1
|
Jia Y, Shi M, Yang P, Wang R, Sun L, Wang Y, Xu Q, Zhang J, Zhang Q, Guo D, Zheng X, Liu Y, Chang X, He Y, Hui L, Chen GC, Zhang Y, Zhu Z. Associations of computer gaming with incident dementia, cognitive functions, and brain structure: a prospective cohort study and Mendelian randomization analysis. Alzheimers Res Ther 2024; 16:131. [PMID: 38898507 PMCID: PMC11186151 DOI: 10.1186/s13195-024-01496-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Computer gaming has recently been suggested to be associated with benefits for cognition, but its impact on incident dementia remains uncertain. We aimed to investigate the observational associations of playing computer games with incident dementia, cognitive functions, and brain structural measures, and further explore the genetic associations between computer gaming and dementia. METHODS We included 471,346 White British participants without dementia at baseline based on the UK Biobank, and followed them until November 2022. We estimated the risk of dementia using Cox proportional hazard models, and assessed the changes of cognitive functions and brain structural measures using logistic regression models and linear regression models. Mendelian randomization (MR) analyses were performed to examine the association between genetically determined computer gaming and dementia. RESULTS High frequency of playing computer games was associated with decreased risk of incident dementia (HR, 0.81 [95% CI: 0.69, 0.94]). Individuals with high frequency of playing computer games had better performance in prospective memory (OR, 1.46 [1.26, 1.70]), reaction time (beta, -0.195 [-0.243, -0.147]), fluid intelligence (0.334 [0.286, 0.382]), numeric memory (0.107 [0.047, 0.166]), incorrect pairs matching (-0.253 [-0.302, -0.203]), and high volume of gray matter in hippocampus (0.078 [0.023, 0.134]). Genetically determined high frequency of playing computer games was associated with a low risk of dementia (OR, 0.37 [0.15, 0.91]). CONCLUSIONS Computer gaming was associated with a decreased risk of dementia, favorable cognitive function, and better brain structure, suggesting that computer gaming could modulate cognitive function and may be a promising target for dementia prevention.
Collapse
Affiliation(s)
- Yiming Jia
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, 199 Renai Road, Industrial Park District, Suzhou, Jiangsu Province, 215123, China
| | - Mengyao Shi
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, 199 Renai Road, Industrial Park District, Suzhou, Jiangsu Province, 215123, China
| | - Pinni Yang
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, 199 Renai Road, Industrial Park District, Suzhou, Jiangsu Province, 215123, China
| | - Ruirui Wang
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, 199 Renai Road, Industrial Park District, Suzhou, Jiangsu Province, 215123, China
| | - Lulu Sun
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, 199 Renai Road, Industrial Park District, Suzhou, Jiangsu Province, 215123, China
| | - Yinan Wang
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, 199 Renai Road, Industrial Park District, Suzhou, Jiangsu Province, 215123, China
| | - Qingyun Xu
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, 199 Renai Road, Industrial Park District, Suzhou, Jiangsu Province, 215123, China
| | - Jing Zhang
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, 199 Renai Road, Industrial Park District, Suzhou, Jiangsu Province, 215123, China
| | - Qilu Zhang
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, 199 Renai Road, Industrial Park District, Suzhou, Jiangsu Province, 215123, China
| | - Daoxia Guo
- School of Nursing, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, 215006, China
| | - Xiaowei Zheng
- Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province, 214122, China
| | - Yi Liu
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, 199 Renai Road, Industrial Park District, Suzhou, Jiangsu Province, 215123, China
| | - Xinyue Chang
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, 199 Renai Road, Industrial Park District, Suzhou, Jiangsu Province, 215123, China
| | - Yu He
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, 199 Renai Road, Industrial Park District, Suzhou, Jiangsu Province, 215123, China
| | - Li Hui
- Research Center of Biological Psychiatry, The Affiliated Guangji Hospital of Soochow University, Suzhou, Jiangsu Province, 215003, China
| | - Guo-Chong Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, 215123, China
| | - Yonghong Zhang
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, 199 Renai Road, Industrial Park District, Suzhou, Jiangsu Province, 215123, China.
| | - Zhengbao Zhu
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, 199 Renai Road, Industrial Park District, Suzhou, Jiangsu Province, 215123, China.
| |
Collapse
|
2
|
Zhang R, Tao X, Sun R, Dai T, Xi X, Sun W, Song L, Gong W. Cognitive-exercise dual-task promotes cognitive function recovery in chronic cerebral ischemia male rats through regulating PI3K/Akt signaling pathway via inhibition of EphrinA3/EphA4. J Neurosci Res 2024; 102. [PMID: 38284844 DOI: 10.1002/jnr.25275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/23/2023] [Accepted: 10/29/2023] [Indexed: 01/30/2024]
Abstract
Chronic cerebral ischemia (CCI) can lead to vascular cognitive impairment, but therapeutic options are limited. Cognitive-exercise dual-task (CEDT), as a potential rehabilitation intervention, can attenuate cognitive impairment. However, the related mechanisms remain unclear. In this study, 2-vessel occlusion (2-VO) in male SD rats was performed to establish the CCI model. The rats were treated with cognitive, exercise, or CEDT intervention for 21 days. The Morris water maze (MWM) test was used to assess cognitive ability. TUNEL staining was used to detect the neuronal apoptosis. Immunofluorescence, RT-qPCR and Western blot were used to detect the protein or mRNA levels of EphrinA3, EphA4, p-PI3K, and p-Akt. The results showed that CEDT could improve performance in the MWM test, reverse the increased expression of EphrinA3 and EphA4, and the reduced expression of p-PI3K and p-Akt in CCI rats, which was superior to exercise and cognitive interventions. In vitro, oxygenglucose deprivation (OGD) challenge of astrocytes and neuronal cells were used to mimic cerebral ischemia. Immunofluorescence assay revealed that the levels of MAP-2, p-PI3K, and p-Akt were reduced in EphrinA3 overexpressed cells after OGD stimulation. Finally, the knock-down of EphrinA3 by shRNA significantly promoted the recovery of cognitive function and activation of PI3K/Akt after CEDT treatment in CCI rats. In conclusion, our study suggests that CEDT promotes cognitive function recovery after CCI by regulating the signaling axis of EphrinA3/EphA4/PI3K/Akt.
Collapse
Affiliation(s)
- Rong Zhang
- Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
- Beijing Rehabilitation Medicine Academy, Capital Medical University, Beijing, China
- The Second Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China
| | - Xue Tao
- Department of Research, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Ruifeng Sun
- Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
- Beijing Rehabilitation Medicine Academy, Capital Medical University, Beijing, China
| | - Tengteng Dai
- The Second Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China
| | - XiaoShuang Xi
- Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
- Beijing Rehabilitation Medicine Academy, Capital Medical University, Beijing, China
| | - Weishuang Sun
- Rehabilitation Medicine Academy, Weifang Medical University, Weifang, China
| | - Li Song
- Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
- Beijing Rehabilitation Medicine Academy, Capital Medical University, Beijing, China
| | - Weijun Gong
- Department of Neurological Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| |
Collapse
|