1
|
Khouider S, Gehring M. Parental dialectic: Epigenetic conversations in endosperm. CURRENT OPINION IN PLANT BIOLOGY 2024; 81:102591. [PMID: 38944896 PMCID: PMC11392645 DOI: 10.1016/j.pbi.2024.102591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/21/2024] [Accepted: 06/07/2024] [Indexed: 07/02/2024]
Abstract
Endosperm is a major evolutionary innovation of flowering plants, and its proper development critically impacts seed growth and viability. Epigenetic regulators have a key function in parental control of endosperm development. Notably, epigenetic regulation of parental genome dosage is a major determinant of seed development success, and disruption of this balance can produce inviable seed, as observed in some interploidy and interspecific crosses. These postzygotic reproduction barriers are also a potent driver of speciation. The molecular machinery and regulatory architecture governing endosperm development is proposed to have evolved under parental conflict. In this review, we emphasize parental conflict as a dialectic conflict and discuss recent findings about the epigenetic molecular machinery that mediates parental conflict in the endosperm.
Collapse
Affiliation(s)
- Souraya Khouider
- Whitehead Institute for Biomedical Research, Cambridge MA 02142, USA
| | - Mary Gehring
- Whitehead Institute for Biomedical Research, Cambridge MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge MA 02139, USA.
| |
Collapse
|
2
|
Zeng Y, Somers J, Bell HS, Vejlupkova Z, Kelly Dawe R, Fowler JE, Nelms B, Gent JI. Potent pollen gene regulation by DNA glycosylases in maize. Nat Commun 2024; 15:8352. [PMID: 39333110 PMCID: PMC11436724 DOI: 10.1038/s41467-024-52620-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 09/13/2024] [Indexed: 09/29/2024] Open
Abstract
Although DNA methylation primarily represses TEs, it also represses select genes that are methylated in plant body tissues but demethylated by DNA glycosylases (DNGs) in endosperm or pollen. Either one of two DNGs, MATERNAL DEREPRESSION OF R1 (MDR1) or DNG102, is essential for pollen viability in maize. Using single-pollen mRNA sequencing on pollen-segregating mutations in both genes, we identify 58 candidate DNG target genes that account for 11.1% of the wild-type transcriptome but are silent or barely detectable in other tissues. They are unusual in their tendency to lack introns but even more so in their TE-like methylation (teM) in coding DNA. The majority have predicted functions in cell wall modification, and they likely support the rapid tip growth characteristic of pollen tubes. These results suggest a critical role for DNA methylation and demethylation in regulating maize genes with the potential for extremely high expression in pollen but constitutive silencing elsewhere.
Collapse
Affiliation(s)
- Yibing Zeng
- Department of Genetics, University of Georgia, Athens, GA, USA
| | - Julian Somers
- Department of Genetics, University of Georgia, Athens, GA, USA
| | - Harrison S Bell
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
| | - Zuzana Vejlupkova
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
| | - R Kelly Dawe
- Department of Genetics, University of Georgia, Athens, GA, USA
- Department of Plant Biology, University of Georgia, Athens, GA, USA
| | - John E Fowler
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
| | - Brad Nelms
- Department of Plant Biology, University of Georgia, Athens, GA, USA.
| | - Jonathan I Gent
- Department of Plant Biology, University of Georgia, Athens, GA, USA.
| |
Collapse
|
3
|
Zeng Y, Somers J, Bell HS, Vejlupkova Z, Dawe RK, Fowler JE, Nelms B, Gent JI. Potent pollen gene regulation by DNA glycosylases in maize. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.13.580204. [PMID: 38405940 PMCID: PMC10888782 DOI: 10.1101/2024.02.13.580204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Although DNA methylation primarily represses TEs, it also represses select genes that are methylated in plant body tissues but demethylated by DNA glycosylases (DNGs) in endosperm or pollen. Activity of either one of two DNGs, MDR1 or DNG102, is essential for pollen viability in maize. Using single-pollen mRNA sequencing on pollen segregating mutations in both genes, we identified 58 candidate DNG target genes that account for 11.1% of the wild-type transcriptome but are silent or barely detectable in the plant body (sporophyte). They are unusual in their tendency to lack introns but even more so in their having TE-like methylation in their CDS. The majority have predicted functions in cell wall modification, and they likely support the rapid tip growth characteristic of pollen tubes. These results suggest a critical role for DNA methylation and demethylation in regulating maize genes with potential for extremely high expression in pollen but constitutive silencing elsewhere.
Collapse
|
4
|
Hu W, Wang R, Hao X, Li S, Zhao X, Xie Z, Wu S, Huang L, Tan Y, Tian L, Li D. OsLCD3 interacts with OsSAMS1 to regulate grain size via ethylene/polyamine homeostasis control. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:705-719. [PMID: 38703081 DOI: 10.1111/tpj.16788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 03/29/2024] [Accepted: 04/04/2024] [Indexed: 05/06/2024]
Abstract
A fundamental question in developmental biology is how to regulate grain size to improve crop yields. Despite this, little is still known about the genetics and molecular mechanisms regulating grain size in crops. Here, we provide evidence that a putative protein kinase-like (OsLCD3) interacts with the S-adenosyl-L-methionine synthetase 1 (OsSAMS1) and determines the size and weight of grains. OsLCD3 mutation (lcd3) significantly increased grain size and weight by promoting cell expansion in spikelet hull, whereas its overexpression caused negative effects, suggesting that grain size was negatively regulated by OsLCD3. Importantly, lcd3 and OsSAMS1 overexpression (SAM1OE) led to large and heavy grains, with increased ethylene and decreased polyamines production. Based on genetic analyses, it appears that OsLCD3 and OsSAMS1 control rice grain size in part by ethylene/polyamine homeostasis. The results of this study provide a genetic and molecular understanding of how the OsLCD3-OsSAMS1 regulatory module regulates grain size, suggesting that ethylene/polyamine homeostasis is an appropriate target for improving grain size and weight.
Collapse
Affiliation(s)
- Wenli Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, 571158, China
| | - Rong Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- College of Biology, Hunan University, Changsha, China
| | - Xiaohua Hao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- College of Life and Environmental Science, Hunan University of Arts and Science, Changde, 415000, China
| | - Shaozhuang Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Xinjie Zhao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Zijing Xie
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomics, Changsha Medical University, Changsha, 410219, China
| | - Sha Wu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Liqun Huang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Ying Tan
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Lianfu Tian
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Dongping Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| |
Collapse
|
5
|
June V, Song X, Chen ZJ. Imprinting but not cytonuclear interactions determines seed size heterosis in Arabidopsis hybrids. PLANT PHYSIOLOGY 2024; 195:1214-1228. [PMID: 38319651 PMCID: PMC11142339 DOI: 10.1093/plphys/kiae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 02/07/2024]
Abstract
The parent-of-origin effect on seeds can result from imprinting (unequal expression of paternal and maternal alleles) or combinational effects between cytoplasmic and nuclear genomes, but their relative contributions remain unknown. To discern these confounding factors, we produced cytoplasmic-nuclear substitution (CNS) lines using recurrent backcrossing in Arabidopsis (Arabidopsis thaliana) ecotypes Col-0 and C24. These CNS lines differed only in the nuclear genome (imprinting) or cytoplasm. The CNS reciprocal hybrids with the same cytoplasm displayed ∼20% seed size difference, whereas the seed size was similar between the reciprocal hybrids with fixed imprinting. Transcriptome analyses in the endosperm of CNS hybrids using laser-capture microdissection identified 104 maternally expressed genes (MEGs) and 90 paternally expressed genes (PEGs). These imprinted genes were involved in pectin catabolism and cell wall modification in the endosperm. Homeodomain Glabrous9 (HDG9), an epiallele and one of 11 cross-specific imprinted genes, affected seed size. In the embryo, there were a handful of imprinted genes in the CNS hybrids but only 1 was expressed at higher levels than in the endosperm. AT4G13495 was found to encode a long-noncoding RNA (lncRNA), but no obvious seed phenotype was observed in lncRNA knockout lines. Nuclear RNA Polymerase D1 (NRPD1), encoding the largest subunit of RNA Pol IV, was involved in the biogenesis of small interfering RNAs. Seed size and embryos were larger in the cross using nrpd1 as the maternal parent than in the reciprocal cross, supporting a role of the maternal NRPD1 allele in seed development. Although limited ecotypes were tested, these results suggest that imprinting and the maternal NRPD1-mediated small RNA pathway play roles in seed size heterosis in plant hybrids.
Collapse
Affiliation(s)
- Viviana June
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Xiaoya Song
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Z Jeffrey Chen
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
6
|
Han B, Li Y, Wu D, Li DZ, Liu A, Xu W. Dynamics of imprinted genes and their epigenetic mechanisms in castor bean seed with persistent endosperm. THE NEW PHYTOLOGIST 2023; 240:1868-1882. [PMID: 37717216 DOI: 10.1111/nph.19265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/25/2023] [Indexed: 09/19/2023]
Abstract
Genomic imprinting refers to parent-of-origin-dependent gene expression and primarily occurs in the endosperm of flowering plants, but its functions and epigenetic mechanisms remain to be elucidated in eudicots. Castor bean, a eudicot with large and persistent endosperm, provides an excellent system for studying the imprinting. Here, we identified 131 imprinted genes in developing endosperms and endosperm at seed germination phase of castor bean, involving into the endosperm development, accumulation of storage compounds and specially seed germination. Our results showed that the transcriptional repression of maternal allele of DNA METHYLTRANSFERASE 1 (MET1) may be required for maternal genome demethylation in the endosperm. DNA methylation analysis showed that only a small fraction of imprinted genes was associated with allele-specific DNA methylation, and most of them were closely associated with constitutively unmethylated regions (UMRs), suggesting a limited role for DNA methylation in controlling genomic imprinting. Instead, histone modifications can be asymmetrically deposited in maternal and paternal genomes in a DNA methylation-independent manner to control expression of most imprinted genes. These results expanded our understanding of the occurrence and biological functions of imprinted genes and showed the evolutionary flexibility of the imprinting machinery and mechanisms in plants.
Collapse
Affiliation(s)
- Bing Han
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Yelan Li
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Di Wu
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Aizhong Liu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, China
| | - Wei Xu
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| |
Collapse
|
7
|
June V, Song X, Jeffrey Chen Z. Imprinting but not cytonuclear interactions affects parent-of-origin effect on seed size in Arabidopsis hybrids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.15.557997. [PMID: 37745544 PMCID: PMC10516054 DOI: 10.1101/2023.09.15.557997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
The parent-of-origin effect on seed size can result from imprinting or a combinational effect between cytoplasmic and nuclear genomes, but their relative contributions remain unknown. To discern these confounding effects, we generated cytoplasmic-nuclear substitution (CNS) lines using recurrent backcrossing in the Arabidopsis thaliana ecotypes Col-0 and C24. These CNS lines differ only in the nuclear genome (imprinting) or in the cytoplasm. The CNS reciprocal hybrids with the same cytoplasm display a ~20% seed size difference as observed in the conventional hybrids. However, seed size is similar between the reciprocal cybrids with fixed imprinting. Transcriptome analyses in the endosperm of CNS hybrids using laser-capture microdissection have identified 104 maternally expressed genes (MEGs) and 90 paternally-expressed genes (PEGs). These imprinted genes are involved in pectin catabolism and cell wall modification in the endosperm. HDG9, an epiallele and one of 11 cross-specific imprinted genes, controls seed size. In the embryo, a handful of imprinted genes is found in the CNS hybrids but only one is expressed higher in the embryo than endosperm. AT4G13495 encodes a long-noncoding RNA (lncRNA), but no obvious seed phenotype is observed in the lncRNA knockout lines. NRPD1, encoding the largest subunit of RNA Pol IV, is involved in the biogenesis of small interfering RNAs. Seed size and embryo is larger in the cross using nrpd1 as the maternal parent than in the reciprocal cross. In spite of limited ecotypes tested, these results suggest potential roles of imprinting and NRPD1-mediated small RNA pathway in seed size variation in hybrids.
Collapse
Affiliation(s)
- Viviana June
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Xiaoya Song
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Z. Jeffrey Chen
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
8
|
Luo Z, Zhang Y, Tian C, Wang L, Zhao X, Liu Z, Wang L, Wang L, Zhao J, Wang J, Liu M. Genome-wide screening of the RNase T2 gene family and functional analyses in jujube (Ziziphus jujuba Mill.). BMC Genomics 2023; 24:80. [PMID: 36803656 PMCID: PMC9940439 DOI: 10.1186/s12864-023-09165-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 02/02/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Ribonuclease (RNase T2) plays crucial roles in plant evolution and breeding. However, there have been few studies on the RNase T2 gene family in Ziziphus jujuba Mill., one of important dried fruit tree species. Recently, the released sequences of the reference genome of jujube provide a good chance to perform genome-wide identification and characterization of ZjRNase gene family in the jujube. RESULTS In this study, we identified four members of RNase T2 in jujube distributed on three chromosomes and unassembled chromosomes. They all contained two conserved sites (CASI and CASII). Analysis of the phylogenetic relationships revealed that the RNase T2 genes in jujube could be divided into two groups: ZjRNase1 and ZjRNase2 belonged to class I, while ZjRNase3 and ZjRNase4 belonged to class II. Only ZjRNase1 and ZjRNase2 expression were shown by the jujube fruit transcriptome analysis. So ZjRNase1 and ZjRNase2 were selected functional verification by overexpression transformation of Arabidopsis. The overexpression of these two genes led to an approximately 50% reduction in seed number, which deserve further attention. Moreover, the leaves of the ZjRNase1 overexpression transgenic lines were curled and twisted. Overexpression of ZjRNase2 resulted in shortened and crisp siliques and the production of trichomes, and no seeds were produced. CONCLUSION In summary, these findings will provide new insights into the molecular mechanisms of low number of hybrid seeds in jujube and a reference for the future molecular breeding of jujube.
Collapse
Affiliation(s)
- Zhi Luo
- grid.274504.00000 0001 2291 4530College of Horticulture, Hebei Agricultural University, Baoding, 071001 China ,grid.274504.00000 0001 2291 4530Research Center of Chinese Jujube, College of Horticulture, Hebei Agricultural University, Baoding, 071001 China
| | - Yu Zhang
- grid.274504.00000 0001 2291 4530College of Forestry, Hebei Agricultural University, Baoding, 071001 China
| | - Chunjiao Tian
- grid.274504.00000 0001 2291 4530College of Forestry, Hebei Agricultural University, Baoding, 071001 China
| | - Lihu Wang
- grid.412028.d0000 0004 1757 5708School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, 056038 China
| | - Xuan Zhao
- grid.274504.00000 0001 2291 4530College of Horticulture, Hebei Agricultural University, Baoding, 071001 China ,grid.274504.00000 0001 2291 4530Research Center of Chinese Jujube, College of Horticulture, Hebei Agricultural University, Baoding, 071001 China
| | - Zhiguo Liu
- grid.274504.00000 0001 2291 4530College of Horticulture, Hebei Agricultural University, Baoding, 071001 China ,grid.274504.00000 0001 2291 4530Research Center of Chinese Jujube, College of Horticulture, Hebei Agricultural University, Baoding, 071001 China
| | - Lili Wang
- grid.274504.00000 0001 2291 4530College of Horticulture, Hebei Agricultural University, Baoding, 071001 China ,grid.274504.00000 0001 2291 4530Research Center of Chinese Jujube, College of Horticulture, Hebei Agricultural University, Baoding, 071001 China
| | - Lixin Wang
- grid.274504.00000 0001 2291 4530College of Horticulture, Hebei Agricultural University, Baoding, 071001 China ,grid.274504.00000 0001 2291 4530Research Center of Chinese Jujube, College of Horticulture, Hebei Agricultural University, Baoding, 071001 China
| | - Jin Zhao
- College of Life Science, Hebei Agricultural University, Baoding, 071001, China.
| | - Jiurui Wang
- College of Forestry, Hebei Agricultural University, Baoding, 071001, China.
| | - Mengjun Liu
- College of Horticulture, Hebei Agricultural University, Baoding, 071001, China. .,Research Center of Chinese Jujube, College of Horticulture, Hebei Agricultural University, Baoding, 071001, China.
| |
Collapse
|
9
|
Juenger TE, Sweigart AL, Yu J, Birchler J. Highlighting plant science with a GENETICS and G3 series on Plant Genetics and Genomics. Genetics 2023; 223:7033224. [PMID: 36757897 PMCID: PMC9910392 DOI: 10.1093/genetics/iyad003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Affiliation(s)
- Thomas E Juenger
- Department of Integrative Biology, University of Texas at Austin, 2415 Speedway, Austin, TX 78712, USA
| | - Andrea L Sweigart
- Department of Genetics, University of Georgia, 120 E. Green Street, Athens, GA 30602-7223, USA
| | - Jianming Yu
- Department of Agronomy, Iowa State University, 2401 Agronomy Hall, 716 Farm House Lane, Ames, IA 50011-1051, USA
| | | |
Collapse
|
10
|
Juenger TE, Sweigart AL, Yu J, Birchler J. Highlighting plant science with a GENETICS and G3 series on Plant Genetics and Genomics. G3 (BETHESDA, MD.) 2023; 13:jkad010. [PMID: 36758216 PMCID: PMC9911076 DOI: 10.1093/g3journal/jkad010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Thomas E Juenger
- Department of Integrative Biology, University of Texas at Austin, 2415 Speedway, Austin, TX 78712, USA
| | - Andrea L Sweigart
- Department of Genetics, University of Georgia, 120 E. Green Street, Athens, GA 30602-7223, USA
| | - Jianming Yu
- Department of Agronomy, Iowa State University, 2401 Agronomy Hall, 716 Farm House Lane, Ames, IA 50011-1051, USA
| | - James Birchler
- Biological Sciences, University of Missouri at Columbia, 105 Tucker Hall, Columbia, MO 65211-7400, USA
| |
Collapse
|