1
|
Wang J, Ackley S, Woodworth DC, Sajjadi SA, Decarli CS, Fletcher EF, Glymour MM, Jiang L, Kawas C, Corrada MM. Associations of Amyloid Burden, White Matter Hyperintensities, and Hippocampal Volume With Cognitive Trajectories in the 90+ Study. Neurology 2024; 103:e209665. [PMID: 39008782 PMCID: PMC11249511 DOI: 10.1212/wnl.0000000000209665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/10/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Amyloid pathology, vascular disease pathology, and pathologies affecting the medial temporal lobe are associated with cognitive trajectories in older adults. However, only limited evidence exists on how these pathologies influence cognition in the oldest old. We evaluated whether amyloid burden, white matter hyperintensity (WMH) volume, and hippocampal volume (HV) are associated with cognitive level and decline in the oldest old. METHODS This was a longitudinal, observational community-based cohort study. We included participants with 18F-florbetapir PET and MRI data from the 90+ Study. Amyloid load was measured using the standardized uptake value ratio in the precuneus/posterior cingulate with eroded white matter mask as reference. WMH volume was log-transformed. All imaging measures were standardized using sample means and SDs. HV and log-WMH volume were normalized by total intracranial volume using the residual approach. Global cognitive performance was measured by the Mini-Mental State Examination (MMSE) and modified MMSE (3MS) tests, repeated every 6 months. We used linear mixed-effects models with random intercepts; random slopes; and interaction between time, time squared, and imaging variables to estimate the associations of imaging variables with cognitive level and cognitive decline. Models were adjusted for demographics, APOE genotype, and health behaviors. RESULTS The sample included 192 participants. The mean age was 92.9 years, 125 (65.1%) were female, 71 (37.0%) achieved a degree beyond college, and the median follow-up time was 3.0 years. A higher amyloid load was associated with a lower cognitive level (βMMSE = -0.82, 95% CI -1.17 to -0.46; β3MS = -2.77, 95% CI -3.69 to -1.84). A 1-SD decrease in HV was associated with a 0.70-point decrease in the MMSE score (95% CI -1.14 to -0.27) and a 2.27-point decrease in the 3MS score (95% CI -3.40 to -1.14). Clear nonlinear cognitive trajectories were detected. A higher amyloid burden and smaller HV were associated with faster cognitive decline. WMH volume was not significantly associated with cognitive level or decline. DISCUSSION Amyloid burden and hippocampal atrophy are associated with both cognitive level and cognitive decline in the oldest old. Our findings shed light on how different pathologies contributed to driving cognitive function in the oldest old.
Collapse
Affiliation(s)
- Jingxuan Wang
- From the Department of Epidemiology and Biostatistics (J.W.), University of California, San Francisco; Department of Epidemiology (J.W., S.A., M.M.G.), Boston University, MA; Department of Neurology (D.C.W., S.A.S., C.K., M.M.C.), University of California, Irvine; Imaging of Dementia and Aging Laboratory (C.S.D., E.F.F.), Department of Neurology, University of California, Davis; and Department of Epidemiology and Biostatistics (L.J., M.M.C.), and Department of Neurobiology and Behavior (C.K.), University of California, Irvine
| | - Sarah Ackley
- From the Department of Epidemiology and Biostatistics (J.W.), University of California, San Francisco; Department of Epidemiology (J.W., S.A., M.M.G.), Boston University, MA; Department of Neurology (D.C.W., S.A.S., C.K., M.M.C.), University of California, Irvine; Imaging of Dementia and Aging Laboratory (C.S.D., E.F.F.), Department of Neurology, University of California, Davis; and Department of Epidemiology and Biostatistics (L.J., M.M.C.), and Department of Neurobiology and Behavior (C.K.), University of California, Irvine
| | - Davis C Woodworth
- From the Department of Epidemiology and Biostatistics (J.W.), University of California, San Francisco; Department of Epidemiology (J.W., S.A., M.M.G.), Boston University, MA; Department of Neurology (D.C.W., S.A.S., C.K., M.M.C.), University of California, Irvine; Imaging of Dementia and Aging Laboratory (C.S.D., E.F.F.), Department of Neurology, University of California, Davis; and Department of Epidemiology and Biostatistics (L.J., M.M.C.), and Department of Neurobiology and Behavior (C.K.), University of California, Irvine
| | - Seyed Ahmad Sajjadi
- From the Department of Epidemiology and Biostatistics (J.W.), University of California, San Francisco; Department of Epidemiology (J.W., S.A., M.M.G.), Boston University, MA; Department of Neurology (D.C.W., S.A.S., C.K., M.M.C.), University of California, Irvine; Imaging of Dementia and Aging Laboratory (C.S.D., E.F.F.), Department of Neurology, University of California, Davis; and Department of Epidemiology and Biostatistics (L.J., M.M.C.), and Department of Neurobiology and Behavior (C.K.), University of California, Irvine
| | - Charles S Decarli
- From the Department of Epidemiology and Biostatistics (J.W.), University of California, San Francisco; Department of Epidemiology (J.W., S.A., M.M.G.), Boston University, MA; Department of Neurology (D.C.W., S.A.S., C.K., M.M.C.), University of California, Irvine; Imaging of Dementia and Aging Laboratory (C.S.D., E.F.F.), Department of Neurology, University of California, Davis; and Department of Epidemiology and Biostatistics (L.J., M.M.C.), and Department of Neurobiology and Behavior (C.K.), University of California, Irvine
| | - Evan F Fletcher
- From the Department of Epidemiology and Biostatistics (J.W.), University of California, San Francisco; Department of Epidemiology (J.W., S.A., M.M.G.), Boston University, MA; Department of Neurology (D.C.W., S.A.S., C.K., M.M.C.), University of California, Irvine; Imaging of Dementia and Aging Laboratory (C.S.D., E.F.F.), Department of Neurology, University of California, Davis; and Department of Epidemiology and Biostatistics (L.J., M.M.C.), and Department of Neurobiology and Behavior (C.K.), University of California, Irvine
| | - M Maria Glymour
- From the Department of Epidemiology and Biostatistics (J.W.), University of California, San Francisco; Department of Epidemiology (J.W., S.A., M.M.G.), Boston University, MA; Department of Neurology (D.C.W., S.A.S., C.K., M.M.C.), University of California, Irvine; Imaging of Dementia and Aging Laboratory (C.S.D., E.F.F.), Department of Neurology, University of California, Davis; and Department of Epidemiology and Biostatistics (L.J., M.M.C.), and Department of Neurobiology and Behavior (C.K.), University of California, Irvine
| | - Luohua Jiang
- From the Department of Epidemiology and Biostatistics (J.W.), University of California, San Francisco; Department of Epidemiology (J.W., S.A., M.M.G.), Boston University, MA; Department of Neurology (D.C.W., S.A.S., C.K., M.M.C.), University of California, Irvine; Imaging of Dementia and Aging Laboratory (C.S.D., E.F.F.), Department of Neurology, University of California, Davis; and Department of Epidemiology and Biostatistics (L.J., M.M.C.), and Department of Neurobiology and Behavior (C.K.), University of California, Irvine
| | - Claudia Kawas
- From the Department of Epidemiology and Biostatistics (J.W.), University of California, San Francisco; Department of Epidemiology (J.W., S.A., M.M.G.), Boston University, MA; Department of Neurology (D.C.W., S.A.S., C.K., M.M.C.), University of California, Irvine; Imaging of Dementia and Aging Laboratory (C.S.D., E.F.F.), Department of Neurology, University of California, Davis; and Department of Epidemiology and Biostatistics (L.J., M.M.C.), and Department of Neurobiology and Behavior (C.K.), University of California, Irvine
| | - Maria M Corrada
- From the Department of Epidemiology and Biostatistics (J.W.), University of California, San Francisco; Department of Epidemiology (J.W., S.A., M.M.G.), Boston University, MA; Department of Neurology (D.C.W., S.A.S., C.K., M.M.C.), University of California, Irvine; Imaging of Dementia and Aging Laboratory (C.S.D., E.F.F.), Department of Neurology, University of California, Davis; and Department of Epidemiology and Biostatistics (L.J., M.M.C.), and Department of Neurobiology and Behavior (C.K.), University of California, Irvine
| |
Collapse
|
2
|
Hanyu H, Koyama Y, Umekida K, Momose T, Watanabe S, Sato T. Factors and brain imaging features associated with cognition in oldest-old patients with Alzheimer-type dementia. J Neurol Sci 2024; 458:122929. [PMID: 38377704 DOI: 10.1016/j.jns.2024.122929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/20/2024] [Accepted: 02/09/2024] [Indexed: 02/22/2024]
Abstract
BACKGROUND The underlying pathophysiology of cognitive dysfunction in oldest-old patients with Alzheimer-type dementia (AD) has not been clarified to date. We aimed to determine the factors and brain imaging features associated with cognition in oldest-old patients with AD. METHODS We enrolled 456 consecutive outpatients with probable AD (145 men and 311 women, age range: 51-95 years). Demographic factors, such as education level, disease duration at initial visit, body mass index, comorbidities, frailty, and leisure activity, and brain imaging features, including severity of medial temporal lobe (MTL) atrophy, white matter lesions and infarcts, and frequency of posterior cerebral hypoperfusion were compared among pre-old (≤ 74 years), old (75 to 84 years), and oldest-old (≥ 85 years) subgroups. RESULTS The oldest-old subgroup showed significantly longer disease duration, lower education level, more severe frailty, less leisure activity, worse cognitive impairment, a tendency of slower progression of cognitive decline, greater MTL atrophy, more severe white matter hyperintensities and infarcts, and lower frequency of posterior hypoperfusion than the younger age subgroups. Regarding the brain imaging subtypes, there were significantly more patients with the limbic-predominant subtype and fewer patients with the hippocampal-sparing subtype in the oldest-old AD group than the pre-old AD group. CONCLUSIONS Oldest-old patients with AD show different factors and brain imaging features associated with cognition from pre-old and old patients. Our results are expected to provide useful information towards understanding the pathophysiology of oldest-old patients with AD, and for determining their clinical diagnosis and appropriate management methods.
Collapse
Affiliation(s)
- Haruo Hanyu
- Dementia Research Center, Tokyo General Hospital, Tokyo, Japan; Department of Geriatric Medicine, Tokyo Medical University, Tokyo, Japan.
| | - Yumi Koyama
- Department of Rehabilitation, Tokyo General Hospital, Tokyo, Japan
| | - Kazuki Umekida
- Department of Rehabilitation, Tokyo General Hospital, Tokyo, Japan
| | | | | | - Tomohiko Sato
- Department of Geriatric Medicine, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
3
|
Moonen JEF, Haan R, Bos I, Teunissen C, van de Giessen E, Tomassen J, den Braber A, van der Landen SM, de Geus EJC, Legdeur N, van Harten AC, Trieu C, de Boer C, Kroeze L, Barkhof F, Visser PJ, van der Flier WM. Contributions of amyloid beta and cerebral small vessel disease in clinical decline. Alzheimers Dement 2024; 20:1868-1880. [PMID: 38146222 PMCID: PMC10984432 DOI: 10.1002/alz.13607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/27/2023]
Abstract
INTRODUCTION We assessed whether co-morbid small vessel disease (SVD) has clinical predictive value in preclinical or prodromal Alzheimer's disease. METHODS In 1090 non-demented participants (65.4 ± 10.7 years) SVD was assessed with magnetic resonance imaging and amyloid beta (Aβ) with lumbar puncture and/or positron emission tomography scan (mean follow-up for cognitive function 3.1 ± 2.4 years). RESULTS Thirty-nine percent had neither Aβ nor SVD (A-V-), 21% had SVD only (A-V+), 23% Aβ only (A+V-), and 17% had both (A+V+). Pooled cohort linear mixed model analyses demonstrated that compared to A-V- (reference), A+V- had a faster rate of cognitive decline. Co-morbid SVD (A+V+) did not further increase rate of decline. Cox regression showed that dementia risk was modestly increased in A-V+ (hazard ratio [95% confidence interval: 1.8 [1.0-3.2]) and most strongly in A+ groups. Also, mortality risk was increased in A+ groups. DISCUSSION In non-demented persons Aβ was predictive of cognitive decline, dementia, and mortality. SVD modestly predicts dementia in A-, but did not increase deleterious effects in A+. HIGHLIGHTS Amyloid beta (Aβ; A) was predictive for cognitive decline, dementia, and mortality. Small vessel disease (SVD) had no additional deleterious effects in A+. SVD modestly predicted dementia in A-. Aβ should be assessed even when magnetic resonance imaging indicates vascular cognitive impairment.
Collapse
Affiliation(s)
- Justine E. F. Moonen
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmcAmsterdamthe Netherlands
- Amsterdam Neuroscience, NeurodegenerationAmsterdamthe Netherlands
| | - Renée Haan
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmcAmsterdamthe Netherlands
- Amsterdam Neuroscience, NeurodegenerationAmsterdamthe Netherlands
| | - Isabelle Bos
- Nivel, Research Institute for Better CareUtrechtthe Netherlands
| | - Charlotte Teunissen
- Amsterdam Neuroscience, NeurodegenerationAmsterdamthe Netherlands
- Neurochemistry LaboratoryDepartment of Clinical ChemistryAmsterdam Neuroscience, Neurodegeneration, Amsterdam UMC, Vrije Universiteit AmsterdamAmsterdamthe Netherlands
| | - Elsmarieke van de Giessen
- Amsterdam Neuroscience, NeurodegenerationAmsterdamthe Netherlands
- Department of Radiology & Nuclear MedicineVrije Universiteit Amsterdam, Amsterdam UMC location VUmcAmsterdamthe Netherlands
| | - Jori Tomassen
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmcAmsterdamthe Netherlands
- Amsterdam Neuroscience, NeurodegenerationAmsterdamthe Netherlands
| | - Anouk den Braber
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmcAmsterdamthe Netherlands
- Amsterdam Neuroscience, NeurodegenerationAmsterdamthe Netherlands
| | - Sophie M. van der Landen
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmcAmsterdamthe Netherlands
- Amsterdam Neuroscience, NeurodegenerationAmsterdamthe Netherlands
| | - Eco J. C. de Geus
- Department of Biological PsychologyVU UniversityAmsterdamthe Netherlands
| | - Nienke Legdeur
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmcAmsterdamthe Netherlands
- Amsterdam Neuroscience, NeurodegenerationAmsterdamthe Netherlands
| | - Argonde C. van Harten
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmcAmsterdamthe Netherlands
- Amsterdam Neuroscience, NeurodegenerationAmsterdamthe Netherlands
| | - Calvin Trieu
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmcAmsterdamthe Netherlands
- Amsterdam Neuroscience, NeurodegenerationAmsterdamthe Netherlands
| | - Casper de Boer
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmcAmsterdamthe Netherlands
- Amsterdam Neuroscience, NeurodegenerationAmsterdamthe Netherlands
| | - Lior Kroeze
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmcAmsterdamthe Netherlands
- Amsterdam Neuroscience, NeurodegenerationAmsterdamthe Netherlands
| | - Frederik Barkhof
- Department of Radiology & Nuclear MedicineVrije Universiteit Amsterdam, Amsterdam UMC location VUmcAmsterdamthe Netherlands
- Institute of Healthcare Engineering and the Institute of Neurology, University College LondonLondonUK
| | - Pieter Jelle Visser
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmcAmsterdamthe Netherlands
- Amsterdam Neuroscience, NeurodegenerationAmsterdamthe Netherlands
- Department of Psychiatry and NeuropsychologySchool for Mental Health and Neuroscience (MHeNS), Maastricht UniversityMaastrichtthe Netherlands
- Department of Neurobiology, Care Sciences and Society, Division of NeurogeriatricsKarolinska InstitutetSolnaSweden
| | - Wiesje M. van der Flier
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmcAmsterdamthe Netherlands
- Amsterdam Neuroscience, NeurodegenerationAmsterdamthe Netherlands
| |
Collapse
|
4
|
Legdeur N, Moonen JE, Badissi M, Sudre CH, Pelkmans W, Gordon MF, Barkhof F, Peters M, Visser PJ, Muller M. Is the association between blood pressure and cognition in the oldest-old modified by physical, vascular or brain pathology markers? The EMIF-AD 90 + Study. BMC Geriatr 2023; 23:733. [PMID: 37951922 PMCID: PMC10640754 DOI: 10.1186/s12877-023-04440-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 10/30/2023] [Indexed: 11/14/2023] Open
Abstract
BACKGROUND Prior studies suggest a changing association between blood pressure (BP) and cognition with aging, however work in the oldest-old has yielded ambiguous results. Potentially, these mixed results can be explained by modifying factors. The aim of this study was to establish whether physical, vascular or brain pathology markers that describe a state of increased vulnerability, affect the association between BP and cognition in the oldest-old. Results may influence clinicians' decisions regarding the use of antihypertensives in this age group. METHODS We included 122 individuals (84 without cognitive impairment and 38 with cognitive impairment) from the EMIF-AD 90 + Study (mean age 92.4 years). First, we tested cross-sectional associations of systolic and diastolic BP with a cognitive composite score. Second, we tested whether these associations were modified by physical markers (waist circumference, muscle mass, gait speed and handgrip strength), vascular markers (history of cardiac disease, carotid intima media thickness as a proxy for atherosclerosis and carotid distensibility coefficient as a proxy for arterial stiffness) or brain pathology markers (white matter hyperintensities and cortical thickness). RESULTS In the total sample, there was no association between BP and cognition, however, waist circumference modified this association (p-value for interaction with systolic BP: 0.03, with diastolic BP: 0.01). In individuals with a high waist circumference, higher systolic and diastolic BP tended to be associated with worse cognition, while in individuals with a low waist circumference, higher systolic BP was associated with better cognition. The others physical, vascular and brain pathology markers did not modify the association between BP and cognition. CONCLUSIONS When examining various markers for physical, vascular and brain vulnerability, only waist circumference affected the association between BP and cognition. This warrants further research to evaluate whether waist circumference may be a marker in clinical practice influencing the use of antihypertensives in the oldest-old.
Collapse
Affiliation(s)
- Nienke Legdeur
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands.
- Department of Internal Medicine, Spaarne Gasthuis, Haarlem, The Netherlands.
| | - Justine E Moonen
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Maryam Badissi
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Carole H Sudre
- MRC Unit for Lifelong Health and Ageing at UCL, University College London, London, UK
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- Dementia Research Centre, Institute of Neurology, University College London, London, UK
| | - Wiesje Pelkmans
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
| | | | - Frederik Barkhof
- Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
- Institutes of Neurology and Healthcare Engineering, University College London, London, UK
| | - Mike Peters
- Department of Geriatrics, UMC Utrecht, Utrecht, The Netherlands
| | - Pieter Jelle Visser
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
- Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Department of Neurobiology, Care Sciences Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Majon Muller
- Department of Internal-Geriatric Medicine, Amsterdam Cardiovascular Sciences, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Bader I, Bader I, Lopes Alves I, Vállez García D, Vellas B, Dubois B, Boada M, Marquié M, Altomare D, Scheltens P, Vandenberghe R, Hanseeuw B, Schöll M, Frisoni GB, Jessen F, Nordberg A, Kivipelto M, Ritchie CW, Grau-Rivera O, Molinuevo JL, Ford L, Stephens A, Gismondi R, Gispert JD, Farrar G, Barkhof F, Visser PJ, Collij LE. Recruitment of pre-dementia participants: main enrollment barriers in a longitudinal amyloid-PET study. Alzheimers Res Ther 2023; 15:189. [PMID: 37919783 PMCID: PMC10621165 DOI: 10.1186/s13195-023-01332-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/13/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND The mismatch between the limited availability versus the high demand of participants who are in the pre-dementia phase of Alzheimer's disease (AD) is a bottleneck for clinical studies in AD. Nevertheless, potential enrollment barriers in the pre-dementia population are relatively under-reported. In a large European longitudinal biomarker study (the AMYPAD-PNHS), we investigated main enrollment barriers in individuals with no or mild symptoms recruited from research and clinical parent cohorts (PCs) of ongoing observational studies. METHODS Logistic regression was used to predict study refusal based on sex, age, education, global cognition (MMSE), family history of dementia, and number of prior study visits. Study refusal rates and categorized enrollment barriers were compared between PCs using chi-squared tests. RESULTS 535/1856 (28.8%) of the participants recruited from ongoing studies declined participation in the AMYPAD-PNHS. Only for participants recruited from clinical PCs (n = 243), a higher MMSE-score (β = - 0.22, OR = 0.80, p < .05), more prior study visits (β = - 0.93, OR = 0.40, p < .001), and positive family history of dementia (β = 2.08, OR = 8.02, p < .01) resulted in lower odds on study refusal. General study burden was the main enrollment barrier (36.1%), followed by amyloid-PET related burden (PCresearch = 27.4%, PCclinical = 9.0%, X2 = 10.56, p = .001), and loss of research interest (PCclinical = 46.3%, PCresearch = 16.5%, X2 = 32.34, p < .001). CONCLUSIONS The enrollment rate for the AMYPAD-PNHS was relatively high, suggesting an advantage of recruitment via ongoing studies. In this observational cohort, study burden reduction and tailored strategies may potentially improve participant enrollment into trial readiness cohorts such as for phase-3 early anti-amyloid intervention trials. The AMYPAD-PNHS (EudraCT: 2018-002277-22) was approved by the ethical review board of the VU Medical Center (VUmc) as the Sponsor site and in every affiliated site.
Collapse
Affiliation(s)
- Ilse Bader
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, De Boelelaan 1118, 1081 HZ, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Neurodegeneration, 1081 HV, Amsterdam, The Netherlands.
| | - Ilona Bader
- Radiology & Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, 1081 HZ, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, 1081 HV, The Netherlands
| | - Isadora Lopes Alves
- Radiology & Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, 1081 HZ, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, 1081 HV, The Netherlands
- Brain Research Center, 1081 GN, Amsterdam, The Netherlands
| | - David Vállez García
- Radiology & Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, 1081 HZ, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, 1081 HV, The Netherlands
| | - Bruno Vellas
- Gérontopole of Toulouse, University Hospital of Toulouse (CHU-Toulouse), 31300, Toulouse, France
- UMR INSERM 1027, University of Toulouse III, 31062, Toulouse, France
| | - Bruno Dubois
- Institute of Memory and Alzheimer's Disease (IM2A) and Brain Institute, Salpetriere Hospital, Sorbonne University, 75013, Paris, France
| | - Mercè Boada
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), 08028, Barcelona, Spain
- Networking Research Center On Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Marta Marquié
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), 08028, Barcelona, Spain
- Networking Research Center On Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Daniele Altomare
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, 25123, Brescia, Italy
| | - Philip Scheltens
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, De Boelelaan 1118, 1081 HZ, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, 1081 HV, Amsterdam, The Netherlands
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Leuven Brain Institute, KU Leuven, 3001, Louvain, Belgium
| | - Bernard Hanseeuw
- Institute of Neuroscience, Université Catholique de Louvain, 1200, Brussels, Belgium
- Department of Neurology, Clinique Universitaires Saint-Luc, 1200, Brussels, Belgium
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, 02155, USA
- WELBIO Department, WEL Research Institute, Avenue Pasteur, 6, 1300, Wavre, Belgium
| | - Michael Schöll
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 405 30, Gothenburg, Sweden
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 405 30, Gothenburg, Sweden
- Dementia Research Centre, Queen Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Giovanni B Frisoni
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, 1205, Geneva, Switzerland
- Geneva Memory Center, Geneva University Hospitals, 1205, Geneva, Switzerland
| | - Frank Jessen
- German Center for Neurodegenerative Diseases (DZNE), 53127, Bonn, Germany
| | - Agneta Nordberg
- Division of Clinical Geriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences, and Society (NVS), Karolinska Institutet, 171 77, Stockholm, Sweden
- Theme Inflammation, Karolinska University Hospital, Stockholm, 171 77, Sweden
- Theme Aging, Karolinska University Hospital, Stockholm, 171 77, Sweden
| | - Miia Kivipelto
- Kuopio University Hospital, 70210, Kuopio, Finland
- Division of Clinical Geriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences, and Society (NVS), Karolinska Institutet, 171 77, Stockholm, Sweden
- Imperial College London, London, SW7 2AZ, UK
| | | | - Oriol Grau-Rivera
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, 08005, Barcelona, Spain
| | - José Luis Molinuevo
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, 08005, Barcelona, Spain
- H. Lundbeck A/S, 2500, Copenhagen, Denmark
| | - Lisa Ford
- Janssen Research and Development, Titusville, NJ, 08560, USA
| | | | | | - Juan Domingo Gispert
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, 08005, Barcelona, Spain
| | - Gill Farrar
- GE Healthcare, Pharmaceutical Diagnostics, Amersham, HP7 9LL, UK
| | - Frederik Barkhof
- Radiology & Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, 1081 HZ, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, 1081 HV, The Netherlands
- Institutes of Neurology and Healthcare Engineering, UCL, London, WC1N 3BG, UK
| | - Pieter Jelle Visser
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, De Boelelaan 1118, 1081 HZ, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, 1081 HV, Amsterdam, The Netherlands
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Alzheimer Center Limburg, Maastricht University, Maastricht, 6229 ER, The Netherlands
| | - Lyduine E Collij
- Radiology & Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, 1081 HZ, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, 1081 HV, The Netherlands
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, 221 00, Malmö, Sweden
| |
Collapse
|
6
|
Wiersinga JHI, Rhodius-Meester HFM, Wolters FJ, Trappenburg MC, Lemstra AW, Barkhof F, Peters MJL, van der Flier WM, Muller M. Orthostatic hypotension and its association with cerebral small vessel disease in a memory clinic population. J Hypertens 2023; 41:1738-1744. [PMID: 37589676 DOI: 10.1097/hjh.0000000000003525] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
BACKGROUND Orthostatic hypotension (OH), an impaired blood pressure (BP) response to postural change, has been associated with cognitive decline and dementia, possibly through cerebral small vessel disease (CSVD). We hypothesized that longer duration of BP drop and a larger BP drop is associated with increased risk of CSVD. METHODS This cross-sectional study included 3971 memory clinic patients (mean age 68 years, 45% female, 42% subjective cognitive complaints, 17% mild cognitive impairment, 41% dementia) from the Amsterdam Ageing Cohort and Amsterdam Dementia Cohort. Early OH (EOH) was defined as a drop in BP of ±20 mmHg systolic and/or 10 mmHg diastolic only at 1 min after standing, and delayed/prolonged OH (DPOH) at 1 and/or 3 min after standing. Presence of CSVD [white matter hyperintensities (WMH), lacunes, microbleeds] was assessed with MRI ( n = 3584) or CT brain (n = 389). RESULTS The prevalence of early OH was 9% and of delayed/prolonged OH 18%. Age- and sex-adjusted logistic regression analyses showed that delayed/prolonged OH, but not early OH, was significantly associated with a higher burden of WMH (OR, 95%CI: 1.21, 1.00-1.46) and lacunes (OR, 95%CI 1.34, 1.06-1.69), but not microbleeds (OR, 95%CI 1.22, 0.89-1.67). When adjusting for supine SBP, these associations attenuated (ORs, 95%CI for WMH 1.04, 0.85-1.27; for lacunes 1.21, 0.91-1.62; for microbleeds 0.95, 0.68-1.31). A larger drop in SBP was associated with increased risk of WMH and microbleeds, however, when adjusted for supine SBP, this effect diminished. CONCLUSIONS Among memory clinic patients, DPOH is more common than EOH. While longer duration and larger magnitude of BP drop coincided with a higher burden of CSVD, these associations were largely explained by high supine BP.
Collapse
Affiliation(s)
- Julia H I Wiersinga
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Internal Medicine section Geriatrics
- Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes
| | - Hanneke F M Rhodius-Meester
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Internal Medicine section Geriatrics
- Amsterdam UMC location Vrije Universiteit Amsterdam, Alzheimer Center Amsterdam & Department of Neurology, Amsterdam, The Netherlands
- Oslo University Hospital, Department of Geriatric Medicine, Ullevål, Oslo, Norway
| | - Frank J Wolters
- Erasmus Medical Center, Department of Epidemiology, Rotterdam
- Erasmus Medical Center, Departments of Radiology & Nuclear Medicine and Alzheimer Center Erasmus MC, Rotterdam, The Netherlands
| | - Marijke C Trappenburg
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Internal Medicine section Geriatrics
- Amstelland Hospital, Department of Internal Medicine section Geriatrics, Amstelveen
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Radiology, Amsterdam, The Netherlands
| | - Afina W Lemstra
- Amsterdam UMC location Vrije Universiteit Amsterdam, Alzheimer Center Amsterdam & Department of Neurology, Amsterdam, The Netherlands
| | - Frederik Barkhof
- Amsterdam UMC location Vrije Universiteit Amsterdam, Alzheimer Center Amsterdam & Department of Neurology, Amsterdam, The Netherlands
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, UK
- Amsterdam Neuroscience, Neurodegeneration, Brain Imaging, Amsterdam
| | - Mike J L Peters
- UMC Utrecht, University of Utrecht, Department of Internal Medicine section Geriatrics, Utrecht
| | - Wiesje M van der Flier
- Amsterdam UMC location Vrije Universiteit Amsterdam, Alzheimer Center Amsterdam & Department of Neurology, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Brain Imaging, Amsterdam
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Epidemiology and Biostatistics, Amsterdam
| | - Majon Muller
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Internal Medicine section Geriatrics
- Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes
| |
Collapse
|
7
|
Membreno R, Thomas KR, Calcetas AT, Edwards L, Bordyug M, Showell M, Stanfill M, Brenner EK, Walker KS, Rotblatt LJ, Brickman AM, Edmonds EC, Bangen KJ. Regional White Matter Hyperintensities Relate to Specific Cognitive Abilities in Older Adults Without Dementia. Alzheimer Dis Assoc Disord 2023; 37:303-309. [PMID: 38015423 PMCID: PMC10664788 DOI: 10.1097/wad.0000000000000585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/06/2023] [Indexed: 11/29/2023]
Abstract
INTRODUCTION White matter hyperintensities (WMHs) are magnetic resonance imaging markers of small vessel cerebrovascular disease that are associated with cognitive decline and clinical Alzheimer disease. Previous studies have often focused on global or total WMH; less is known about associations of regional WMHs and cognitive abilities among older adults without dementia. METHODS A total of 610 older adults with normal cognition (n=302) or mild cognitive impairment (n=308) from the Alzheimer's Disease Neuroimaging Initiative underwent neuropsychological testing and magnetic resonance imaging. Linear regression models examined associations between regional WMH volumes and cognition, adjusting for age, sex, education, apolipoprotein E ε4 allele frequency, and pulse pressure. RESULTS Among all participants, greater regional WMH volume in all lobes was associated with poorer performance on memory and speed/executive functioning. Among participants with normal cognition, greater temporal and occipital WMH volumes were associated with poorer memory, whereas no regional WMH volumes were associated with speed/executive function. DISCUSSION Results show that greater regional WMH volume relates to poorer cognitive functioning-even among those with normal cognition. Together with results from previous studies, our findings raise the possibility that WMH may be a useful therapeutic target and/or important effect modifier in treatment or prevention dementia trials.
Collapse
Affiliation(s)
| | - Kelsey R. Thomas
- Research Service, VA San Diego Healthcare System
- Department of Psychiatry, University of California San Diego
| | | | - Lauren Edwards
- San Diego State University/University of California, San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA
| | - Maria Bordyug
- Department of Psychiatry, University of California San Diego
| | - Maya Showell
- Research Service, VA San Diego Healthcare System
| | | | | | | | - Lindsay J. Rotblatt
- Psychology Service, VA San Diego Healthcare System
- Department of Psychiatry, University of California San Diego
| | - Adam M. Brickman
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University
- Gertrude H. Sergievsky Center, Columbia University
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Emily C. Edmonds
- Banner Alzheimer’s Institute
- Department of Psychology, University of Arizona, Tucson, AZ
| | - Katherine J. Bangen
- Research Service, VA San Diego Healthcare System
- Department of Psychiatry, University of California San Diego
| |
Collapse
|
8
|
Sampatakakis SN, Mamalaki E, Ntanasi E, Kalligerou F, Liampas I, Yannakoulia M, Gargalionis AN, Scarmeas N. Objective Physical Function in the Alzheimer's Disease Continuum: Association with Cerebrospinal Fluid Biomarkers in the ALBION Study. Int J Mol Sci 2023; 24:14079. [PMID: 37762384 PMCID: PMC10531412 DOI: 10.3390/ijms241814079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/24/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Cognitive and physical decline, both indicators of aging, seem to be associated with each other. The aim of the present study was to investigate whether physical function parameters (walking time and handgrip strength) are related to cerebrospinal fluid (CSF) biomarkers (amyloid-beta Aβ42, Tau, PhTau) in individuals in the Alzheimer's disease (AD) continuum. The sample was drawn from the Aiginition Longitudinal Biomarker Investigation of Neurodegeneration study, comprising 163 individuals aged 40-75 years: 112 cognitively normal (CN) and 51 with mild cognitive impairment (MCI). Physical function parameters were measured at baseline, a lumbar puncture was performed the same day and CSF biomarkers were analyzed using automated methods. The association between walking time, handgrip strength and CSF biomarkers was evaluated by linear correlation, followed by multivariate linear regression models adjusted for age, sex, education and APOEe4 genotype. Walking time was inversely related to CSF Aβ42 (lower CSF values correspond to increased brain deposition) in all participants (p < 0.05). Subgroup analysis showed that this association was stronger in individuals with MCI and participants older than 60 years old, a result which remained statistically significant after adjustment for the aforementioned confounding factors. These findings may open new perspectives regarding the role of mobility in the AD continuum.
Collapse
Affiliation(s)
- Stefanos N. Sampatakakis
- 1st Department of Neurology, Aiginition Hospital, National and Kapodistrian University of Athens Medical School, 11528 Athens, Greece; (S.N.S.); (E.M.); (E.N.); (F.K.)
| | - Eirini Mamalaki
- 1st Department of Neurology, Aiginition Hospital, National and Kapodistrian University of Athens Medical School, 11528 Athens, Greece; (S.N.S.); (E.M.); (E.N.); (F.K.)
| | - Eva Ntanasi
- 1st Department of Neurology, Aiginition Hospital, National and Kapodistrian University of Athens Medical School, 11528 Athens, Greece; (S.N.S.); (E.M.); (E.N.); (F.K.)
| | - Faidra Kalligerou
- 1st Department of Neurology, Aiginition Hospital, National and Kapodistrian University of Athens Medical School, 11528 Athens, Greece; (S.N.S.); (E.M.); (E.N.); (F.K.)
| | - Ioannis Liampas
- Department of Neurology, University Hospital of Larissa, School of Medicine, University of Thessaly, 41100 Larissa, Greece;
| | - Mary Yannakoulia
- Department of Nutrition and Diatetics, Harokopio University, 17671 Athens, Greece;
| | - Antonios N. Gargalionis
- Department of Medical Biopathology and Clinical Microbiology, Aiginition Hospital, National and Kapodistrian University of Athens Medical School, 11528 Athens, Greece;
| | - Nikolaos Scarmeas
- 1st Department of Neurology, Aiginition Hospital, National and Kapodistrian University of Athens Medical School, 11528 Athens, Greece; (S.N.S.); (E.M.); (E.N.); (F.K.)
- The Gertrude H. Sergievsky Center, Taub Institute for Research in Alzheimer’s Disease and the Aging Brain, Department of Neurology, Columbia University, New York, NY 10032, USA
| |
Collapse
|
9
|
Muurling M, Badissi M, de Boer C, Legdeur N, Barkhof F, van Berckel BNM, Maier AB, Pijnappels M, Visser PJ. Physical activity levels in cognitively normal and cognitively impaired oldest-old and the association with dementia risk factors: a pilot study. BMC Geriatr 2023; 23:129. [PMID: 36882690 PMCID: PMC9993554 DOI: 10.1186/s12877-023-03814-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 02/08/2023] [Indexed: 03/09/2023] Open
Abstract
BACKGROUND Research assessing the relationship of physical activity and dementia is usually based on studies with individuals younger than 90 years of age. The primary aim of this study was to determine physical activity levels of cognitively normal and cognitively impaired adults older than 90 years of age (oldest-old). Our secondary aim was to assess if physical activity is associated with risk factors for dementia and brain pathology biomarkers. METHODS Physical activity was assessed in cognitively normal (N = 49) and cognitively impaired (N = 12) oldest-old by trunk accelerometry for a 7-day period. We tested physical performance parameters and nutritional status as dementia risk factors, and brain pathology biomarkers. Linear regression models were used to examine the associations, correcting for age, sex and years of education. RESULTS Cognitively normal oldest-old were on average active for a total duration of 45 (SD 27) minutes per day, while cognitively impaired oldest-old seemed less physically active with 33 (SD 21) minutes per day with a lower movement intensity. Higher active duration and lower sedentary duration were related to better nutritional status and better physical performance. Higher movement intensities were related to better nutritional status, better physical performance and less white matter hyperintensities. Longer maximum walking bout duration associated with more amyloid binding. CONCLUSION We found that cognitively impaired oldest-old are active at a lower movement intensity than cognitively normal oldest-old individuals. In the oldest-old, physical activity is related to physical parameters, nutritional status, and moderately to brain pathology biomarkers.
Collapse
Affiliation(s)
- Marijn Muurling
- Department of Neurology, Amsterdam Neuroscience, Alzheimer Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.
| | - Maryam Badissi
- Department of Neurology, Amsterdam Neuroscience, Alzheimer Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Casper de Boer
- Department of Neurology, Amsterdam Neuroscience, Alzheimer Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Nienke Legdeur
- Department of Neurology, Amsterdam Neuroscience, Alzheimer Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Institutes of Neurology and Healthcare Engineering, University College London, London, UK
| | - Bart N M van Berckel
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Andrea B Maier
- Department of Medicine and Aged Care, @AgeMelbourne, The University of Melbourne, The Royal Melbourne Hospital, Parkville, 3050, VIC, Australia
- Department of Human Movement Sciences, @AgeAmsterdam, Amsterdam Movement Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Healthy Longevity Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Centre for Healthy Longevity, @AgeSingapore, National University Health System, Singapore, Singapore
| | - Mirjam Pijnappels
- Department of Human Movement Sciences, @AgeAmsterdam, Amsterdam Movement Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Pieter Jelle Visser
- Department of Neurology, Amsterdam Neuroscience, Alzheimer Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
10
|
O’Bryant SE, Petersen M, Hall JR, Large S, Johnson LA. Plasma Biomarkers of Alzheimer's Disease Are Associated with Physical Functioning Outcomes Among Cognitively Normal Adults in the Multiethnic HABS-HD Cohort. J Gerontol A Biol Sci Med Sci 2023; 78:9-15. [PMID: 35980599 PMCID: PMC9879752 DOI: 10.1093/gerona/glac169] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Indexed: 02/02/2023] Open
Abstract
In this study, we examined the link between plasma Alzheimer's disease (AD) biomarkers and physical functioning outcomes within a community-dwelling, multiethnic cohort. Data from 1 328 cognitively unimpaired participants (n = 659 Mexican American and n = 669 non-Hispanic White) from the ongoing Health & Aging Brain Study-Health Disparities (HABS-HD) cohort were examined. Plasma AD biomarkers (amyloid beta [Aβ]40, Aβ42, total tau [t-tau], and neurofilament light chain [NfL]) were assayed using the ultra-sensitive Simoa platform. Physical functioning measures were the Timed Up and Go (TUG) and the Short Physical Performance Battery (SPPB). Cross-sectional linear regression analyses revealed that plasma Aβ 40 (p < .001), Aβ 42 (p = .003), and NfL (p < .001) were each significantly associated with TUG time in seconds. Plasma Aβ 40 (p < .001), Aβ 42 (p < .001), t-tau (p = .002), and NfL (p < .001) were each significantly associated with SPPB Total Score. Additional analyses demonstrate that the link between plasma AD biomarkers and physical functioning outcomes were strongest among Mexican Americans. Plasma AD biomarkers are receiving a great deal of attention in the literature and are now available clinically including use in clinical trials. The examination of AD biomarkers and physical functioning may allow for the development of risk profiles, which could stratify a person's risk for neurodegenerative diseases, such as AD, based on plasma AD biomarkers, physical functioning, ethnicity, or a combination of these measures prior to the onset of cognitive impairment.
Collapse
Affiliation(s)
- Sid E O’Bryant
- Institute for Translational Research, University of North Texas Health Science Center, Fort Worth, Texas, USA
- Department of Family Medicine, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Melissa Petersen
- Institute for Translational Research, University of North Texas Health Science Center, Fort Worth, Texas, USA
- Department of Family Medicine, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - James R Hall
- Institute for Translational Research, University of North Texas Health Science Center, Fort Worth, Texas, USA
- Department of Family Medicine, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Stephanie Large
- Institute for Translational Research, University of North Texas Health Science Center, Fort Worth, Texas, USA
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Leigh A Johnson
- Institute for Translational Research, University of North Texas Health Science Center, Fort Worth, Texas, USA
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, USA
| |
Collapse
|
11
|
Solis-Urra P, Rodriguez-Ayllon M, Álvarez-Ortega M, Molina-Hidalgo C, Molina-Garcia P, Arroyo-Ávila C, García-Hermoso A, Collins AM, Jain S, Gispert JD, Liu-Ambrose T, Ortega FB, Erickson KI, Esteban-Cornejo I. Physical Performance and Amyloid-β in Humans: A Systematic Review and Meta-Analysis of Observational Studies. J Alzheimers Dis 2023; 96:1427-1439. [PMID: 38007656 DOI: 10.3233/jad-230586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
BACKGROUND Accumulation of amyloid-β (Aβ) plaques is one of the main features of Alzheimer's disease (AD). Physical performance has been related to dementia risk and Aβ, and it has been hypothesized as one of the mechanisms leading to greater accumulation of Aβ. Yet, no evidence synthesis has been performed in humans. OBJECTIVE To investigate the association of physical performance with Aβ in humans, including Aβ accumulation on brain, and Aβ abnormalities measured in cerebrospinal fluid (CSF) and blood. METHODS A systematic review with multilevel meta-analysis was performed from inception to June 16th, 2022. Studies were eligible if they examined the association of physical performance with Aβ levels, including the measure of physical performance as a predictor and the measure of Aβ as an outcome in humans. RESULTS 7 articles including 2,619 participants were included in the meta-analysis. The results showed that physical performance was not associated with accumulation of Aβ in the brain (ES = 0.01; 95% CI -0.21 to 0.24; I2 = 69.9%), in the CSF (ES = -0.28; 95% CI -0.98 to 0.41; I2 = 91.0%) or in the blood (ES = -0.19; 95% CI -0.61 to 0.24; I2 = 99.75%). Significant heterogeneity was found across the results , which posed challenges in arriving at consistent conclusions; and the limited number of studies hindered the opportunity to conduct a moderation analysis. CONCLUSIONS The association between physical performance and Aβ is inconclusive. This uncertainly arises from the limited number of studies, study design limitations, and heterogeneity of measurement approaches. More studies are needed to determine whether physical performance is related to Aβ levels in humans.
Collapse
Affiliation(s)
- Patricio Solis-Urra
- Department of Physical Education and Sports, Faculty of Sport Sciences, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
- Nuclear Medicine Services, "Virgen de Las Nieves", University Hospital, Granada, Spain
- Faculty of Education and Social Sciences, Universidad Andres Bello, Viña del Mar, Chile
| | - María Rodriguez-Ayllon
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Miriam Álvarez-Ortega
- Department of Physical Education and Sports, Faculty of Sport Sciences, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
| | - Cristina Molina-Hidalgo
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
- AdventHealth Research Institute, Neuroscience, Orlando, FL, USA
| | - Pablo Molina-Garcia
- Department of Physical Education and Sports, Faculty of Sport Sciences, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
- Physical Medicine and Rehabilitation Service, Virgen de las Nieves University Hospital, Instituto de Investigacion Biosanitaria ibs.GRANADA, Granada, Spain
| | - Cristina Arroyo-Ávila
- Department of Physical Education and Sports, Faculty of Sport Sciences, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
| | - Antonio García-Hermoso
- Navarrabiomed, Hospital Universitario de Navarra, IdiSNA, Universidad Pública de Navarra (UPNA), Pamplona, Spain
| | | | - Shivangi Jain
- AdventHealth Research Institute, Neuroscience, Orlando, FL, USA
| | - Juan Domingo Gispert
- BarcelonaBeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Teresa Liu-Ambrose
- Centre for Aging SMART at Vancouver Coastal Health, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
- Djavad Mowafaghian Centre for Brain Health, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
- Aging, Mobility, and Cognitive Health Laboratory, Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Francisco B Ortega
- Department of Physical Education and Sports, Faculty of Sport Sciences, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Kirk I Erickson
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
- AdventHealth Research Institute, Neuroscience, Orlando, FL, USA
| | - Irene Esteban-Cornejo
- Department of Physical Education and Sports, Faculty of Sport Sciences, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
- ibs.GRANADA Instituto de Investigación Biosanitaria, Granada, Spain
| |
Collapse
|
12
|
Merenstein JL, Bennett IJ. Bridging patterns of neurocognitive aging across the older adult lifespan. Neurosci Biobehav Rev 2022; 135:104594. [PMID: 35227712 PMCID: PMC9888009 DOI: 10.1016/j.neubiorev.2022.104594] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/27/2022] [Accepted: 02/23/2022] [Indexed: 02/02/2023]
Abstract
Magnetic resonance imaging (MRI) studies of brain and neurocognitive aging rarely include oldest-old adults (ages 80 +). But predictions of neurocognitive aging theories derived from MRI findings in younger-old adults (ages ~55-80) may not generalize into advanced age, particularly given the increased prevalence of cognitive impairment/dementia in the oldest-old. Here, we reviewed the MRI literature in oldest-old adults and interpreted findings within the context of regional variation, compensation, brain maintenance, and reserve theories. Structural MRI studies revealed regional variation in brain aging as larger age effects on medial temporal and posterior regions for oldest-old than younger-old adults. They also revealed that brain maintenance explained preserved cognitive functioning into the tenth decade of life. Very few functional MRI studies examined compensatory activity in oldest-old adults who perform as well as younger groups, although there was evidence that higher brain reserve in oldest-old adults may mediate effects of brain aging on cognition. Despite some continuity, different cognitive and neural profiles across the older adult lifespan should be addressed in modern neurocognitive aging theories.
Collapse
|
13
|
Celle S, Boutet C, Annweiler C, Ceresetti R, Pichot V, Barthélémy JC, Roche F. Leukoaraiosis and Gray Matter Volume Alteration in Older Adults: The PROOF Study. Front Neurosci 2022; 15:747569. [PMID: 35095388 PMCID: PMC8793339 DOI: 10.3389/fnins.2021.747569] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/22/2021] [Indexed: 11/23/2022] Open
Abstract
Background and Purpose: Leukoaraiosis, also called white matter hyperintensities (WMH), is frequently encountered in the brain of older adults. During aging, gray matter structure is also highly affected. WMH or gray matter defects are commonly associated with a higher prevalence of mild cognitive impairment. However, little is known about the relationship between WMH and gray matter. Our aim was thus to explore the relationship between leukoaraiosis severity and gray matter volume in a cohort of healthy older adults. Methods: Leukoaraiosis was rated in participants from the PROOF cohort using the Fazekas scale. Voxel-based morphometry was performed on brain scans to examine the potential link between WMH and changes of local brain volume. A neuropsychological evaluation including attentional, executive, and memory tests was also performed to explore cognition. Results: Out of 315 75-year-old subjects, 228 had punctuate foci of leukoaraiosis and 62 had begun the confluence of foci. Leukoaraiosis was associated with a decrease of gray matter in the middle temporal gyrus, in the right medial frontal gyrus, and in the left parahippocampal gyrus. It was also associated with decreased performances in memory recall, executive functioning, and depression. Conclusion: In a population of healthy older adults, leukoaraiosis was associated with gray matter defects and reduced cognitive performance. Controlling vascular risk factors and detecting early cerebrovascular disease may prevent, at least in part, dementia onset and progression.
Collapse
Affiliation(s)
- Sébastien Celle
- Clinical Physiology, Visas Center, University Hospital, Saint-Etienne, France
- INSERM, U1059, SAINBIOSE, DVH, Saint-Étienne, France
- *Correspondence: Sébastien Celle,
| | - Claire Boutet
- Department of Radiology, University Hospital, Saint Etienne, France
- EA7423 TAPE, UJM, Saint-Étienne, France
| | - Cédric Annweiler
- Department of Geriatric Medicine and Memory Clinic, Research Center on Autonomy and Longevity, University Hospital, Angers, France
- UPRES EA4638, University of Angers, Angers, France
| | - Romain Ceresetti
- Clinical Physiology, Visas Center, University Hospital, Saint-Etienne, France
- INSERM, U1059, SAINBIOSE, DVH, Saint-Étienne, France
| | - Vincent Pichot
- Clinical Physiology, Visas Center, University Hospital, Saint-Etienne, France
- INSERM, U1059, SAINBIOSE, DVH, Saint-Étienne, France
| | - Jean-Claude Barthélémy
- Clinical Physiology, Visas Center, University Hospital, Saint-Etienne, France
- INSERM, U1059, SAINBIOSE, DVH, Saint-Étienne, France
| | - Frédéric Roche
- Clinical Physiology, Visas Center, University Hospital, Saint-Etienne, France
- INSERM, U1059, SAINBIOSE, DVH, Saint-Étienne, France
| |
Collapse
|
14
|
Predicting cognitive function based on physical performance: findings from the China Health and Retirement Longitudinal Study. Aging Clin Exp Res 2021; 33:2723-2735. [PMID: 33677738 DOI: 10.1007/s40520-021-01810-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 02/08/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND Physical performance tests are simple means of predicting an individual's risk of cognitive decline. AIMS This study aimed to assess the predictive value of physical performance tests and develop predictive models for cognitive function. METHODS Cognitive function was tested biennially and calculated for mental intactness, episodic memory, and global cognition. Using a generalized estimating equation (GEE), we examined each baseline physical performance test as a predictor of cognitive decline. Using a multivariate linear regression model (MLRM), we developed predictive models for cognitive function. Bland-Altman analysis was performed to analyze the agreement between estimated and measured cognition. We validated the predictive model internally with 1000 bootstrap resamples. RESULTS Better physical performance test results, except for standing balance, were associated with a slower cognitive decline over time and better cognitive function at follow-up. Regarding the predictive models, all physical performance tests were included in men; only five chair stands test was included in women. Bland-Altman analysis showed that measured cognition was equivalent to estimated cognition in men (mean bias, 0; 95% limits of agreement, - 8.56 to 8.56) and women (mean bias, 0; 95% limits of agreement - 8.79 to 8.7). Bootstrap analysis showed that predictors were selected in 78.4-100% for men and 64.5-100% for women. DISCUSSION Bland-Altman and bootstrap analysis demonstrated good agreement and stability of the predictive models. CONCLUSIONS Physical performance tests are simple, easily obtainable, and clinically relevant markers for cognitive function with aging; predictive models based on physical performance can be used to predict cognitive function.
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW People over 90 are the fastest growing segment of the population with the highest rates of dementia. This review highlights recent findings that provide insight to our understanding of dementia and cognition at all ages. RECENT FINDINGS Risk factors for Alzheimer's disease (AD) and dementia differ by age, with some factors, like the development of hypertension, actually becoming protective in the oldest-old. At least half of all dementia in this age group is due to non AD pathologies, including microinfarcts, hippocampal sclerosis and TDP-43. The number of pathologic changes found in the brain is related to both risk and severity of dementia, but many people in this age group appear to be 'resilient' to these pathologies. Resilience to Alzheimer pathology, in part, may be related to absence of other pathologies, and imaging and spinal fluid biomarkers for AD have limited utility in this age group. SUMMARY Studies of dementia in the oldest-old are important for our understanding and eventual treatment or prevention of dementia at all ages.
Collapse
Affiliation(s)
- Claudia H. Kawas
- Department of Neurology and Department of Neurobiology & Behavior, University of California, Irvine, Irvine, California, USA
| | - Nienke Legdeur
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC and Department of Internal Medicine, Spaarne Gasthuis, Haarlem, the Netherlands
| | - María M. Corrada
- Department of Neurology and Department of Epidemiology, University of California, Irvine, Irvine, California, USA
| |
Collapse
|