1
|
Morris BJ, Chen R, Donlon TA, Kallianpur KJ, Masaki KH, Willcox BJ. Vascular endothelial growth factor receptor 1 gene ( FLT1) longevity variant increases lifespan by reducing mortality risk posed by hypertension. Aging (Albany NY) 2023; 15:3967-3983. [PMID: 37178326 PMCID: PMC10257998 DOI: 10.18632/aging.204722] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
Longevity is written into the genes. While many so-called "longevity genes" have been identified, the reason why particular genetic variants are associated with longer lifespan has proven to be elusive. The aim of the present study was to test the hypothesis that the strongest of 3 adjacent longevity-associated single nucleotide polymorphisms - rs3794396 - of the vascular endothelial growth factor receptor 1 gene, FLT1, may confer greater lifespan by protecting against mortality risk from one or more adverse medical conditions of aging - namely, hypertension, coronary heart disease (CHD), stroke, and diabetes. In a prospective population-based longitudinal study we followed 3,471 American men of Japanese ancestry living on Oahu, Hawaii, from 1965 until death or to the end of December 2019 by which time 99% had died. Cox proportional hazards models were used to assess the association of FLT1 genotype with longevity for 4 genetic models and the medical conditions. We found that, in major allele recessive and heterozygote disadvantage models, genotype GG ameliorated the risk of mortality posed by hypertension, but not that posed by having CHD, stroke or diabetes. Normotensive subjects lived longest and there was no significant effect of FLT1 genotype on their lifespan. In conclusion, the longevity-associated genotype of FLT1 may confer increased lifespan by protecting against mortality risk posed by hypertension. We suggest that FLT1 expression in individuals with longevity genotype boosts vascular endothelial resilience mechanisms to counteract hypertension-related stress in vital organs and tissues.
Collapse
Affiliation(s)
- Brian J. Morris
- NIH Center of Biomedical Research Excellence for Clinical and Translational Research on Aging, Kuakini Medical Center, Honolulu, HI 96817, USA
- Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
- School of Medical Sciences, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Randi Chen
- NIH Center of Biomedical Research Excellence for Clinical and Translational Research on Aging, Kuakini Medical Center, Honolulu, HI 96817, USA
| | - Timothy A. Donlon
- NIH Center of Biomedical Research Excellence for Clinical and Translational Research on Aging, Kuakini Medical Center, Honolulu, HI 96817, USA
- Department of Cell and Molecular Biology and Department of Pathology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| | - Kalpana J. Kallianpur
- NIH Center of Biomedical Research Excellence for Clinical and Translational Research on Aging, Kuakini Medical Center, Honolulu, HI 96817, USA
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| | - Kamal H. Masaki
- NIH Center of Biomedical Research Excellence for Clinical and Translational Research on Aging, Kuakini Medical Center, Honolulu, HI 96817, USA
- Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| | - Bradley J. Willcox
- NIH Center of Biomedical Research Excellence for Clinical and Translational Research on Aging, Kuakini Medical Center, Honolulu, HI 96817, USA
- Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| |
Collapse
|
2
|
Morris BJ, Chen R, Donlon TA, Masaki KH, Willcox DC, Allsopp RC, Willcox BJ. Lifespan extension conferred by mitogen-activated protein kinase kinase kinase 5 ( MAP3K5) longevity-associated gene variation is confined to at-risk men with a cardiometabolic disease. Aging (Albany NY) 2021; 13:7953-7974. [PMID: 33739303 PMCID: PMC8034933 DOI: 10.18632/aging.202844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/05/2021] [Indexed: 12/16/2022]
Abstract
Genetic variants of the kinase signaling gene MAP3K5 are associated with longevity. Here we explore whether the longevity-association involves protection against mortality in all individuals, or only in individuals with aging-related diseases. We tested the strongest longevity associated single nucleotide polymorphism (SNP), rs2076260, for association with mortality in 3,516 elderly American men of Japanese ancestry. At baseline (1991-1993), 2,461 had either diabetes (n=990), coronary heart disease (CHD; n=724), or hypertension (n=1,877), and 1,055 lacked any of these cardiometabolic diseases (CMDs). The men were followed from baseline until Dec 31, 2019. Longevity-associated genotype CC in a major allele homozygote model, and CC+TT in a heterozygote disadvantage model were associated with longer lifespan in individuals having a CMD (covariate-adjusted hazard ratio [HR] 1.23 [95% CI: 1.12-1.35, p=2.5x10-5] in major allele homozygote model, and 1.22 [95% CI: 1.11-1.33, p=1.10x10-5] in heterozygote disadvantage model). For diabetes, hypertension and CHD, HR p-values were 0.019, 0.00048, 0.093, and 0.0024, 0.00040, 0.0014, in each respective genetic model. As expected, men without a CMD outlived men with a CMD (p=1.9x10-6). There was, however, no difference in lifespan by genotype in men without a CMD (p=0.21 and 0.86, respectively, in each genetic model). In conclusion, we propose that in individuals with a cardiometabolic disease, longevity-associated genetic variation in MAP3K5 enhances resilience mechanisms in cells and tissues to help protect against cardiometabolic stress caused by CMDs. As a result, men with CMD having longevity genotype live as long as all men without a CMD.
Collapse
Affiliation(s)
- Brian J. Morris
- Department of Research, Kuakini Medical Center, Honolulu, HI 96817, USA
- Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
- School of Medical Sciences, University of Sydney, New South Wales, Australia
| | - Randi Chen
- Department of Research, Kuakini Medical Center, Honolulu, HI 96817, USA
| | - Timothy A. Donlon
- Department of Research, Kuakini Medical Center, Honolulu, HI 96817, USA
- Department of Cell and Molecular Biology and Department of Pathology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| | - Kamal H. Masaki
- Department of Research, Kuakini Medical Center, Honolulu, HI 96817, USA
- Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| | - D. Craig Willcox
- Department of Research, Kuakini Medical Center, Honolulu, HI 96817, USA
- Department of Human Welfare, Okinawa International University, Okinawa, Japan
| | - Richard C. Allsopp
- Institute for Biogenesis Research, University of Hawaii, Honolulu, HI 96822, USA
| | - Bradley J. Willcox
- Department of Research, Kuakini Medical Center, Honolulu, HI 96817, USA
- Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| |
Collapse
|
3
|
Eyeing the Extracellular Matrix in Vascular Development and Microvascular Diseases and Bridging the Divide between Vascular Mechanics and Function. Int J Mol Sci 2020; 21:ijms21103487. [PMID: 32429045 PMCID: PMC7278940 DOI: 10.3390/ijms21103487] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 12/20/2022] Open
Abstract
The extracellular matrix (ECM) is critical in all aspects of vascular development and health: supporting cell anchorage, providing structure, organization and mechanical stability, and serving as a sink for growth factors and sustained survival signals. Abnormal changes in ECM protein expression, organization, and/or properties, and the ensuing changes in vascular compliance affect vasodilator responses, microvascular pressure transmission, and collateral perfusion. The changes in microvascular compliance are independent factors initiating, driving, and/or exacerbating a plethora of microvascular diseases of the eye including diabetic retinopathy (DR) and vitreoretinopathy, retinopathy of prematurity (ROP), wet age-related macular degeneration (AMD), and neovascular glaucoma. Congruently, one of the major challenges with most vascular regenerative therapies utilizing localized growth factor, endothelial progenitor, or genetically engineered cell delivery, is the regeneration of blood vessels with physiological compliance properties. Interestingly, vascular cells sense physical forces, including the stiffness of their ECM, through mechanosensitive integrins, their associated proteins and the actomyosin cytoskeleton, which generates biochemical signals that culminate in a rapid expression of matricellular proteins such as cellular communication network 1 (CCN1) and CCN2 (aka connective tissue growth factor or CTGF). Loss or gain of function of these proteins alters genetic programs of cell growth, ECM biosynthesis, and intercellular signaling, that culminate in changes in cell behavior, polarization, and barrier function. In particular, the function of the matricellular protein CCN2/CTGF is critical during retinal vessel development and regeneration wherein new blood vessels form and invest a preformed avascular neural retina following putative gradients of matrix stiffness. These observations underscore the need for further in-depth characterization of the ECM-derived cues that dictate structural and functional properties of the microvasculature, along with the development of new therapeutic strategies addressing the ECM-dependent regulation of pathophysiological stiffening of blood vessels in ischemic retinopathies.
Collapse
|
4
|
Kunugi H, Mohammed Ali A. Royal Jelly and Its Components Promote Healthy Aging and Longevity: From Animal Models to Humans. Int J Mol Sci 2019; 20:ijms20194662. [PMID: 31547049 PMCID: PMC6802361 DOI: 10.3390/ijms20194662] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/18/2019] [Accepted: 09/18/2019] [Indexed: 02/07/2023] Open
Abstract
Aging is a natural phenomenon that occurs in all living organisms. In humans, aging is associated with lowered overall functioning and increased mortality out of the risk for various age-related diseases. Hence, researchers are pushed to find effective natural interventions that can promote healthy aging and extend lifespan. Royal jelly (RJ) is a natural product that is fed to bee queens throughout their entire life. Thanks to RJ, bee queens enjoy an excellent reproductive function and lengthened lifespan compared with bee workers, despite the fact that they have the same genome. This review aimed to investigate the effect of RJ and/or its components on lifespan/healthspan in various species by evaluating the most relevant studies. Moreover, we briefly discussed the positive effects of RJ on health maintenance and age-related disorders in humans. Whenever possible, we explored the metabolic, molecular, and cellular mechanisms through which RJ can modulate age-related mechanisms to extend lifespan. RJ and its ingredients—proteins and their derivatives e.g., royalactin; lipids e.g., 10-hydroxydecenoic acid; and vitamins e.g., pantothenic acid—improved healthspan and extended lifespan in worker honeybees Apis mellifera, Drosophila Melanogaster flies, Gryllus bimaculatus crickets, silkworms, Caenorhabditis elegans nematodes, and mice. The longevity effect was attained via various mechanisms: downregulation of insulin-like growth factors and targeting of rapamycin, upregulation of the epidermal growth factor signaling, dietary restriction, and enhancement of antioxidative capacity. RJ and its protein and lipid ingredients have the potential to extend lifespan in various creatures and prevent senescence of human tissues in cell cultures. These findings pave the way to inventing specific RJ anti-aging drugs. However, much work is needed to understand the effect of RJ interactions with microbiome, diet, activity level, gender, and other genetic variation factors that affect healthspan and longevity.
Collapse
Affiliation(s)
- Hiroshi Kunugi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8551, Japan.
| | - Amira Mohammed Ali
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8551, Japan.
- Department of Psychiatric Nursing and Mental Health, Faculty of Nursing, Alexandria University, Alexandria 21527, Egypt.
| |
Collapse
|
5
|
Morris BJ, Willcox BJ, Donlon TA. Genetic and epigenetic regulation of human aging and longevity. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1718-1744. [PMID: 31109447 PMCID: PMC7295568 DOI: 10.1016/j.bbadis.2018.08.039] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/02/2018] [Accepted: 08/28/2018] [Indexed: 02/06/2023]
Abstract
Here we summarize the latest data on genetic and epigenetic contributions to human aging and longevity. Whereas environmental and lifestyle factors are important at younger ages, the contribution of genetics appears more important in reaching extreme old age. Genome-wide studies have implicated ~57 gene loci in lifespan. Epigenomic changes during aging profoundly affect cellular function and stress resistance. Dysregulation of transcriptional and chromatin networks is likely a crucial component of aging. Large-scale bioinformatic analyses have revealed involvement of numerous interaction networks. As the young well-differentiated cell replicates into eventual senescence there is drift in the highly regulated chromatin marks towards an entropic middle-ground between repressed and active, such that genes that were previously inactive "leak". There is a breakdown in chromatin connectivity such that topologically associated domains and their insulators weaken, and well-defined blocks of constitutive heterochromatin give way to generalized, senescence-associated heterochromatin, foci. Together, these phenomena contribute to aging.
Collapse
Affiliation(s)
- Brian J Morris
- Basic & Clinical Genomics Laboratory, School of Medical Sciences and Bosch Institute, University of Sydney, New South Wales 2006, Australia; Honolulu Heart Program (HHP)/Honolulu-Asia Aging Study (HAAS), Department of Research, Kuakini Medical Center, Honolulu, HI 96817, United States; Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Kuakini Medical Center Campus, Honolulu, HI 96813, United States.
| | - Bradley J Willcox
- Honolulu Heart Program (HHP)/Honolulu-Asia Aging Study (HAAS), Department of Research, Kuakini Medical Center, Honolulu, HI 96817, United States; Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Kuakini Medical Center Campus, Honolulu, HI 96813, United States.
| | - Timothy A Donlon
- Honolulu Heart Program (HHP)/Honolulu-Asia Aging Study (HAAS), Department of Research, Kuakini Medical Center, Honolulu, HI 96817, United States; Departments of Cell & Molecular Biology and Pathology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, United States.
| |
Collapse
|
6
|
Donlon TA, Morris BJ, Chen R, Masaki KH, Allsopp RC, Willcox DC, Tiirikainen M, Willcox BJ. Analysis of Polymorphisms in 59 Potential Candidate Genes for Association With Human Longevity. J Gerontol A Biol Sci Med Sci 2018; 73:1459-1464. [PMID: 29300832 PMCID: PMC6175033 DOI: 10.1093/gerona/glx247] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Indexed: 12/12/2022] Open
Abstract
Longevity is a polygenic trait in which genetic predisposition is particularly important. We hypothesized that among genes differentially expressed in response to caloric restriction, several may be candidate longevity genes. We tested 459 single-nucleotide polymorphisms (SNPs) in 47 genes differentially expressed in calorically restricted mice and 12 other genes for association with longevity. Subjects were American men of Japanese ancestry, 440 aged ≥95 years and 374 with an average life span. Based on a dominant model of inheritance, an association with longevity at the p < .05 level was seen for SNPs in 13 of the genes. Testing by all possible models increased the number of genes to 18. After correction for multiple testing, four genes retained significance, namely, MAP3K5 (p = .00004), SIRT7 (p = .00004), SIRT5 (p = .0007), and PIK3R1 (p = .01). In a dominant model, association with longevity was seen for multiple adjacent SNPs within two of these genes (MAP3K5 and PIK3R1), as well as in FLT1, consistent with linkage disequilibrium with a causative variant in the vicinity of each respective SNP set. MAP3K5 and FLT1 haplotypes were associated with longevity. In conclusion, the present study implicates variation in MAP3K5, FLT1, PIK3R1, SIRT7, and SIRT5 in human longevity.
Collapse
Affiliation(s)
- Timothy A Donlon
- Department of Research, Honolulu Heart Program/Honolulu-Asia Aging Study (HAAS), Kuakini Medical Center, Hawaii
- John A. Burns School of Medicine, University of Hawaii, Honolulu
| | - Brian J Morris
- Department of Research, Honolulu Heart Program/Honolulu-Asia Aging Study (HAAS), Kuakini Medical Center, Hawaii
- Basic & Clinical Genomics Laboratory, School of Medical Sciences and Bosch Institute, University of Sydney, New South Wales, Australia
- Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu
| | - Randi Chen
- Department of Research, Honolulu Heart Program/Honolulu-Asia Aging Study (HAAS), Kuakini Medical Center, Hawaii
| | - Kamal H Masaki
- Department of Research, Honolulu Heart Program/Honolulu-Asia Aging Study (HAAS), Kuakini Medical Center, Hawaii
- Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu
| | | | - D Craig Willcox
- Department of Human Welfare, Okinawa International University, Japan
| | | | - Bradley J Willcox
- Department of Research, Honolulu Heart Program/Honolulu-Asia Aging Study (HAAS), Kuakini Medical Center, Hawaii
- Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu
| |
Collapse
|
7
|
Shadyab AH, Kooperberg C, Reiner AP, Jain S, Manson JE, Hohensee C, Macera CA, Shaffer RA, Gallo LC, LaCroix AZ. Replication of Genome-Wide Association Study Findings of Longevity in White, African American, and Hispanic Women: The Women's Health Initiative. J Gerontol A Biol Sci Med Sci 2017; 72:1401-1406. [PMID: 27707806 DOI: 10.1093/gerona/glw198] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 09/18/2016] [Indexed: 11/14/2022] Open
Abstract
Background No study has evaluated whether genetic factors are associated with longevity in African Americans or Hispanics, and it is unclear whether genetic factors are associated with healthy aging. Methods In this prospective study, we determined whether 14 genetic variants previously associated with longevity in genome-wide association studies were associated with survival to ages 85 and 90 in 11,053 postmenopausal white, African American, and Hispanic women from the Women's Health Initiative. The associations of these variants with healthy aging, defined as survival to age 85 without chronic diseases or disability, were also determined. Results Among white women, three single nucleotide polymorphisms (SNPs) (rs2075650 [TOMM40], rs4420638 [APOC1], and rs429358 [APOE]) were significantly associated with survival to 90 years after correction for multiple testing (p < .001); rs4420638 and rs429358 were also significantly associated with healthy aging (p = .02). In African American women, no SNP was associated with longevity. In Hispanic women, 7 SNPs in linkage disequilibrium with a novel SNP, rs2149954, recently identified as being associated with increased longevity in a European population, were significantly associated with decreased survival to age 85 for carriers of the T versus C allele (p = .04). The association with decreased longevity was explained by higher risk of coronary heart disease in carriers of the T allele. There were no associations between FOXO3A SNPs and longevity in the analyses. In a meta-analysis, rs2075650 and rs429358 were significantly associated with longevity. Conclusions Future studies are needed to identify novel loci associated with longevity in African American and Hispanic women to determine biologic pathways regulating life span in these groups.
Collapse
Affiliation(s)
- Aladdin H Shadyab
- Division of Epidemiology, Department of Family Medicine and Public Health, University of California, San Diego School of Medicine
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | | | - Sonia Jain
- Division of Biostatistics and Bioinformatics, Department of Family Medicine and Public Health, University of California, San Diego School of Medicine
| | - JoAnn E Manson
- Division of Preventive Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Chancellor Hohensee
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Caroline A Macera
- Division of Epidemiology, Graduate School of Public Health, San Diego State University, California
| | - Richard A Shaffer
- Division of Epidemiology, Graduate School of Public Health, San Diego State University, California
| | - Linda C Gallo
- Department of Psychology, San Diego State University, California
| | - Andrea Z LaCroix
- Division of Epidemiology, Department of Family Medicine and Public Health, University of California, San Diego School of Medicine
| |
Collapse
|