1
|
Skoglund E, Stål P, Lundberg TR, Gustafsson T, Tesch PA, Thornell LE. Skeletal muscle morphology, satellite cells, and oxidative profile in relation to physical function and lifelong endurance training in very old men. J Appl Physiol (1985) 2023; 134:264-275. [PMID: 36548511 DOI: 10.1152/japplphysiol.00343.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In the current study, we compared muscle morphology in three advanced aging cohorts that differed in physical function, including a unique cohort of lifelong endurance athletes. Biopsies from the vastus lateralis muscle of seven lifelong endurance athletes (EAs) aged 82-92 yr, and 19 subjects from the Uppsala Longitudinal Study of Adult Men (ULSAM) aged 87-91 yr were analyzed. ULSAM subjects were divided into high- (n = 9, HF) and low- (n = 10, LF) function groups based on strength and physical function tests. The analysis included general morphology, fiber type and cross-sectional area, capillarization, deficient cytochrome c oxidase (COX) activity, number of myonuclei and satellite cells, and markers of regeneration and denervation. Fibers with central nuclei and/or nuclear clumps were observed in all groups. EA differed from LF and HF by having a higher proportion of type I fibers, 52% more capillaries in relation to fiber area, fewer COX-negative fibers, and less variation in fiber sizes (all P < 0.05). There were no differences between the groups in the number of myonuclei and satellite cells per fiber, and no significant differences between LF and HF (P > 0.05). In conclusion, signs of aging were evident in the muscle morphology of all groups, but neither endurance training status nor physical function influenced signs of regeneration and denervation processes. Lifelong endurance training, but not higher physical function, was associated with higher muscle oxidative capacity, even beyond the age of 80.NEW & NOTEWORTHY Here we show that lifelong endurance training, but not physical function, is associated with higher muscle oxidative capacity, even beyond the age of 80 yr. Neither endurance training status nor physical function was significantly associated with satellite cells or markers of regeneration and denervation in muscle biopsies from these very old men.
Collapse
Affiliation(s)
- Elisabeth Skoglund
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet and Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
| | - Per Stål
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Tommy R Lundberg
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet and Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
| | - Thomas Gustafsson
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet and Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
| | - Per A Tesch
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Lars-Eric Thornell
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| |
Collapse
|
2
|
Mammalian Target of Rapamycin (mTOR) Signaling at the Crossroad of Muscle Fiber Fate in Sarcopenia. Int J Mol Sci 2022; 23:ijms232213823. [PMID: 36430301 PMCID: PMC9696247 DOI: 10.3390/ijms232213823] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
The mammalian target of rapamycin (mTOR) is a major regulator of skeletal myocyte viability. The signaling pathways triggered by mTOR vary according to the type of endogenous and exogenous factors (e.g., redox balance, nutrient availability, physical activity) as well as organismal age. Here, we provide an overview of mTOR signaling in skeletal muscle, with a special focus on the role played by mTOR in the development of sarcopenia. Intervention strategies targeting mTOR in sarcopenia (e.g., supplementation of plant extracts, hormones, inorganic ions, calorie restriction, and exercise) have also been discussed.
Collapse
|
3
|
Martínez-Fernández MV, Sandoval-Hernández I, Galán-Mercant A, Gonzalez-Sanchez M, Martínez-Cal J, Molina-Torres G. Analysis of Structural Characteristics and Psychometric Properties of the SarQoL ® Questionnaire in Different Languages: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:4561. [PMID: 35457429 PMCID: PMC9027226 DOI: 10.3390/ijerph19084561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/03/2022] [Accepted: 04/06/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND Sarcopenia is the gradual and global loss of muscle and its functions. Primary sarcopenia is associated with the typical changes of advanced aging and affects approximately 5-10% of the population. The Sarcopenia and Quality of Life (SarQoL®) questionnaire is composed of 55 items, 22 questions, and is organized into seven domains of quality of life. The main objective of this systematic review was to analyze the structural characteristics and psychometric properties of it, as well as to classify its measurement properties, its methodological quality, and the criteria as good measurement properties of the adaptations and validations made on the SarQoL® questionnaire in different languages. METHODS A systematic review was carried out in the PUBMED, Web of Science, Cinahl, LatinIndex, and SCOPUS databases. The keywords used were: "SarQoL", "assessment", "sarcopenia", "geriatric", "PROM", "quality of life", and "questionnaire", using the Boolean operator "AND". All articles published up to 15 January 2022 were considered. Methodological quality and psychometric properties were assessed based on the COSMIN guidelines and the guidelines and general recommendations of PRISMA. Documents published in languages other than English were excluded, as well as versions of the SarQoL® published in the form abstracts for conferences when the full text was not available. RESULTS A total of 133 articles were identified, 14 of which were included. The evaluated questionnaires and the structural characteristics and psychometric properties of each of them were collected. CONCLUSION The different cross-cultural versions of the questionnaire showed good basic structural and psychometric characteristics for the evaluation of patients with sarcopenia.
Collapse
Affiliation(s)
| | - Irene Sandoval-Hernández
- Department of Physical Therapy, Faculty of Health Sciences, University of Granada-Campus of Melilla, C/Santander, 1, 52005 Melilla, Spain;
| | - Alejandro Galán-Mercant
- MOVE-IT Research Group, Department of Physical Education, Faculty of Education Sciences, University of Cádiz, 11519 Puerto Real, Spain
- Department of Nursing and Physiotherapy, University of Cádiz, 11009 Cadiz, Spain
- Biomedical Research and Innovation Institute of Cádiz (INIBICA) Research Unit, Puerta del Mar University Hospital, University of Cádiz, 11009 Cadiz, Spain
| | - Manuel Gonzalez-Sanchez
- Institute of Biomedicine of Málaga (IBIMA), 29010 Malaga, Spain;
- Department of Physiotherapy, Faculty of Health Sciences, University of Málaga, 29071 Malaga, Spain
| | - Jesús Martínez-Cal
- Department of Nursing, Physiotherapy and Medicine, Faculty of Health Sciences, University of Almería, 04120 Almeria, Spain; (J.M.-C.); (G.M.-T.)
| | - Guadalupe Molina-Torres
- Department of Nursing, Physiotherapy and Medicine, Faculty of Health Sciences, University of Almería, 04120 Almeria, Spain; (J.M.-C.); (G.M.-T.)
| |
Collapse
|
4
|
Gustafsson T, Ulfhake B. Sarcopenia: What Is the Origin of This Aging-Induced Disorder? Front Genet 2021; 12:688526. [PMID: 34276788 PMCID: PMC8285098 DOI: 10.3389/fgene.2021.688526] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/10/2021] [Indexed: 01/03/2023] Open
Abstract
We here review the loss of muscle function and mass (sarcopenia) in the framework of human healthspan and lifespan, and mechanisms involved in aging. The rapidly changing composition of the human population will impact the incidence and the prevalence of aging-induced disorders such as sarcopenia and, henceforth, efforts to narrow the gap between healthspan and lifespan should have top priority. There are substantial knowledge gaps in our understanding of aging. Heritability is estimated to account for only 25% of lifespan length. However, as we push the expected lifespan at birth toward those that we consider long-lived, the genetics of aging may become increasingly important. Linkage studies of genetic polymorphisms to both the susceptibility and aggressiveness of sarcopenia are still missing. Such information is needed to shed light on the large variability in clinical outcomes between individuals and why some respond to interventions while others do not. We here make a case for the concept that sarcopenia has a neurogenic origin and that in manifest sarcopenia, nerve and myofibers enter into a vicious cycle that will escalate the disease progression. We point to gaps in knowledge, for example the crosstalk between the motor axon, terminal Schwann cell, and myofiber in the denervation processes that leads to a loss of motor units and muscle weakness. Further, we argue that the operational definition of sarcopenia should be complemented with dynamic metrics that, along with validated biomarkers, may facilitate early preclinical diagnosis of individuals vulnerable to develop advanced sarcopenia. We argue that preventive measures are likely to be more effective to counter act aging-induced disorders than efforts to treat manifest clinical conditions. To achieve compliance with a prescription of preventive measures that may be life-long, we need to identify reliable predictors to design rational and convincing interventions.
Collapse
Affiliation(s)
- Thomas Gustafsson
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Brun Ulfhake
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
5
|
Soendenbroe C, Andersen JL, Mackey AL. Muscle-nerve communication and the molecular assessment of human skeletal muscle denervation with aging. Am J Physiol Cell Physiol 2021; 321:C317-C329. [PMID: 34161153 DOI: 10.1152/ajpcell.00174.2021] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Muscle fiber denervation is a major contributor to the decline in physical function observed with aging. Denervation can occur through breakdown of the neuromuscular junctions (NMJ) itself, affecting only that particular fiber, or through the death of a motor neuron, which can lead to a loss of all the muscle fibers in that motor unit. In this review, we discuss the muscle-nerve relationship, where signaling from both the motor neuron and the muscle fiber is required for maximal preservation of neuromuscular function in old age. Physical activity is likely to be the most important single factor that can contribute to this preservation. Furthermore, we propose that inactivity is not an innocent bystander, but plays an active role in denervation through the production of signals hostile to neuron survival. Investigating denervation in human muscle tissue samples is challenging due to the shared protein profile of regenerating and denervated muscle fibers. In this review, we provide a detailed overview of the key traits observed in immunohistochemical preparations of muscle biopsies from healthy, young, and elderly individuals. Overall, a combination of assessing tissue samples, circulating biomarkers, and electrophysiological assessments in humans will prove fruitful in the quest to gain more understanding of denervation of skeletal muscle. In addition, cell culture models represent a valuable tool in the search for key signaling factors exchanged between muscle and nerve, and which exercise has the capacity to alter.
Collapse
Affiliation(s)
- Casper Soendenbroe
- Department of Orthopedic Surgery, Institute of Sports Medicine Copenhagen, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark.,Xlab, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Medicine, Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - Jesper L Andersen
- Department of Orthopedic Surgery, Institute of Sports Medicine Copenhagen, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark.,Department of Clinical Medicine, Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - Abigail L Mackey
- Department of Orthopedic Surgery, Institute of Sports Medicine Copenhagen, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark.,Xlab, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Medicine, Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|