1
|
Johnson C, Zhu L, Mangalindan R, Whitson J, Sweetwyne M, Valencia AP, Marcinek DJ, Rabinovitch P, Ladiges W. Older-aged C57BL/6 mice fed a diet high in saturated fat and sucrose for ten months show decreased resilience to aging. AGING PATHOBIOLOGY AND THERAPEUTICS 2023; 5:101-106. [PMID: 38706773 PMCID: PMC11067904 DOI: 10.31491/apt.2023.09.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
The ability to respond to physical stress that disrupts normal physiological homeostasis at an older age embraces the concept of resilience to aging. A physical stressor could be used to induce physiological responses that are age-related, since resilience declines with increasing age. Increased fat and sugar intake is a nutritional stress with a high prevalence of obesity in older people. In order to determine the effect of this type of diet on resilience to aging, 18-month-old C57BL/6J male mice were fed a diet high in saturated fat (lard) and sucrose (HFS) for ten months. At the end of the 10-month study, mice fed the HFS diet showed increased cognitive impairment, decreased cardiac function, decreased strength and agility, and increased severity of renal pathology compared to mice fed a rodent chow diet low in saturated fat and sucrose (LFS). The degree of response aligned with decreased resilience to the long-term adverse effects of the diet with characteristics of accelerated aging. This observation suggests additional studies could be conducted to investigate the relationship between an accelerated decline in resilience to aging and enhanced resilience to aging under different dietary conditions.
Collapse
Affiliation(s)
- Chloe Johnson
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA, USA
| | - Lida Zhu
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA, USA
| | - Ruby Mangalindan
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA, USA
| | - Jeremy Whitson
- Department of Biology, Davidson College, Davidson, NC, USA
| | - Maryia Sweetwyne
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Ana P. Valencia
- Department of Radiology, School of Medicine, University of Washington, Seattle, WA, USA
| | - David J. Marcinek
- Department of Radiology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Peter Rabinovitch
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Warren Ladiges
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
2
|
Nickel K, Zhu L, Mangalindan R, Snyder JM, Tucker M, Whitson J, Sweetwyne M, Valencia AP, Klug J, Jiang Z, Marcinek DJ, Rabinovitch P, Ladiges W. Long-term treatment with Elamipretide enhances healthy aging phenotypes in mice. AGING PATHOBIOLOGY AND THERAPEUTICS 2022; 4:76-83. [PMID: 36250163 PMCID: PMC9562127 DOI: 10.31491/apt.2022.09.089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Background Disruption of metabolic and bioenergetic homeostasis related to mitochondrial dysfunction is a key driver of aging biology. Therefore, targeting mitochondrial function would be a rational approach to slowing aging. Elamipretide (Elam, a.k.a. SS-31) is a peptide known to target mitochondria and suppress mammalian signs of aging. The present study was designed to examine the phenotypic effects of long-term Elam treatment on aging in C57BL/6 mice starting at 18 months of age. Methods Mice were fed regular chow (RC diet) or a diet high in fat and sugar (HF diet) and treated with 3 mg/kg of Elam or saline subcutaneously 5 days per week for 10 months. Physiological performance assessments were conducted at 28 months of age. Results Elam improved the physical performance of males but not females, while in females Elam improved cognitive performance and enhanced the maintenance of body weight and fat mass. It also improved diastolic function in both males and females, but to a greater extent in males. The HF diet over 10 months had a negative effect on health span, as it increased body fat and decreased muscle strength and heart function, especially in females. Conclusions Elam enhanced healthy aging and cardiac function in both male and female mice, although the specific effects on function differed between sexes. In females, the treatment led to better cognitive performance and maintenance of body composition, while in males, performance on a rotating rod was preserved. These overall observations have translational implications for considering additional studies using Elam in therapeutic or preventive approaches for aging and age-related diseases.
Collapse
Affiliation(s)
- Katie Nickel
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA, USA
| | - Lida Zhu
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA, USA
| | - Ruby Mangalindan
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA, USA
| | - Jessica M. Snyder
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA, USA
| | - Matthew Tucker
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA, USA
| | - Jeremy Whitson
- Department of Biology, Davidson College, Davidson, NC, USA
| | - Maryia Sweetwyne
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Ana P. Valencia
- Department of Radiology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Jenna Klug
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA, USA
| | - Zhou Jiang
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA, USA
| | - David J. Marcinek
- Department of Radiology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Peter Rabinovitch
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Warren Ladiges
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
3
|
Yousefzadeh MJ, Robbins PD, Huffman DM. Heterochronic parabiosis: a valuable tool to investigate cellular senescence and other hallmarks of aging. Aging (Albany NY) 2022; 14:3325-3328. [PMID: 35417855 PMCID: PMC9037264 DOI: 10.18632/aging.204015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/02/2022] [Indexed: 11/26/2022]
Abstract
Parabiosis is a well-established method to facilitate a shared blood supply between two conjoined animals. In particular, the pairing of mice of dissimilar ages, termed heterochronic parabiosis, has been used extensively for differentiating cell autonomous and non-autonomous mechanisms of aging. Analysis of heterochronic parabionts also has helped to identify individual circulating factors that may act as either pro- or anti-geronics. Heterochronic parabiosis also has proven to be a valuable experimental system to evaluate the effects of specific hallmarks of aging on the process of aging. For example, heterochronic parabiosis was used recently to examine whether cellular senescence was driven via cell autonomous and/or non-autonomous mechanisms. As anticipated, markers of cellular senescence were elevated in old isochronically-paired mice relative to young controls. However, compared to old isochronically paired mice, the senescent cell burden was reduced in multiple tissues of old parabionts joined with young mice. This suggests that the rejuvenation of cells and tissues in old mice by exposure to young blood could be mediated, in part, through suppression or immune clearance of senescent cells. Conversely, young heterochronic parabionts showed increased markers of cellular senescence, demonstrating that exposure to an old circulation is able to drive senescence through a cell non-autonomous mechanism(s), likely contributing to accelerated aging in the young mice. Thus, heterochronic parabiosis is still an important methodology that should continue to be leveraged for evaluating other hallmarks of aging and their mechanisms.
Collapse
Affiliation(s)
- Matthew J Yousefzadeh
- Institute on the Biology of Aging and Metabolism and Department of Biochemistry, Molecular Biology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Paul D Robbins
- Institute on the Biology of Aging and Metabolism and Department of Biochemistry, Molecular Biology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Derek M Huffman
- Departments of Molecular Pharmacology and Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA.,Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
4
|
Ladiges W. Geropathology. An inside view of biological aging. AGING PATHOBIOLOGY AND THERAPEUTICS 2022; 4:23-24. [PMID: 35497910 PMCID: PMC9053873 DOI: 10.31491/apt.2022.03.078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The geropathology concept assumes all age-related lesions are relevant, which allows the ability to grade each lesion in an organ with a severity score resulting in a quantitative value. Because aging pet cats have similar age-related diseases as older humans, knowledge of histopathology occurring during aging would be invaluable to determine how age-related lesions progress with increasing age and the connection with comorbidities. The ability to use the severity of specific organ geropathology to predict biological aging would provide new approaches to study pathways of aging and their role in the development of age-related diseases in animal models.
Collapse
Affiliation(s)
- Warren Ladiges
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
5
|
Palliyaguru DL, Vieira Ligo Teixeira C, Duregon E, di Germanio C, Alfaras I, Mitchell SJ, Navas-Enamorado I, Shiroma EJ, Studenski S, Bernier M, Camandola S, Price NL, Ferrucci L, de Cabo R. Study of Longitudinal Aging in Mice: Presentation of Experimental Techniques. J Gerontol A Biol Sci Med Sci 2021; 76:552-560. [PMID: 33211821 DOI: 10.1093/gerona/glaa285] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Indexed: 12/11/2022] Open
Abstract
Aging is associated with functional and metabolic decline and is a risk factor for all noncommunicable diseases. Even though mice are routinely used for modeling human aging and aging-related conditions, no comprehensive assessment to date has been conducted on normative mouse aging. To address this gap, the Study of Longitudinal Aging in Mice (SLAM) was designed and implemented by the National Institute on Aging (NIA/NIH) as the mouse counterpart to the Baltimore Longitudinal Study of Aging (BLSA). In this manuscript, we describe the premise, study design, methodologies, and technologies currently employed in SLAM. We also discuss current and future study directions. In this large population mouse study, inbred C57BL/6J and outbred UM-HET3 mice of both sexes are longitudinally evaluated for functional, phenotypic, and biological health, and collection of biospecimens is conducted throughout their life span. Within the longitudinal cohorts, a cross-sectional arm of the study has also been implemented for the well-controlled collection of tissues to generate a biorepository. SLAM and studies stemming from SLAM seek to identify and characterize phenotypic and biological predictors of mouse aging and age-associated conditions, examine the degrees of functional and biomolecular variability that occur within inbred and genetically heterogeneous mouse populations with age, and assess whether these changes are consistent with alterations observed in human aging in BLSA. The findings from these studies will be critical for evaluating the utility of mouse models for studying different aspects of aging, both in terms of interpreting prior findings and designing and implementing future studies.
Collapse
Affiliation(s)
- Dushani L Palliyaguru
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Camila Vieira Ligo Teixeira
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Eleonora Duregon
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Clara di Germanio
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA.,Vitalant Research Institute, San Francisco, California, USA
| | - Irene Alfaras
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA.,Aging Institute of UPMC and the University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sarah J Mitchell
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA.,Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Ignacio Navas-Enamorado
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA.,Boston University School of Medicine, Massachusetts, USA
| | - Eric J Shiroma
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Stephanie Studenski
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Michel Bernier
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Simonetta Camandola
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Nathan L Price
- Department of Comparative Medicine, Yale University, New Haven, Connecticut, USA
| | - Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| |
Collapse
|
6
|
Heterochronic parabiosis regulates the extent of cellular senescence in multiple tissues. GeroScience 2020; 42:951-961. [PMID: 32285290 DOI: 10.1007/s11357-020-00185-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 03/24/2020] [Indexed: 12/14/2022] Open
Abstract
An increase in the burden of senescent cells in tissues with age contributes to driving aging and the onset of age-related diseases. Genetic and pharmacologic elimination of senescent cells extends both health span and life span in mouse models. Heterochronic parabiosis in mice has been used to identify bloodborne, circulating pro- and anti-geronic factors able to drive or slow aging, respectively. However, whether factors in the circulation also regulate senescence is unknown. Here, we measured the expression of senescence and senescence-associated secretory phenotype (SASP) markers in multiple tissues from 4- to 18-month-old male mice that were either isochronically or heterochronically paired for 2 months. In heterochronic parabionts, the age-dependent increase in senescence and SASP marker expression was reduced in old mice exposed to a young environment, while senescence markers were concurrently increased in young heterochronic parabionts. These findings were supported by geropathology analysis using the Geropathology Grading Platform that showed a trend toward reduced hepatic lesions in old heterochronic parabionts. In summary, these results demonstrate that senescence is regulated in part by circulating geronic factors and suggest that one of the possible mediators of the rejuvenating effects with heterochronic parabiosis is through the reduction of the senescent cell burden.
Collapse
|
7
|
Snyder JM, Snider TA, Ciol MA, Wilkinson JE, Imai DM, Casey KM, Vilches-Moure JG, Pettan-Brewer C, Pillai SPS, Carrasco SE, Salimi S, Ladiges W. Validation of a geropathology grading system for aging mouse studies. GeroScience 2019; 41:455-465. [PMID: 31468322 DOI: 10.1007/s11357-019-00088-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/31/2019] [Indexed: 12/24/2022] Open
Abstract
An understanding of early-onset mechanisms underlying age-related changes can be obtained by evaluating changes that precede frailty and end of life using histological characterization of age-related lesions. Histopathology-based information as a component of aging studies in mice can complement and add context to molecular, cellular, and physiologic data, but there is a lack of information regarding scoring criteria and lesion grading guidelines. This report describes the validation of a grading system, designated as the geropathology grading platform (GGP), which generated a composite lesion score (CLS) for comparison of histological lesion scores in tissues from aging mice. To assess reproducibility of the scoring system, multiple veterinary pathologists independently scored the same slides from the heart, lung, liver, and kidney from two different strains (C57BL/6 and CB6F1) of male mice at 8, 16, 24, and 32 months of age. There was moderate to high agreement between pathologists, particularly when agreement within a 1-point range was considered. CLS for all organs was significantly higher in older versus younger mice, suggesting that the GGP was reliable for detecting age-related pathology in mice. The overall results suggest that the GGP guidelines reliably distinguish between younger and older mice and may therefore be accurate in distinguishing between experimental groups of mice with more, or less, age-related pathology.
Collapse
Affiliation(s)
- Jessica M Snyder
- Department of Comparative Medicine, University of Washington, Seattle, WA, USA
| | - Timothy A Snider
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK, USA
| | - Marcia A Ciol
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA, USA
| | - John E Wilkinson
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Denise M Imai
- Department of Veterinary Pathology, UC Davis, Davis, CA, USA
| | - Kerriann M Casey
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Jose G Vilches-Moure
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | | | | | - Sebastian E Carrasco
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Shabnam Salimi
- School of Medicine, University of Maryland, College Park, MD, USA
| | - Warren Ladiges
- Department of Comparative Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
8
|
The Geropathology Grading Platform demonstrates that mice null for Cu/Zn-superoxide dismutase show accelerated biological aging. GeroScience 2018; 40:97-103. [PMID: 29478190 PMCID: PMC5964058 DOI: 10.1007/s11357-018-0008-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 01/25/2018] [Indexed: 01/26/2023] Open
Abstract
The Geropathology Grading Platform (GGP) that is being developed by the Geropathology Research Network provides a grading system that allows investigators to assess biological aging in mice by measuring the pathological status of a wide range of tissues in a standardized scoring system. The GGP is a grading system that generates a numerical score for the total lesions in each tissue, which when averaged over the mice in the cohort provides a composite lesion score (CLS) for each tissue and mouse. In this study, we tested ability of the GGP to predict accelerated aging in mice null for Cu/Zn-superoxide dismutase (Sod1KO mice), which have been shown to have reduced lifespan and healthspan. Using the GGP, we evaluated the pathological status of 11 tissues from male and female wild-type (WT) and Sod1KO mice at 9 to 10 months of age. The whole animal CLS was 2- to 3.5-fold higher for both male and female Sod1KO mice compared to WT mice. The tissues most affected in the Sod1KO mice were the liver, lung, and kidney. These data demonstrate that the GGP is able to predict the accelerated aging phenotype observed in the Sod1KO mice and correlates with the changes in healthspan that have been reported for Sod1KO mice. Thus, the GGP is a new paradigm for evaluating the effect of an intervention on the pathological status of an animal as well as the healthspan of the mice.
Collapse
|
9
|
Ladiges W, Liggitt D. Testing drug combinations to slow aging. PATHOBIOLOGY OF AGING & AGE RELATED DISEASES 2017; 8:1407203. [PMID: 29291036 PMCID: PMC5706479 DOI: 10.1080/20010001.2017.1407203] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Warren Ladiges
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA,
| | - Denny Liggitt
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA,
| |
Collapse
|
10
|
Mitnitski A, Howlett SE, Rockwood K. Heterogeneity of Human Aging and Its Assessment. J Gerontol A Biol Sci Med Sci 2017; 72:877-884. [PMID: 27216811 DOI: 10.1093/gerona/glw089] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 04/27/2016] [Indexed: 01/15/2023] Open
Abstract
Understanding the heterogeneity in health of older adults is a compelling question in the biology of aging. We analyzed the performance of five measures of health heterogeneity, judging them by their ability to predict mortality. Using clinical and biomarker data on 1,013 participants of the Canadian Study of Health and Aging who were followed for up to 6 years, we calculated two indices of biological age using the Klemera and Doubal method, which controversially includes using chronological age as a "biomarker," and three frailty indices (FIs) that do not include chronological age: a standard clinical FI, an FI from standard laboratory blood tests and blood pressure, and their combination (FI-combined). Predictive validity was tested using Cox proportional hazards analysis and discriminative ability by the area under the receiver-operating characteristic curves. All five measures showed moderate performance that was improved by combining measures to evaluate larger numbers of items. The greatest addition in explanatory power came from the FI-combined that showed the best mortality prediction in an age-adjusted model. More extensive comparisons across different databases are required, but these results do not support including chronological age as a biomarker.
Collapse
Affiliation(s)
| | - Susan E Howlett
- Department of Medicine and.,Department of Pharmacology (Division of Geriatric Medicine), Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Physiology, Institute of Cardiovascular Sciences and
| | - Kenneth Rockwood
- Department of Medicine and.,Department of Geriatric Medicine and Institute of Brain, Behaviour and Neurosciences, University of Manchester, UK
| |
Collapse
|
11
|
Ladiges W, Snyder JM, Wilkinson E, Imai DM, Snider T, Ge X, Ciol M, Pettan-Brewer C, Pillai SPS, Morton J, Quarles E, Rabinovitch P, Niedernhofer L, Liggitt D. A New Preclinical Paradigm for Testing Anti-Aging Therapeutics. J Gerontol A Biol Sci Med Sci 2017; 72:760-762. [PMID: 28329081 DOI: 10.1093/gerona/glx019] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Testing drugs for anti-aging effects has historically been conducted in mouse life-span studies, but are costly and time consuming, and more importantly, difficult to recapitulate in humans. In addition, life-span studies in mice are not well suited to testing drug combinations that target multiple factors involved in aging. Additional paradigms for testing therapeutics aimed at slowing aging are needed. A new paradigm, designated as the Geropathology Grading Platform (GGP), is based on a standardized set of guidelines developed to detect the presence or absence of low-impact histopathological lesions and to determine the level of severity of high-impact lesions in organs from aged mice. The GGP generates a numerical score for each age-related lesion in an organ, summed for total lesions, and averaged over multiple mice to obtain a composite lesion score (CLS). Preliminary studies show that the platform generates CLSs that increase with the age of mice in an organ-dependent manner. The CLSs are sensitive enough to detect changes elicited by interventions that extend mouse life span, and thus help validate the GGP as a novel tool to measure biological aging. While currently optimized for mice, the GGP could be adapted to any preclinical animal model.
Collapse
Affiliation(s)
- Warren Ladiges
- Department of Comparative Medicine, University of Washington, Seattle.,Department of Pathology, University of Washington, Seattle
| | - Jessica M Snyder
- Department of Comparative Medicine, University of Washington, Seattle
| | - Erby Wilkinson
- Department of Pathology, University of Michigan, Ann Arbor
| | - Denise M Imai
- Department of Veterinary Pathology, UC Davis, California
| | - Tim Snider
- Department of Veterinary Pathology, Oklahoma State University, Stillwater
| | - Xuan Ge
- Department of Comparative Medicine, University of Washington, Seattle
| | - Marcia Ciol
- Department of Rehabilitation Medicine, University of Washington, Seattle
| | | | | | - John Morton
- Department of Comparative Medicine, University of Washington, Seattle
| | - Ellen Quarles
- Department of Pathology, University of Washington, Seattle
| | | | - Laura Niedernhofer
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, Florida
| | - Denny Liggitt
- Department of Comparative Medicine, University of Washington, Seattle
| |
Collapse
|
12
|
Ladiges W. The emerging role of geropathology in preclinical aging studies. PATHOBIOLOGY OF AGING & AGE RELATED DISEASES 2017; 7:1304005. [PMID: 28515861 PMCID: PMC5421367 DOI: 10.1080/20010001.2017.1304005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 02/27/2017] [Indexed: 10/26/2022]
Affiliation(s)
- Warren Ladiges
- Department of Comparative Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
13
|
Treuting PM, Snyder JM, Ikeno Y, Schofield PN, Ward JM, Sundberg JP. The Vital Role of Pathology in Improving Reproducibility and Translational Relevance of Aging Studies in Rodents. Vet Pathol 2016; 53:244-9. [PMID: 26792843 PMCID: PMC4835687 DOI: 10.1177/0300985815620629] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Pathology is a discipline of medicine that adds great benefit to aging studies of rodents by integrating in vivo, biochemical, and molecular data. It is not possible to diagnose systemic illness, comorbidities, and proximate causes of death in aging studies without the morphologic context provided by histopathology. To date, many rodent aging studies do not utilize end points supported by systematic necropsy and histopathology, which leaves studies incomplete, contradictory, and difficult to interpret. As in traditional toxicity studies, if the effect of a drug, dietary treatment, or altered gene expression on aging is to be studied, systematic pathology analysis must be included to determine the causes of age-related illness, moribundity, and death. In this Commentary, the authors discuss the factors that should be considered in the design of aging studies in mice, with the inclusion of robust pathology practices modified after those developed by toxicologic and discovery research pathologists. Investigators in the field of aging must consider the use of histopathology in their rodent aging studies in this era of integrative and preclinical geriatric science (geroscience).
Collapse
Affiliation(s)
- P M Treuting
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA, USA
| | - J M Snyder
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA, USA
| | - Y Ikeno
- Barshop Institute and Department of Pathology, University of Texas Health Science Center at San Antonio; Research Service and Geriatric Research and Education Clinical Center, Audie L. Murphy VA Hospital, South Texas Veterans Health Care System, San Antonio, TX, USA
| | - P N Schofield
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK The Jackson Laboratory, Bar Harbor, ME, USA
| | - J M Ward
- Global VetPathology, Montgomery Village, MD, USA
| | | |
Collapse
|
14
|
Hilmer SN, Le Couteur DG. Standardized, Multidisciplinary Approaches for the Study of Aging Biology and for Translation of Aging Interventions. J Gerontol A Biol Sci Med Sci 2016; 71:425-6. [PMID: 26791090 DOI: 10.1093/gerona/glv310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 12/19/2015] [Indexed: 11/12/2022] Open
Affiliation(s)
- Sarah N Hilmer
- Kolling Institute of Medical Research, Royal North Shore Hospital and University of Sydney, Australia.
| | - David G Le Couteur
- Ageing and Alzheimers Institute and ANZAC Research Institute, Concord Hospital, Australia. The Charles Perkins Centre, University of Sydney, Australia
| |
Collapse
|