1
|
Forte G, Donghia R, Lepore Signorile M, Tatoli R, Bonfiglio C, Losito F, De Marco K, Manghisi A, Guglielmi FA, Disciglio V, Fasano C, Sanese P, Cariola F, Buonadonna AL, Grossi V, Giannelli G, Simone C. Exploring the Relationship of rs2802292 with Diabetes and NAFLD in a Southern Italian Cohort-Nutrihep Study. Int J Mol Sci 2024; 25:9512. [PMID: 39273459 PMCID: PMC11394752 DOI: 10.3390/ijms25179512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
Background: The minor G-allele of FOXO3 rs2802292 is associated with human longevity. The aim of this study was to test the protective effect of the variant against the association with type 2 Diabetes and NAFLD. Methods: rs2802292 was genotyped in a large population of middle-aged subjects (n = 650) from a small city in Southern Italy. All participants were interviewed to collect information about lifestyle and dietary habits; clinical characteristics were recorded, and blood samples were collected from all subjects. The association between rs2802292 and NAFLD or diabetes was tested using a logistic model and mediation analysis adjusted for covariates. Results: Overall, the results indicated a statistical association between diabetes and rs2802292, especially for the TT genotype (OR = 2.14, 1.01 to 4.53 95% C.I., p = 0.05) or in any case for those who possess the G-allele (OR = 0.45, 0.25 to 0.81 95% C.I., p = 0.008). Furthermore, we found a mediation effect of rs2802292 on diabetes (as mediator) and NAFLD. There is no direct relationship between rs2802292 and NAFLD, but the effect is direct (β = 0.10, -0.003 to 0.12 95% C.I., p = 0.04) on diabetes, but only in TT genotypes. Conclusions: The data on our cohort indicate that the longevity-associated FOXO3 variant may have protective effects against diabetes and NAFLD.
Collapse
Affiliation(s)
- Giovanna Forte
- Medical Genetics, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, 70013 Castellana Grotte, Italy
| | - Rossella Donghia
- Data Science Unit, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, 70013 Castellana Grotte, Italy
| | - Martina Lepore Signorile
- Medical Genetics, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, 70013 Castellana Grotte, Italy
| | - Rossella Tatoli
- Data Science Unit, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, 70013 Castellana Grotte, Italy
| | - Caterina Bonfiglio
- Data Science Unit, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, 70013 Castellana Grotte, Italy
| | - Francesco Losito
- Gastroenterology Unit, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, 70013 Castellana Grotte, Italy
| | - Katia De Marco
- Medical Genetics, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, 70013 Castellana Grotte, Italy
| | - Andrea Manghisi
- Medical Genetics, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, 70013 Castellana Grotte, Italy
| | - Filomena Anna Guglielmi
- Medical Genetics, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, 70013 Castellana Grotte, Italy
| | - Vittoria Disciglio
- Medical Genetics, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, 70013 Castellana Grotte, Italy
| | - Candida Fasano
- Medical Genetics, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, 70013 Castellana Grotte, Italy
| | - Paola Sanese
- Medical Genetics, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, 70013 Castellana Grotte, Italy
| | - Filomena Cariola
- Medical Genetics, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, 70013 Castellana Grotte, Italy
| | - Antonia Lucia Buonadonna
- Medical Genetics, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, 70013 Castellana Grotte, Italy
| | - Valentina Grossi
- Medical Genetics, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, 70013 Castellana Grotte, Italy
| | - Gianluigi Giannelli
- Scientific Direction, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, 70013 Castellana Grotte, Italy
| | - Cristiano Simone
- Medical Genetics, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, 70013 Castellana Grotte, Italy
- Medical Genetics, Department of Precision and Regenerative Medicine and Jonic Area (DiMePRe-J), University of Bari Aldo Moro, 70124 Bari, Italy
| |
Collapse
|
2
|
Nakagawa K, Chen R, Ross GW, Donlon TA, Allsopp RC, Willcox DC, Morris BJ, Willcox BJ, Masaki KH. FOXO3 longevity genotype attenuates the impact of hypertension on cerebral microinfarct risk. J Hypertens 2024; 42:484-489. [PMID: 38009316 PMCID: PMC10873049 DOI: 10.1097/hjh.0000000000003620] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
OBJECTIVE The G -allele of FOXO3 SNP rs2802292 , which is associated with human resilience and longevity, has been shown to attenuate the impact of hypertension on the risk of intracerebral hemorrhage (ICH). We sought to determine whether the FOXO3 G -allele similarly attenuates the impact of hypertension on the risk of cerebral microinfarcts (CMI). METHODS From a prospective population-based cohort of American men of Japanese ancestry from the Kuakini Honolulu Heart Program (KHHP) and Kuakini Honolulu-Asia Aging Study (KHAAS) that had brain autopsy data, age-adjusted prevalence of any CMI on brain autopsy was assessed. Logistic regression models, adjusted for age at death, cardiovascular risk factors, FOXO3 and APOE-ε4 genotypes, were utilized to determine the predictors of any CMI. Interaction of FOXO3 genotype and hypertension was analyzed. RESULTS Among 809 men with complete data, 511 (63.2%) participants had evidence of CMI. A full multivariable model demonstrated that BMI [odds ratio (OR) 1.07, 95% confidence interval (CI) 1.01-1.14, P = 0.015) was the only predictor of CMI, while hypertension was a borderline predictor (OR 1.44, 95% CI 1.00-2.08, P = 0.052). However, a significant interaction between FOXO3 G -allele carriage and hypertension was observed ( P = 0.020). In the stratified analyses, among the participants without the longevity-associated FOXO3 G -allele, hypertension was a strong predictor of CMI (OR 2.25, 95% CI 1.34-3.77, P = 0.002), while among those with the longevity-associated FOXO3 G -allele, hypertension was not a predictor of CMI (OR 0.88, 95% CI 0.51-1.54, P = 0.66). CONCLUSION The longevity-associated FOXO3 G -allele mitigates the impact of hypertension on the risk of CMI.
Collapse
Affiliation(s)
- Kazuma Nakagawa
- Center of Biomedical Research Excellence on Aging, Department of Research, Kuakini Medical Center
- Neuroscience Institute, The Queen's Medical Center
- Department of Medicine, John A. Burns School of Medicine, University of Hawaii
| | - Randi Chen
- Center of Biomedical Research Excellence on Aging, Department of Research, Kuakini Medical Center
| | - G Webster Ross
- Department of Medicine, John A. Burns School of Medicine, University of Hawaii
- Pacific Health Research and Education Institute
- Veterans Affairs Pacific Islands Healthcare Systems
- Department of Geriatric Medicine
| | - Timothy A Donlon
- Center of Biomedical Research Excellence on Aging, Department of Research, Kuakini Medical Center
- Department of Geriatric Medicine
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii
| | - Richard C Allsopp
- Institute for Biogenesis Research, University of Hawaii, Honolulu, Hawaii, USA
| | - D Craig Willcox
- Center of Biomedical Research Excellence on Aging, Department of Research, Kuakini Medical Center
- Department of Human Welfare, Okinawa International University, Ginowan, Okinawa, Japan
| | - Brian J Morris
- Center of Biomedical Research Excellence on Aging, Department of Research, Kuakini Medical Center
- Department of Geriatric Medicine
- School of Medical Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Bradley J Willcox
- Center of Biomedical Research Excellence on Aging, Department of Research, Kuakini Medical Center
- Department of Geriatric Medicine
| | - Kamal H Masaki
- Center of Biomedical Research Excellence on Aging, Department of Research, Kuakini Medical Center
- Department of Geriatric Medicine
| |
Collapse
|
3
|
Allemann MS, Lee P, Beer JH, Saeedi Saravi SS. Targeting the redox system for cardiovascular regeneration in aging. Aging Cell 2023; 22:e14020. [PMID: 37957823 PMCID: PMC10726899 DOI: 10.1111/acel.14020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 09/09/2023] [Accepted: 10/05/2023] [Indexed: 11/15/2023] Open
Abstract
Cardiovascular aging presents a formidable challenge, as the aging process can lead to reduced cardiac function and heightened susceptibility to cardiovascular diseases. Consequently, there is an escalating, unmet medical need for innovative and effective cardiovascular regeneration strategies aimed at restoring and rejuvenating aging cardiovascular tissues. Altered redox homeostasis and the accumulation of oxidative damage play a pivotal role in detrimental changes to stem cell function and cellular senescence, hampering regenerative capacity in aged cardiovascular system. A mounting body of evidence underscores the significance of targeting redox machinery to restore stem cell self-renewal and enhance their differentiation potential into youthful cardiovascular lineages. Hence, the redox machinery holds promise as a target for optimizing cardiovascular regenerative therapies. In this context, we delve into the current understanding of redox homeostasis in regulating stem cell function and reprogramming processes that impact the regenerative potential of the cardiovascular system. Furthermore, we offer insights into the recent translational and clinical implications of redox-targeting compounds aimed at enhancing current regenerative therapies for aging cardiovascular tissues.
Collapse
Affiliation(s)
- Meret Sarah Allemann
- Center for Molecular CardiologyUniversity of ZurichSchlierenSwitzerland
- Department of Internal MedicineCantonal Hospital BadenBadenSwitzerland
| | - Pratintip Lee
- Center for Molecular CardiologyUniversity of ZurichSchlierenSwitzerland
- Department of Internal MedicineCantonal Hospital BadenBadenSwitzerland
| | - Jürg H. Beer
- Center for Molecular CardiologyUniversity of ZurichSchlierenSwitzerland
- Department of Internal MedicineCantonal Hospital BadenBadenSwitzerland
| | - Seyed Soheil Saeedi Saravi
- Center for Translational and Experimental Cardiology, Department of CardiologyUniversity Hospital Zurich, University of ZurichSchlierenSwitzerland
| |
Collapse
|
4
|
Chang ZS, He ZM, Xia JB. FoxO3 Regulates the Progress and Development of Aging and Aging-Related Diseases. Curr Mol Med 2023; 23:991-1006. [PMID: 36239722 DOI: 10.2174/1566524023666221014140817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 11/22/2022]
Abstract
Aging is an inevitable risk factor for many diseases, including cardiovascular diseases, neurodegenerative diseases, cancer, and diabetes. Investigation into the molecular mechanisms involved in aging and longevity will benefit the treatment of age-dependent diseases and the development of preventative medicine for agingrelated diseases. Current evidence has revealed that FoxO3, encoding the transcription factor (FoxO)3, a key transcription factor that integrates different stimuli in the intrinsic and extrinsic pathways and is involved in cell differentiation, protein homeostasis, stress resistance and stem cell status, plays a regulatory role in longevity and in age-related diseases. However, the precise mechanisms by which the FoxO3 transcription factor modulates aging and promotes longevity have been unclear until now. Here, we provide a brief overview of the mechanisms by which FoxO3 mediates signaling in pathways involved in aging and aging-related diseases, as well as the current knowledge on the role of the FoxO3 transcription factor in the human lifespan and its clinical prospects. Ultimately, we conclude that FoxO3 signaling pathways, including upstream and downstream molecules, may be underlying therapeutic targets in aging and age-related diseases.
Collapse
Affiliation(s)
- Zao-Shang Chang
- Department of Physiology, School of Basic Medical Sciences, Shaoyang University, Shaoyang 422000, Hunan, China
| | - Zhi-Ming He
- Department of Physiology, School of Basic Medical Sciences, Shaoyang University, Shaoyang 422000, Hunan, China
| | - Jing-Bo Xia
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Guangzhou Sport University, Guangzhou 510500, Guangdong, China
| |
Collapse
|
5
|
Energy Homeostasis Gene Nucleotide Variants and Survival of Hemodialysis Patients-A Genetic Cohort Study. J Clin Med 2022; 11:jcm11185477. [PMID: 36143124 PMCID: PMC9501434 DOI: 10.3390/jcm11185477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/11/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Patients undergoing hemodialysis (HD) therapy have an increased risk of death compared to the general population. We investigated whether selected single nucleotide variants (SNVs) involved in glucose and lipid metabolism are associated with mortality risk in HD patients. Methods: The study included 805 HD patients tested for 11 SNVs in FOXO3, IGFBP3, FABP1, PCSK9, ANGPTL6, and DOCK6 using HRM analysis and TaqMan assays. FOXO3, IGFBP3, L-FABP, PCSK9, ANGPTL6, and ANGPTL8 plasma concentrations were measured by ELISA in 86 individuals. The Kaplan–Meier method and Cox proportional hazards models were used for survival analyses. Results: We found out that the carriers of a C allele in ANGPTL6 rs8112063 had an increased risk of all-cause, cardiovascular, and cardiac mortality. In addition, the C allele of DOCK6 rs737337 was associated with all-cause and cardiac mortality. The G allele of DOCK6 rs17699089 was correlated with the mortality risk of patients initiating HD therapy. The T allele of FOXO3 rs4946936 was negatively associated with cardiac and cardiovascular mortality in HD patients. We observed no association between the tested proteins’ circulating levels and the survival of HD patients. Conclusions: The ANGPTL6 rs8112063, FOXO3 rs4946936, DOCK6 rs737337, and rs17699089 nucleotide variants are predictors of survival in patients undergoing HD.
Collapse
|
6
|
Donlon TA, Morris BJ, Masaki KH, Chen R, Davy PMC, Kallianpur KJ, Nakagawa K, Owens JB, Willcox DC, Allsopp RC, Willcox BJ. FOXO3, a Resilience Gene: Impact on Lifespan, Healthspan, and Deathspan. J Gerontol A Biol Sci Med Sci 2022; 77:1479-1484. [PMID: 35960854 PMCID: PMC9373965 DOI: 10.1093/gerona/glac132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Timothy A Donlon
- Center of Biomedical Research Excellence for Translational Research on Aging and Department of Research, Kuakini Medical Center, Honolulu, Hawaii, USA
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Brian J Morris
- Center of Biomedical Research Excellence for Translational Research on Aging and Department of Research, Kuakini Medical Center, Honolulu, Hawaii, USA
- Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
- School of Medical Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Kamal H Masaki
- Center of Biomedical Research Excellence for Translational Research on Aging and Department of Research, Kuakini Medical Center, Honolulu, Hawaii, USA
- Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Randi Chen
- Center of Biomedical Research Excellence for Translational Research on Aging and Department of Research, Kuakini Medical Center, Honolulu, Hawaii, USA
| | - Phillip M C Davy
- Center of Biomedical Research Excellence for Translational Research on Aging and Department of Research, Kuakini Medical Center, Honolulu, Hawaii, USA
- Institute for Biogenesis Research, University of Hawaii, Honolulu, Hawaii, USA
| | - Kalpana J Kallianpur
- Center of Biomedical Research Excellence for Translational Research on Aging and Department of Research, Kuakini Medical Center, Honolulu, Hawaii, USA
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Kazuma Nakagawa
- Center of Biomedical Research Excellence for Translational Research on Aging and Department of Research, Kuakini Medical Center, Honolulu, Hawaii, USA
- Neuroscience Institute, The Queen’s Medical Center, Honolulu, Hawaii, USA
- Department of Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Jesse B Owens
- Center of Biomedical Research Excellence for Translational Research on Aging and Department of Research, Kuakini Medical Center, Honolulu, Hawaii, USA
- Institute for Biogenesis Research, University of Hawaii, Honolulu, Hawaii, USA
| | - D Craig Willcox
- Center of Biomedical Research Excellence for Translational Research on Aging and Department of Research, Kuakini Medical Center, Honolulu, Hawaii, USA
- Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
- Department of Human Welfare, Okinawa International University, Ginowan, Okinawa, Japan
| | - Richard C Allsopp
- Center of Biomedical Research Excellence for Translational Research on Aging and Department of Research, Kuakini Medical Center, Honolulu, Hawaii, USA
- Institute for Biogenesis Research, University of Hawaii, Honolulu, Hawaii, USA
| | - Bradley J Willcox
- Center of Biomedical Research Excellence for Translational Research on Aging and Department of Research, Kuakini Medical Center, Honolulu, Hawaii, USA
- Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| |
Collapse
|