1
|
Vertti-Quintero N, Berger S, Casadevall I Solvas X, Statzer C, Annis J, Ruppen P, Stavrakis S, Ewald CY, Gunawan R, deMello AJ. Stochastic and Age-Dependent Proteostasis Decline Underlies Heterogeneity in Heat-Shock Response Dynamics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102145. [PMID: 34196492 DOI: 10.1002/smll.202102145] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/18/2021] [Indexed: 06/13/2023]
Abstract
Significant non-genetic stochastic factors affect aging, causing lifespan differences among individuals, even those sharing the same genetic and environmental background. In Caenorhabditis elegans, differences in heat-shock response (HSR) are predictive of lifespan. However, factors contributing to the heterogeneity of HSR are still not fully elucidated. Here, the authors characterized HSR dynamics in isogenic C. elegans expressing GFP reporter for hsp-16.2 for identifying the key contributors of HSR heterogeneity. Specifically, microfluidic devices that enable cross-sectional and longitudinal measurements of HSR dynamics in C. elegans at different scales are developed: in populations, within individuals, and in embryos. The authors adapted a mathematical model of HSR to single C. elegans and identified model parameters associated with proteostasis-maintenance of protein homeostasis-more specifically, protein turnover, as the major drivers of heterogeneity in HSR dynamics. It is verified that individuals with enhanced proteostasis fidelity in early adulthood live longer. The model-based comparative analysis of protein turnover in day-1 and day-2 adult C. elegans revealed a stochastic-onset of age-related proteostasis decline that increases the heterogeneity of HSR capacity. Finally, the analysis of C. elegans embryos showed higher HSR and proteostasis capacity than young adults and established transgenerational contribution to HSR heterogeneity that depends on maternal age.
Collapse
Affiliation(s)
| | - Simon Berger
- Institute of Chemical and Bioengineering, ETH Zurich, Zurich, 8093, Switzerland
| | - Xavier Casadevall I Solvas
- Institute of Chemical and Bioengineering, ETH Zurich, Zurich, 8093, Switzerland
- Department of Biosystems, KU Leuven, Leuven, B-3001, Belgium
| | - Cyril Statzer
- Institute of Translational Medicine, ETH Zurich, Schwerzenbach, 8603, Switzerland
| | - Jillian Annis
- Department of Chemical and Biological Engineering, University at Buffalo - SUNY, Buffalo, NY, 14260, USA
| | - Peter Ruppen
- Institute of Chemical and Bioengineering, ETH Zurich, Zurich, 8093, Switzerland
| | - Stavros Stavrakis
- Institute of Chemical and Bioengineering, ETH Zurich, Zurich, 8093, Switzerland
| | - Collin Y Ewald
- Institute of Translational Medicine, ETH Zurich, Schwerzenbach, 8603, Switzerland
| | - Rudiyanto Gunawan
- Institute of Chemical and Bioengineering, ETH Zurich, Zurich, 8093, Switzerland
- Department of Chemical and Biological Engineering, University at Buffalo - SUNY, Buffalo, NY, 14260, USA
| | - Andrew J deMello
- Institute of Chemical and Bioengineering, ETH Zurich, Zurich, 8093, Switzerland
| |
Collapse
|
2
|
Step-patterned survivorship curves: Mortality and loss of equilibrium responses to high temperature and food restriction in juvenile rainbow trout (Oncorhynchus mykiss). PLoS One 2020; 15:e0233699. [PMID: 32470036 PMCID: PMC7259696 DOI: 10.1371/journal.pone.0233699] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 05/11/2020] [Indexed: 01/12/2023] Open
Abstract
While survivorship curves typically exhibit smooth declines over time, step-patterned curves can occur with multiple stressors within a life stage. To explore this process, we examined the effects of heat (24°C) and food restriction on juvenile rainbow trout (Oncorhynchus mykiss Walbaum) in challenge experiments. We observed step-patterned survivorship curves determined by mortality and loss of equilibrium (LOE) endpoints. To examine the cause of heterogeneity in the stress responses from early to late mortality and LOE, we measured indices of energetic reserves. The step transition in the survivorship curves, the peak mortality rates, and start of when individuals reached a critical energetic threshold (14% dry mass; 4.0 kJ·g-1 energy) all occurred at around days 10-15 of the challenge. The coherence in these temporal patterns suggest heterogeneity in the cohort stress responses, in which an early subgroup died from heat stress and a late subgroup died from starvation. Thus, their endpoint sensitivities resulted in step-patterned survivorship curves. We discuss the implications of the study for understanding effects of multiple stressors on population heterogeneity and note the possible significance of stress response selection under climate change in which heat stress and food limitations occur in concert.
Collapse
|
3
|
Larval crowding results in hormesis-like effects on longevity in Drosophila: timing of eclosion as a model. Biogerontology 2018; 20:191-201. [PMID: 30456589 DOI: 10.1007/s10522-018-9786-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 11/14/2018] [Indexed: 01/20/2023]
Abstract
There is increasing evidence that stress during development can affect adult-life health status and longevity. In the present study, we examined life span (LS), fly weight, fecundity and expression levels of longevity-associated genes (Hsp70, InR, dSir2, dTOR and dFOXO) in adult Drosophila melanogaster flies reared in normal [low density (LD), ~ 300-400 eggs per jar] or crowded [high density (HD), more than 3000 eggs per jar] conditions by using the order (day) of emergence as an index of the developmental duration (HD1-5 groups). Developmental time showed a significant trend to increase while weight showed a significant trend to decrease with increasing the timing of emergence. In both males and females eclosed during first 2 days in HD conditions (HD1 and HD2 groups), both mean and maximum LSs were significantly increased in comparison to LD group. In males, mean LS was increased by 24.0% and 23.5% in HD1 and HD2 groups, respectively. In females, corresponding increments in mean LS were 23.8% (HD1 group) and 29.3% (HD2 group). In HD groups, a strong negative association with developmental time has been found for both male and female mean and male maximum LSs; no association with growth rate was observed for female maximum LS. The female reproductive activity (fecundity) tended to decrease with subsequent days of eclosion. In HD groups, the levels of expression of all studied longevity-associated genes tended to increase with the timing of eclosion in males; no differences were observed in females. On the basis of findings obtained, it can be assumed that the development in conditions of larval overpopulation (if not too extended) could trigger hormetic response thereby extending the longevity. Further studies are, however, needed to confirm this assumption.
Collapse
|
4
|
Michalski AI. Aspects for implementation of data mining in gerontology and geriatrics. ADVANCES IN GERONTOLOGY 2014. [DOI: 10.1134/s207905701404016x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
The effect of mitochondrial complex I inhibitor on longevity of short-lived and long-lived seed beetles and its mitonuclear hybrids. Biogerontology 2014; 15:487-501. [DOI: 10.1007/s10522-014-9520-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 07/17/2014] [Indexed: 01/25/2023]
|
6
|
Zevian SC, Yanowitz JL. Methodological considerations for heat shock of the nematode Caenorhabditis elegans. Methods 2014; 68:450-7. [PMID: 24780523 DOI: 10.1016/j.ymeth.2014.04.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 04/15/2014] [Accepted: 04/17/2014] [Indexed: 10/25/2022] Open
Abstract
Stress response pathways share commonalities across many species, including humans, making heat shock experiments valuable tools for many biologists. The study of stress response in Caenorhabditis elegans has provided great insight into many complex pathways and diseases. Nevertheless, the heat shock/heat stress field does not have consensus as to the timing, temperature, or duration of the exposure and protocols differ extensively between laboratories. The lack of cohesiveness makes it difficult to compare results between groups or to know where to start when preparing your own protocol. We present a discussion of some of the major hurdles to reproducibility in heat shock experiments as well as detailed protocols for heat shock and hormesis experiments.
Collapse
Affiliation(s)
- Shannin C Zevian
- Magee-Womens Research Institute, University of Pittsburgh School of Medicine, 204 Craft Avenue, Pittsburgh, PA 15213, USA
| | - Judith L Yanowitz
- Magee-Womens Research Institute, University of Pittsburgh School of Medicine, 204 Craft Avenue, Pittsburgh, PA 15213, USA.
| |
Collapse
|
7
|
Chen HY, Zajitschek F, Maklakov AA. Why ageing stops: heterogeneity explains late-life mortality deceleration in nematodes. Biol Lett 2013; 9:20130217. [PMID: 24088560 DOI: 10.1098/rsbl.2013.0217] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
While ageing is commonly associated with exponential increase in mortality with age, mortality rates paradoxically decelerate late in life resulting in distinct mortality plateaus. Late-life mortality plateaus have been discovered in a broad variety of taxa, including humans, but their origin is hotly debated. One hypothesis argues that deceleration occurs because the individual probability of death stops increasing at very old ages, predicting the evolution of earlier onset of mortality plateaus under increased rate of extrinsic mortality. By contrast, heterogeneity theory suggests that mortality deceleration arises from individual differences in intrinsic lifelong robustness and predicts that variation in robustness between populations will result in differences in mortality deceleration. We used experimental evolution to directly test these predictions by independently manipulating extrinsic mortality rate (high or low) and mortality source (random death or condition-dependent) to create replicate populations of nematodes, Caenorhabditis remanei that differ in the strength of selection in late-life and in the level of lifelong robustness. Late-life mortality deceleration evolved in response to differences in mortality source when mortality rate was held constant, while there was no consistent response to differences in mortality rate. These results provide direct experimental support for the heterogeneity theory of late-life mortality deceleration.
Collapse
Affiliation(s)
- Hwei-yen Chen
- Ageing Research Group, Department of Animal Ecology, Evolutionary Biology Centre, Uppsala University, , Uppsala, Norbyvägen 18D 75236, Sweden
| | | | | |
Collapse
|
8
|
Lazarević J, Đorđević M, Stojković B, Tucić N. Resistance to prooxidant agent paraquat in the short- and long-lived lines of the seed beetle (Acanthoscelides obtectus). Biogerontology 2013; 14:141-52. [DOI: 10.1007/s10522-013-9417-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 03/04/2013] [Indexed: 01/25/2023]
|
9
|
Cypser JR, Wu D, Park SK, Ishii T, Tedesco PM, Mendenhall AR, Johnson TE. Predicting longevity in C. elegans: fertility, mobility and gene expression. Mech Ageing Dev 2013; 134:291-7. [PMID: 23416266 DOI: 10.1016/j.mad.2013.02.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 01/08/2013] [Accepted: 02/02/2013] [Indexed: 11/29/2022]
Abstract
Expression level of an hsp-16.2::gfp transgene is a predictor of longevity in Caenorhabditis elegans. Here we examine fertility, movement and longevity, comparing high-expressing ("bright") and low-expressing ("dim") animals. There was no differential fertility between bright and dim individuals, suggesting that dim worms were not excessively frail. Worms with high hsp-16.2::gfp expression had improved mobility, consistent with improved health span. We predicted that the increased longevity of the bright worms would be associated with increased expression of protective genes such as those shown to be upregulated in Age mutants. However, few genes were differentially transcribed, although internal controls (hsp-16.2 and family members) were differentially expressed. Quite surprising was the observation that expression level of the transgenic reporter was inherited by the progeny: in seven experiments bright worms consistently produced progeny that were brighter. We tested and ruled out possible artifacts such as differential copy-number of the transgene as an explanation of this differential brightness. These results suggest that a robust physiological state does not depend heavily upon transcriptional differences for its establishment, consistent with proteostatic mechanisms underlying the differential longevity.
Collapse
Affiliation(s)
- James R Cypser
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO 80303, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Chen HY, Maklakov AA. Longer life span evolves under high rates of condition-dependent mortality. Curr Biol 2012; 22:2140-3. [PMID: 23084993 DOI: 10.1016/j.cub.2012.09.021] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 09/07/2012] [Accepted: 09/10/2012] [Indexed: 12/26/2022]
Abstract
Aging affects nearly all organisms, but how aging evolves is still unclear. The central prediction of classic theory is that high extrinsic mortality leads to accelerated aging and shorter intrinsic life span. However, this prediction considers mortality as a random process, whereas mortality in nature is likely to be condition dependent. Therefore, the novel theory maintains that condition dependence may dramatically alter, and even reverse, the classic pattern. We present experimental evidence for the evolution of longer life span under high condition-dependent mortality. We employed an experimental evolution design, using a nematode, Caenorhabditis remanei, that allowed us to disentangle the effects of mortality rate (high versus low) and mortality source (random versus condition dependent). We observed the evolution of shorter life span under high random mortality, confirming the classic prediction. In contrast, high condition-dependent mortality led to the evolution of longer life span, supporting a key role of condition dependence in the evolution of aging. This life-span extension was not the result of a trade-off with reproduction. By simultaneously corroborating the classic results [8-10] and providing the first experimental evidence for the novel theory, our study resolves apparent contradictions in the study of aging and challenges the traditional paradigm by demonstrating that condition-environment interactions dictate the evolutionary trajectory of aging.
Collapse
Affiliation(s)
- Hwei-Yen Chen
- Ageing Research Group, Department of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, 752 36 Uppsala, Sweden
| | | |
Collapse
|
11
|
Rodriguez M, Snoek LB, Riksen JAG, Bevers RP, Kammenga JE. Genetic variation for stress-response hormesis in C. elegans lifespan. Exp Gerontol 2012; 47:581-7. [PMID: 22613270 DOI: 10.1016/j.exger.2012.05.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 04/17/2012] [Accepted: 05/07/2012] [Indexed: 12/01/2022]
Abstract
Increased lifespan can be associated with greater resistance to many different stressors, most notably thermal stress. Such hormetic effects have also been found in C. elegans where short-term exposure to heat lengthens the lifespan. Genetic investigations have been carried out using mutation perturbations in a single genotype, the wild type Bristol N2. Yet, induced mutations do not yield insight regarding the natural genetic variation of thermal tolerance and lifespan. We investigated the genetic variation of heat-shock recovery, i.e. hormetic effects on lifespan and associated quantitative trait loci (QTL) in C. elegans. Heat-shock resulted in an 18% lifespan increase in wild type CB4856 whereas N2 did not show a lifespan elongation. Using recombinant inbred lines (RILs) derived from a cross between wild types N2 and CB4856 we found natural variation in stress-response hormesis in lifespan. Approx. 28% of the RILs displayed a hormesis effect in lifespan. We did not find any hormesis effects for total offspring. Across the RILs there was no relation between lifespan and offspring. The ability to recover from heat-shock mapped to a significant QTL on chromosome II which overlapped with a QTL for offspring under heat-shock conditions. The QTL was confirmed by introgressing relatively small CB4856 regions into chromosome II of N2. Our observations show that there is natural variation in hormetic effects on C. elegans lifespan for heat-shock and that this variation is genetically determined.
Collapse
Affiliation(s)
- Miriam Rodriguez
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands
| | | | | | | | | |
Collapse
|
12
|
Pincus Z, Smith-Vikos T, Slack FJ. MicroRNA predictors of longevity in Caenorhabditis elegans. PLoS Genet 2011; 7:e1002306. [PMID: 21980307 PMCID: PMC3183074 DOI: 10.1371/journal.pgen.1002306] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 07/30/2011] [Indexed: 11/18/2022] Open
Abstract
Neither genetic nor environmental factors fully account for variability in individual longevity: genetically identical invertebrates in homogenous environments often experience no less variability in lifespan than outbred human populations. Such variability is often assumed to result from stochasticity in damage accumulation over time; however, the identification of early-life gene expression states that predict future longevity would suggest that lifespan is least in part epigenetically determined. Such "biomarkers of aging," genetic or otherwise, nevertheless remain rare. In this work, we sought early-life differences in organismal robustness in unperturbed individuals and examined the utility of microRNAs, known regulators of lifespan, development, and robustness, as aging biomarkers. We quantitatively examined Caenorhabditis elegans reared individually in a novel apparatus and observed throughout their lives. Early-to-mid-adulthood measures of homeostatic ability jointly predict 62% of longevity variability. Though correlated, markers of growth/muscle maintenance and of metabolic by-products ("age pigments") report independently on lifespan, suggesting that graceful aging is not a single process. We further identified three microRNAs in which early-adulthood expression patterns individually predict up to 47% of lifespan differences. Though expression of each increases throughout this time, mir-71 and mir-246 correlate with lifespan, while mir-239 anti-correlates. Two of these three microRNA "biomarkers of aging" act upstream in insulin/IGF-1-like signaling (IIS) and other known longevity pathways, thus we infer that these microRNAs not only report on but also likely determine longevity. Thus, fluctuations in early-life IIS, due to variation in these microRNAs and from other causes, may determine individual lifespan.
Collapse
Affiliation(s)
- Zachary Pincus
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
| | - Thalyana Smith-Vikos
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
| | - Frank J. Slack
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
| |
Collapse
|
13
|
Gidalevitz T, Prahlad V, Morimoto RI. The stress of protein misfolding: from single cells to multicellular organisms. Cold Spring Harb Perspect Biol 2011; 3:cshperspect.a009704. [PMID: 21536706 DOI: 10.1101/cshperspect.a009704] [Citation(s) in RCA: 173] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Organisms survive changes in the environment by altering their rates of metabolism, growth, and reproduction. At the same time, the system must ensure the stability and functionality of its macromolecules. Fluctuations in the environment are sensed by highly conserved stress responses and homeostatic mechanisms, and of these, the heat shock response (HSR) represents an essential response to acute and chronic proteotoxic damage. However, unlike the strategies employed to maintain the integrity of the genome, protection of the proteome must be tailored to accommodate the normal flux of nonnative proteins and the differences in protein composition between cells, and among individuals. Moreover, adult cells are likely to have significant differences in the rates of synthesis and clearance that are influenced by intrinsic errors in protein expression, genetic polymorphisms, and fluctuations in physiological and environmental conditions. Here, we will address how protein homeostasis (proteostasis) is achieved at the level of the cell and organism, and how the threshold of the stress response is set to detect and combat protein misfolding. For metazoans, the requirement for coordinated function and growth imposes additional constraints on the detection, signaling, and response to misfolding, and requires that the HSR is integrated into various aspects of organismal physiology, such as lifespan. This is achieved by hierarchical regulation of heat shock factor 1 (HSF1) by the metabolic state of the cell and centralized neuronal control that could allow optimal resource allocation between cells and tissues. We will examine how protein folding quality control mechanisms in individual cells may be integrated into a multicellular level of control, and further, even custom-designed to support individual variability and impose additional constraints on evolutionary adaptation.
Collapse
Affiliation(s)
- Tali Gidalevitz
- Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, Illinois 60208, USA
| | | | | |
Collapse
|
14
|
Bozhkov AI, Dlubovskaya VL, Dmitriev YV, Meshaikina NI, Maleev VA, Klimova EM. Supposed role of “Metabolic memory” in formation of response reaction to stress factors in young and adult organisms. ADVANCES IN GERONTOLOGY 2011. [DOI: 10.1134/s2079057011010048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Le Bourg E. A cold stress applied at various ages can increase resistance to heat and fungal infection in aged Drosophila melanogaster flies. Biogerontology 2010; 12:185-93. [PMID: 21132363 DOI: 10.1007/s10522-010-9309-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 11/24/2010] [Indexed: 11/30/2022]
Abstract
A cold stress applied to young flies can have positive effects on longevity, behavioral aging, and resistance to heat and infection. However, the same mild stress, if applied at older ages, i.e. in frailer flies, could be a strong stress with negative effects. Cold stress was applied at various ages (weeks 1-2, 2-3, 3-4, and 4-5) and its effect on longevity and on resistance at 6 weeks of age to heat or fungal infection was observed. In males, the cold stress had positive effects on longevity and resistance to infection, except when applied at the oldest age. No positive effect on longevity or resistance to infection was detected in cold-stressed females, as already observed in previous experiments using a cold stress at young age only. By contrast, cold stress applied at various ages increased resistance to heat in both sexes. Therefore, a mild stress can have positive effects on longevity and resistance to strong stresses not only when used at a young age, but also at older ages.
Collapse
Affiliation(s)
- Eric Le Bourg
- Centre de Recherche sur la Cognition Animale, UMR CNRS, Université Paul-Sabatier, Toulouse, France.
| |
Collapse
|
16
|
Pincus Z, Slack FJ. Developmental biomarkers of aging in Caenorhabditis elegans. Dev Dyn 2010; 239:1306-14. [PMID: 20151474 DOI: 10.1002/dvdy.22224] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The developmental process of the nematode Caenorhabditis elegans is famously invariant; however, these animals have surprisingly variable lifespans, even in extremely homogenous environments. Inter-individual differences in muscle-function decline, accumulation of lipofuscin in the gut, internal growth of food bacteria, and ability to mobilize heat-shock responses all appear to be predictive of a nematode's remaining lifespan; whether these are causal, or mere correlates of individual decline and death, has yet to be determined. Moreover, few "upstream" causes of inter-individual variability have been identified. It may be the case that variability in lifespan is entirely due to stochastic damage accumulation; alternately, perhaps such variability has a developmental origin and/or genes involved in developmental canalization also act to buffer phenotypic heterogeneity later in life. We review these two hypotheses with an eye toward whether they can be experimentally differentiated.
Collapse
Affiliation(s)
- Zachary Pincus
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA
| | | |
Collapse
|
17
|
Onodera A, Yanase S, Ishii T, Yasuda K, Miyazawa M, Hartman PS, Ishii N. Post-dauer life span of Caenorhabditis elegans dauer larvae can be modified by X-irradiation. JOURNAL OF RADIATION RESEARCH 2009; 51:67-71. [PMID: 19851044 DOI: 10.1269/jrr.09093] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The time spent as a dauer larva does not affect adult life span in Caenorhabditis elegans, as if aging is suspended in this quiescent developmental stage. We now report that modest doses X-irradiation of dauer larvae increased their post-dauer longevity. Post-irradiation incubation of young dauer larvae did not modify this beneficial effect of radiation. Conversely, holding dauer larvae prior to irradiation rendered them refractory to this X-radiation-induced response. We present a model to explain these results. These experiments demonstrate that dauer larvae provide an excellent opportunity to study mechanisms by which X irradiation can extend life span.
Collapse
Affiliation(s)
- Akira Onodera
- Department of Molecular Life Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, Japan
| | | | | | | | | | | | | |
Collapse
|
18
|
Gruber J, Ng LF, Poovathingal SK, Halliwell B. Deceptively simple but simply deceptive - Caenorhabditis elegans
lifespan studies: Considerations for aging and antioxidant effects. FEBS Lett 2009; 583:3377-87. [DOI: 10.1016/j.febslet.2009.09.051] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 09/01/2009] [Accepted: 09/29/2009] [Indexed: 01/01/2023]
|
19
|
Hormesis, aging and longevity. Biochim Biophys Acta Gen Subj 2009; 1790:1030-9. [DOI: 10.1016/j.bbagen.2009.01.004] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 01/14/2009] [Accepted: 01/15/2009] [Indexed: 12/31/2022]
|
20
|
Wu D, Cypser JR, Yashin AI, Johnson TE. Multiple mild heat-shocks decrease the Gompertz component of mortality in Caenorhabditis elegans. Exp Gerontol 2009; 44:607-12. [PMID: 19580861 PMCID: PMC2753291 DOI: 10.1016/j.exger.2009.06.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Revised: 06/03/2009] [Accepted: 06/29/2009] [Indexed: 01/06/2023]
Abstract
Exposure to mild heat-stress (heat-shock) can significantly increase the life expectancy of the nematode Caenorhabditis elegans. A single heat-shock early in life extends longevity by 20% or more and affects life-long mortality by decreasing initial mortality only; the rate of increase in subsequent mortality (Gompertz component) is unchanged. Repeated mild heat-shocks throughout life have a larger effect on life span than does a single heat-shock early in life. Here, we ask how multiple heat-shocks affect the mortality trajectory in nematodes and find increases of life expectancy of close to 50% and of maximum longevity as well. We examined mortality using large numbers of animals and found that multiple heat-shocks not only decrease initial mortality, but also slow the Gompertz rate of increase in mortality. Thus, multiple heat-shocks have anti-aging hormetic effects and represent an effective approach for modulating aging.
Collapse
Affiliation(s)
- Deqing Wu
- Institute for Behavioral Genetics, University of Colorado at Boulder, Boulder, CO 80309, USA.
| | | | | | | |
Collapse
|
21
|
Wu D, Cypser JR, Yashin AI, Johnson TE. The U-Shaped Response of Initial Mortality in Caenorhabditis elegans to Mild Heat Shock: Does It Explain Recent Trends in Human Mortality? J Gerontol A Biol Sci Med Sci 2008; 63:660-8. [DOI: 10.1093/gerona/63.7.660] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
22
|
Galbadage T, Hartman PS. Repeated temperature fluctuation extends the life span of Caenorhabditis elegans in a daf-16-dependent fashion. Mech Ageing Dev 2008; 129:507-14. [PMID: 18538371 DOI: 10.1016/j.mad.2008.04.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Revised: 03/21/2008] [Accepted: 04/12/2008] [Indexed: 11/18/2022]
Abstract
Thermocyclers were utilized to regularly shift nematodes between 12 degrees C and 25 degrees C throughout their life spans. When wild-type worms (N2) were "thermocycled" between 12 degrees C and 25 degrees C at 10-min intervals they lived almost as long as those that were incubated constantly at 12 degrees C. Shifting at 1-min or 1-h intervals lessened this effect. Similar results were observed for the long-lived mutants daf-2, eat-2 and clk-1, each of which prolongs life span through different mechanisms. In contrast, the life span of a daf-16 mutant was not prolonged by thermocycling worms, indicating that the effect is mediated by an insulin-like signaling pathway. To elucidate the molecular basis for the life span extension, two transgenic strains were employed in which heat shock proteins (HSPs) drove expression of the green fluorescent protein (GFP) gene. As expected, both HSPs were expressed at significantly higher levels in animals grown at 25 degrees C. Moreover, HSP expression in the thermocycled worms approximated that of animals grown at 25 degrees C more so than animals grown at 12 degrees C. This suggests that incubation at the higher temperatures for short time intervals induced stress-responsive gene expression that led to significant life span extension.
Collapse
|
23
|
Shoyama T, Ozaki T, Ishii N, Yokota S, Suda H. Basic principle of the lifespan in the nematode C. elegans. Mech Ageing Dev 2007; 128:529-37. [PMID: 17707465 DOI: 10.1016/j.mad.2007.07.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Revised: 07/02/2007] [Accepted: 07/06/2007] [Indexed: 11/16/2022]
Abstract
We present a biophysical model based on the principles of fluctuation and regulation to explain the effect of stochastics on survival. The model is a good fit for the survivorship and mortality rates observed in the nematode Caenorhabditis elegans. A parameter included in the theory, which is called the fluctuation constant, correlates well with a change (or declining rate) of respiration with age, which we term the physiological decline rate. The square of the physiological decline rate is proportional to the reciprocal of the fluctuation constant as revealed in a diffusion equation. In addition, the maximum and mean life spans are proportional to the reciprocal of the decline rate. The framework involved in the fluctuation theory is compatible with the existence of a regulatory system such as that acting in the insulin/insulin-like growth factor-1 (IGF-1) signaling pathway during adulthood, and that sensing, switching, and memorizing the rate of mitochondrial respiration early in life.
Collapse
Affiliation(s)
- Tetsuji Shoyama
- Department of Biological Science and Technology, School of High-technology for Human Welfare, Tokai University, 317 Nishino, Numazu, Shizuoka 410-0395, Japan
| | | | | | | | | |
Collapse
|
24
|
Houthoofd K, Vanfleteren JR. Public and private mechanisms of life extension in Caenorhabditis elegans. Mol Genet Genomics 2007; 277:601-17. [PMID: 17364197 DOI: 10.1007/s00438-007-0225-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Accepted: 02/20/2007] [Indexed: 12/18/2022]
Abstract
Model organisms have been widely used to study the ageing phenomenon in order to learn about human ageing. Although the phylogenetic diversity between vertebrates and some of the most commonly used model systems could hardly be greater, several mechanisms of life extension are public (common characteristic in divergent species) and likely share a common ancestry. Dietary restriction, reduced IGF-signaling and, seemingly, reduced ROS-induced damage are the best known mechanisms for extending longevity in a variety of organisms. In this review, we summarize the knowledge of ageing in the nematode Caenorhabditis elegans and compare the mechanisms of life extension with knowledge from other model organisms.
Collapse
Affiliation(s)
- Koen Houthoofd
- Department of Biology, Ghent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | | |
Collapse
|
25
|
Cypser JR, Tedesco P, Johnson TE. Hormesis and aging in Caenorhabditis elegans. Exp Gerontol 2006; 41:935-9. [PMID: 17067771 PMCID: PMC1847401 DOI: 10.1016/j.exger.2006.09.004] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2006] [Revised: 09/08/2006] [Accepted: 09/11/2006] [Indexed: 11/22/2022]
Abstract
Hormesis has emerged as an important manipulation for the study of aging. Although hormesis is manifested in manifold combinations of stress and model organism, the mechanisms of hormesis are only partly understood. The increased stress resistance and extended survival caused by hormesis can be manipulated to further our understanding of the roles of intrinsic and induced stress resistance in aging. Genes of the dauer/insulin/insulin-like signaling (IIS) pathway have well-established roles in aging in Caenorhabditis elegans. Here, we discuss the role of some of those genes in the induced stress resistance and induced life extension attributable to hormesis. Mutations in three genes (daf-16, daf-18, and daf-12) block hormetically induced life extension. However, of these three, only daf-18 appears to be required for a full induction of thermotolerance induced by hormesis, illustrating possible separation of the genetic requirements for stress resistance and life extension. Mutations in three other genes of this pathway (daf-3, daf-5, and age-1) do not block induced life extension or induced thermotolerance; daf-5 mutants may be unusually sensitive to hormetic conditions.
Collapse
Affiliation(s)
- James R Cypser
- University of Colorado, Institute for Behavioral Genetics, Box 447 Boulder, CO 80309, Fedex, 1480 30th St., Boulder, CO 80303, USA.
| | | | | |
Collapse
|
26
|
Olsen A, Vantipalli MC, Lithgow GJ. Lifespan extension of Caenorhabditis elegans following repeated mild hormetic heat treatments. Biogerontology 2006; 7:221-30. [PMID: 16826446 DOI: 10.1007/s10522-006-9018-x] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2005] [Accepted: 01/30/2006] [Indexed: 02/01/2023]
Abstract
Mild hormetic heat treatments early in life can significantly increase the lifespan of the nematode C. elegans. We have examined the effects of heat treatments at different ages and show that treatments early in life cause the largest increases in lifespan. We also find that repeated mild heat treatments throughout life have a larger effect on lifespan compared to a single mild heat treatment early in life. We hypothesize that the magnitude of the hormetic effect is related to the levels of heat shock protein expression. Following heat treatment young worms show a dramatic increase in the levels of the small heat shock protein HSP-16 whereas old worms are a 100-fold less responsive. The levels of the heat shock proteins HSP-4 and HSP-16 correlate well with the effects on lifespan by the hormetic treatments.
Collapse
Affiliation(s)
- Anders Olsen
- The Buck Institute, 8001 Redwood Blvd, Novato, CA 94945, USA.
| | | | | |
Collapse
|
27
|
Abstract
Aging is the most complex phenotype for a multicellular organism. This process is now being under severe investigation. Here I will review the different processes known to affect longevity in the nematode Caenorhabditis elegans and their relationship with thermotolerance. All the longevity mutants that have been tested so far show an increase in stress resistance. In particular, long-lived mutants affected in the IGF/insulin pathway and those affected in the germ-line formation are both thermotolerant and long-lived. The mechanisms that activate the stress resistance are now been understood including the DAF-16 fork head transcription factor transport to the nucleus and the activation of genes involved in the defense to stress. The high correlation between stress resistance and longevity suggests that the same molecular activities that defend the cell from stress can defend the cell from the damage caused by aging.
Collapse
|