Africa migration, derived non-African populations exhibit similar patterns of long-range linkage disequilibrium between the inversion breakpoints and major peaks of divergence in its center, consistent with balancing selection and suggesting that the inversion harbors alleles that are maintained by selection on several continents. Using RNA-sequencing, we identify overlap between inversion-linked single-nucleotide polymorphisms and loci that are differentially expressed between inverted and noninverted chromosomes. Expression levels are higher for inverted chromosomes at low temperature, suggesting loss of buffering or compensatory plasticity and consistent with higher inversion frequency in warm climates. Our results suggest that this ancestrally tropical balanced polymorphism spread around the world and became latitudinally assorted along similar but independent climatic gradients, always being frequent in subtropical/tropical areas but rare or absent in temperate climates.
Collapse
Affiliation(s)
- Martin Kapun
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Division of Cell and Developmental Biology, Medical University of Vienna, Vienna, Austria
- Natural History Museum Vienna, Zentrale Forschungslaboratorien, Vienna, Austria
| | - Esra Durmaz Mitchell
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Tadeusz J Kawecki
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Paul Schmidt
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Thomas Flatt
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
7
|
Johri P, Pfeifer SP, Jensen JD. Developing an evolutionary baseline model for humans: jointly inferring purifying selection with population history. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.11.536488. [PMID: 37090533 PMCID: PMC10120674 DOI: 10.1101/2023.04.11.536488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Building evolutionarily appropriate baseline models for natural populations is not only important for answering fundamental questions in population genetics - including quantifying the relative contributions of adaptive vs. non-adaptive processes - but it is also essential for identifying candidate loci experiencing relatively rare and episodic forms of selection ( e.g., positive or balancing selection). Here, a baseline model was developed for a human population of West African ancestry, the Yoruba, comprising processes constantly operating on the genome ( i.e. , purifying and background selection, population size changes, recombination rate heterogeneity, and gene conversion). Specifically, to perform joint inference of selective effects with demography, an approximate Bayesian approach was employed that utilizes the decay of background selection effects around functional elements, taking into account genomic architecture. This approach inferred a recent 6-fold population growth together with a distribution of fitness effects that is skewed towards effectively neutral mutations. Importantly, these results further suggest that, while strong and/or frequent recurrent positive selection is inconsistent with observed data, weak to moderate positive selection is consistent but unidentifiable if rare.
Collapse
|
8
|
Abstract
Abstract
Few doubt that effective population size (Ne) is one of the most important parameters in evolutionary biology, but how many can say they really understand the concept? Ne is the evolutionary analogue of the number of individuals (or adults) in the population, N. Whereas ecological consequences of population size depend on N, evolutionary consequences (rates of loss of genetic diversity and increase in inbreeding; relative effectiveness of selection) depend on Ne. Formal definitions typically relate effective size to a key population genetic parameter, such as loss of heterozygosity or variance in allele frequency. However, for practical application to real populations, it is more useful to define Ne in terms of three demographic parameters: number of potential parents (adult N), and mean and variance in offspring number. Defined this way, Ne determines the rate of random genetic drift across the entire genome in the offspring generation. Other evolutionary forces (mutation, migration, selection)—together with factors such as variation in recombination rate—can also affect genetic variation, and this leads to heterogeneity across the genome in observed rates of genetic change. For some, it has been convenient to interpret this heterogeneity in terms of heterogeneity in Ne, but unfortunately this has muddled the concepts of genetic drift and effective population size. A commonly-repeated misconception is that Ne is the number of parents that actually contribute genes to the next generation (NP). In reality, NP can be smaller or larger than Ne, and the NP/Ne ratio depends on the sex ratio, the mean and variance in offspring number, and whether inbreeding or variance Ne is of interest.
Collapse
Affiliation(s)
- Robin S Waples
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, 98112 USA
| |
Collapse
|