1
|
Robinson AR, Yousefzadeh MJ, Rozgaja TA, Wang J, Li X, Tilstra JS, Feldman CH, Gregg SQ, Johnson CH, Skoda EM, Frantz MC, Bell-Temin H, Pope-Varsalona H, Gurkar AU, Nasto LA, Robinson RAS, Fuhrmann-Stroissnigg H, Czerwinska J, McGowan SJ, Cantu-Medellin N, Harris JB, Maniar S, Ross MA, Trussoni CE, LaRusso NF, Cifuentes-Pagano E, Pagano PJ, Tudek B, Vo NV, Rigatti LH, Opresko PL, Stolz DB, Watkins SC, Burd CE, Croix CMS, Siuzdak G, Yates NA, Robbins PD, Wang Y, Wipf P, Kelley EE, Niedernhofer LJ. Spontaneous DNA damage to the nuclear genome promotes senescence, redox imbalance and aging. Redox Biol 2018; 17:259-273. [PMID: 29747066 PMCID: PMC6006678 DOI: 10.1016/j.redox.2018.04.007] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 11/20/2022] Open
Abstract
Accumulation of senescent cells over time contributes to aging and age-related diseases. However, what drives senescence in vivo is not clear. Here we used a genetic approach to determine if spontaneous nuclear DNA damage is sufficient to initiate senescence in mammals. Ercc1-/∆ mice with reduced expression of ERCC1-XPF endonuclease have impaired capacity to repair the nuclear genome. Ercc1-/∆ mice accumulated spontaneous, oxidative DNA damage more rapidly than wild-type (WT) mice. As a consequence, senescent cells accumulated more rapidly in Ercc1-/∆ mice compared to repair-competent animals. However, the levels of DNA damage and senescent cells in Ercc1-/∆ mice never exceeded that observed in old WT mice. Surprisingly, levels of reactive oxygen species (ROS) were increased in tissues of Ercc1-/∆ mice to an extent identical to naturally-aged WT mice. Increased enzymatic production of ROS and decreased antioxidants contributed to the elevation in oxidative stress in both Ercc1-/∆ and aged WT mice. Chronic treatment of Ercc1-/∆ mice with the mitochondrial-targeted radical scavenger XJB-5-131 attenuated oxidative DNA damage, senescence and age-related pathology. Our findings indicate that nuclear genotoxic stress arises, at least in part, due to mitochondrial-derived ROS, and this spontaneous DNA damage is sufficient to drive increased levels of ROS, cellular senescence, and the consequent age-related physiological decline.
Collapse
Affiliation(s)
- Andria R Robinson
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261, USA; University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, PA 15232, USA; Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Matthew J Yousefzadeh
- Department of Molecular Medicine and the Center on Aging, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Tania A Rozgaja
- Department of Molecular Medicine and the Center on Aging, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Jin Wang
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Xuesen Li
- Department of Molecular Medicine and the Center on Aging, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Jeremy S Tilstra
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Chelsea H Feldman
- University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Siobhán Q Gregg
- University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, PA 15232, USA; Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA; Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | - Erin M Skoda
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Marie-Céline Frantz
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Harris Bell-Temin
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Hannah Pope-Varsalona
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Aditi U Gurkar
- Department of Molecular Medicine and the Center on Aging, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Luigi A Nasto
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Paediatric Orthopaedics, G. Gaslini Children's Hospital, Genoa, Italy
| | - Renã A S Robinson
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Heike Fuhrmann-Stroissnigg
- Department of Molecular Medicine and the Center on Aging, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Jolanta Czerwinska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Sara J McGowan
- Department of Molecular Medicine and the Center on Aging, The Scripps Research Institute, Jupiter, FL 33458, USA
| | | | - Jamie B Harris
- Department of Molecular Medicine and the Center on Aging, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Salony Maniar
- Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Mark A Ross
- Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Christy E Trussoni
- Division of Gastroenterology and Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, MN 55905, USA
| | - Nicholas F LaRusso
- Division of Gastroenterology and Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, MN 55905, USA
| | - Eugenia Cifuentes-Pagano
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Patrick J Pagano
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Barbara Tudek
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland; Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Nam V Vo
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Lora H Rigatti
- University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Patricia L Opresko
- University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, PA 15232, USA; Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Donna B Stolz
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Simon C Watkins
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Christin E Burd
- Department of Molecular Genetics, Cancer Biology and Genetics, The Ohio State University, Columbus OH 43210 USA
| | - Claudette M St Croix
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Gary Siuzdak
- The Scripps Research Institute California, La Jolla, CA 92037, USA
| | - Nathan A Yates
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Biomedical Mass Spectrometry Center, Schools of the Health Sciences University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Paul D Robbins
- University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, PA 15232, USA; Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA; Department of Molecular Medicine and the Center on Aging, The Scripps Research Institute, Jupiter, FL 33458, USA; Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Yinsheng Wang
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Eric E Kelley
- Department of Physiology & Pharmacology, West Virginia University, Morgantown, WV 26506, USA.
| | - Laura J Niedernhofer
- University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, PA 15232, USA; Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA; Department of Molecular Medicine and the Center on Aging, The Scripps Research Institute, Jupiter, FL 33458, USA.
| |
Collapse
|
5
|
Sadighi Akha AA, Harper JM, Salmon AB, Schroeder BA, Tyra HM, Rutkowski DT, Miller RA. Heightened induction of proapoptotic signals in response to endoplasmic reticulum stress in primary fibroblasts from a mouse model of longevity. J Biol Chem 2011; 286:30344-30351. [PMID: 21757703 DOI: 10.1074/jbc.m111.220541] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Previous work from our laboratory has shown that primary fibroblasts from long-lived Snell dwarf mice display a higher sensitivity to the lethal effects of endoplasmic reticulum (ER) stressors, such as thapsigargin, than cells from normal mice. Here we show that thapsigargin induces higher expression of CHOP, enhanced cleavage of caspase-12, higher caspase-3 activity, and increased phosphorylation of c-JUN, all indicators of enhanced apoptosis, in dwarf fibroblasts. Dwarf and normal fibroblasts show no genotypic difference in up-regulating BiP, GRP94, and ERp72 proteins after exposure to thapsigargin. However, dwarf fibroblasts express lower basal levels of a number of putative XBP1 target genes including Armet, Edem1, Erdj3, p58(IPK) and Sec61a1, as well as Ire1α itself. Furthermore, when exposed to thapsigargin, dwarf fibroblasts display attenuated splicing of Xbp1, but similar phosphorylation of eIF2α, in comparison to normal fibroblasts. These data support the notion that IRE1/XBP1 signaling is set at a lower level in dwarf fibroblasts. Diminished Xbp1 splicing in dwarf-derived fibroblasts may tilt the balance between prosurvival and proapoptotic signals in favor of apoptosis, thereby leading to higher induction of proapoptotic signals in these cells and ultimately their increased sensitivity to ER stressors. These results, together with recent findings in Caenorhabditis elegans daf-2 mutants, point to a potential interplay between insulin/IGF-1 signals and unfolded protein response signaling.
Collapse
Affiliation(s)
- Amir A Sadighi Akha
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109.
| | - James M Harper
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Adam B Salmon
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Bethany A Schroeder
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Heather M Tyra
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - D Thomas Rutkowski
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - Richard A Miller
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109; Geriatrics Center, University of Michigan Medical School, Ann Arbor, Michigan 48109; Ann Arbor Veterans Affairs Medical Center, Ann Arbor, Michigan 48105
| |
Collapse
|