1
|
Keilich SR, Cadar AN, Ahern DT, Torrance BL, Lorenzo EC, Martin DE, Haynes L, Bartley JM. Altered T cell infiltration and enrichment of leukocyte regulating pathways within aged skeletal muscle are associated impaired muscle function following influenza infection. GeroScience 2023; 45:1197-1213. [PMID: 36580167 PMCID: PMC9886695 DOI: 10.1007/s11357-022-00715-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/09/2022] [Indexed: 12/30/2022] Open
Abstract
Older adults have diminished immune responses that increase susceptibility to infectious diseases, such as influenza (flu). In older adults, flu infection can lead to hospitalization, catastrophic disability, and mortality. We previously demonstrated severe and prolonged muscle degradation and atrophy in aged mice during flu infection. Here, we utilized an unbiased transcriptomic analysis to elucidate mechanisms of flu-induced muscular declines in a mouse model. Our results showed age-related gene expression differences including downregulation of genes associated with muscle regeneration and organization and upregulation of genes associated with pro-inflammatory cytokines and migratory immune pathways in aged mice when compared to young. Pathway analysis revealed significant enrichment of leukocyte migration and T cell activation pathways in the aged muscle during infection. Intramuscular CD4 T cells increased in both young and aged mice during infection, while intramuscular CD8 T cells increased exclusively in aged muscle. CD4 T cells in young muscle were regulatory T cells (Treg), while those in aged were T follicular helper (Tfh) and Th2 cells. Correspondingly, IL-33, an important cytokine for Treg accumulation within tissue, increased only in young flu-infected muscle. Conversely, CXCL10 (IP-10) increased only in aged muscle suggesting a continued recruitment of CD8 T cells into the aged muscle during flu infection. Overall, our findings elucidate a link between flu-induced disability and dysregulated intracellular T cell recruitment into flu-injured muscle with aging. Furthermore, we uncovered potential pathways involved that can be targeted to develop preventative and therapeutic interventions to avert disability and maintain independence following infection.
Collapse
Affiliation(s)
- Spencer R Keilich
- UConn Center On Aging, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
- Millipore Sigma, 400 Summit Drive, Burlington, MA, 01803, USA
| | - Andreia N Cadar
- UConn Center On Aging, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
| | - Darcy T Ahern
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
- Intellia Therapeutics, 40 Erie St, Cambridge, MA, 02139, USA
| | - Blake L Torrance
- UConn Center On Aging, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
| | - Erica C Lorenzo
- UConn Center On Aging, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
| | - Dominique E Martin
- UConn Center On Aging, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
| | - Laura Haynes
- UConn Center On Aging, University of Connecticut School of Medicine, Farmington, CT, 06030, USA.
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT, 06030, USA.
| | - Jenna M Bartley
- UConn Center On Aging, University of Connecticut School of Medicine, Farmington, CT, 06030, USA.
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT, 06030, USA.
| |
Collapse
|
2
|
Froggatt HM, Heaton NS. Nonrespiratory sites of influenza-associated disease: mechanisms and experimental systems for continued study. FEBS J 2022; 289:4038-4060. [PMID: 35060315 PMCID: PMC9300775 DOI: 10.1111/febs.16363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/20/2021] [Accepted: 01/19/2022] [Indexed: 12/15/2022]
Abstract
The productive replication of human influenza viruses is almost exclusively restricted to cells in the respiratory tract. However, a key aspect of the host response to viral infection is the production of inflammatory cytokines and chemokines that are not similarly tissue restricted. As such, circulating inflammatory mediators, as well as the resulting activated immune cells, can induce damage throughout the body, particularly in individuals with underlying conditions. As a result, more holistic experimental approaches are required to fully understand the pathogenesis and scope of influenza virus-induced disease. This review summarizes what is known about some of the most well-appreciated nonrespiratory tract sites of influenza virus-induced disease, including neurological, cardiovascular, gastrointestinal, muscular and fetal developmental phenotypes. In the context of this discussion, we describe the in vivo experimental systems currently being used to study nonrespiratory symptoms. Finally, we highlight important future questions and potential models that can be used for a more complete understanding of influenza virus-induced disease.
Collapse
Affiliation(s)
- Heather M. Froggatt
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Nicholas S. Heaton
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| |
Collapse
|