1
|
Di Maggio LS, Fischer K, Rosa BA, Yates D, Cho BK, Lukowski J, Calderon AZ, Son M, Goo YA, Opoku NO, Weil GJ, Mitreva M, Fischer PU. Spatial proteomics of Onchocerca volvulus with pleomorphic neoplasms shows local and systemic dysregulation of protein expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.15.618383. [PMID: 39463952 PMCID: PMC11507698 DOI: 10.1101/2024.10.15.618383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Onchocerca volvulus is the agent of onchocerciasis (river blindness) and targeted by WHO for elimination though mass drug administration with ivermectin. A small percentage of adult worms develop pleomorphic neoplasms (PN) that are positively associated with the frequency of ivermectin treatment. Worms with PN have a lower life expectancy and a better understanding about the proteins expressed in PN, and how PN affect protein expression in different tissues could help to elucidate the mechanisms of macrofilaricidal activity of ivermectin. Within a clinical trial of drug combinations that included ivermectin, we detected 24 (5.6%) O. volvulus females with PN by histology of paraffin embedded nodules. To assess the protein inventory of the neoplasms and to identify proteins that may be associated with tumor development, we used laser capture microdissection and highly sensitive mass spectrometry analysis. Neoplasm tissue from three female worms was analyzed, and compared to normal tissues from the body wall, uterus and intestine from the same worms, and to tissues from three females without PN. The healthy females showed all intact embryogenesis. In PN worms, 151 proteins were detected in the body wall, 215 proteins in the intestine, 47 proteins in the uterus and 1,577 proteins in the neoplasms. Only the uterus of one PN female with some stretched intrauterine microfilariae had an elevated number of proteins (601) detectable, while in the uteri of the healthy females 1,710 proteins were detected. Even in tissues that were not directly affected by PN (intestine, body wall), fewer proteins were detected compared to the corresponding tissue of the healthy controls. Immunolocalization of the calcium binding protein OvDig-1 (OVOC8391) confirmed the detection in PN by mass spectrometry. In conclusion we identified proteins that are potentially linked to the development of PN, and systemic dysregulation of protein expression may contribute to worm mortality.
Collapse
Affiliation(s)
- Lucia S. Di Maggio
- Infectious Diseases Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kerstin Fischer
- Infectious Diseases Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Bruce A. Rosa
- Infectious Diseases Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Devyn Yates
- Infectious Diseases Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Byoung-Kyu Cho
- Mass Spectrometry Technology Access Center at McDonnell Genome Institute, Washington University School of Medicine, St. Louis MO 63110
| | - Jessica Lukowski
- Mass Spectrometry Technology Access Center at McDonnell Genome Institute, Washington University School of Medicine, St. Louis MO 63110
| | - Antonia Zamacona Calderon
- Mass Spectrometry Technology Access Center at McDonnell Genome Institute, Washington University School of Medicine, St. Louis MO 63110
| | - Minsoo Son
- Mass Spectrometry Technology Access Center at McDonnell Genome Institute, Washington University School of Medicine, St. Louis MO 63110
| | - Young Ah Goo
- Mass Spectrometry Technology Access Center at McDonnell Genome Institute, Washington University School of Medicine, St. Louis MO 63110
| | - Nicholas O. Opoku
- Fred Newton Binka School of Public Health, University of Health and Allied Sciences, Ho, Ghana
| | - Gary J. Weil
- Infectious Diseases Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Makedonka Mitreva
- Infectious Diseases Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63108, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Peter U. Fischer
- Infectious Diseases Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
2
|
González CR, Reyes C, Castillo A, Valderrama L, Llanos L, Fernández J, Eastwood G, Cancino-Faure B. Molecular evidence of pathogens and endosymbionts in the black horse fly Osca lata (Diptera: Tabanidae) in Southern Chile. PLoS Negl Trop Dis 2024; 18:e0012525. [PMID: 39331668 PMCID: PMC11463783 DOI: 10.1371/journal.pntd.0012525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 10/09/2024] [Accepted: 09/10/2024] [Indexed: 09/29/2024] Open
Abstract
Little is known about the role of horse flies in potential pathogen transmission in Chile. This study provides evidence of the molecular detection of microorganisms in southern Chile. In the present study, adult Osca lata horse flies were trapped from Punucapa (39°45'06"S/73°16'08"W, Región de Los Ríos) and Puyehue (40°39'10"S/72°10'57"W, Región de Los Lagos), Chile. Among the 95 samples analyzed by PCR using specific primers, microorganisms were detected in 23.2% (n = 22) of the samples. Rickettsia spp. DNA was detected in 15.8% (n = 15) of the samples, Trypanosomatidae DNA in 5.3% (n = 5) of the samples, and filarial DNA in 2.1% (n = 2) of the samples. This study found that horse flies in the region are capable of carrying a variety of both parasites and endosymbionts. Further research is needed to understand the specific impact of horse flies as mechanical or biological vectors and develop effective control measures to prevent the spread of any microorganisms associated with disease.
Collapse
Affiliation(s)
- Christian R. González
- Instituto de Entomología, Facultad de Ciencias Básicas, Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile
| | - Carolina Reyes
- Sección Entomología y Genética Vectores, Sección Genética de Agentes Infecciosos, Subdepartamento de Genómica y Genética Molecular, Instituto de Salud Pública de Chile, Santiago, Chile
| | - Andrés Castillo
- Sección Entomología y Genética Vectores, Sección Genética de Agentes Infecciosos, Subdepartamento de Genómica y Genética Molecular, Instituto de Salud Pública de Chile, Santiago, Chile
| | - Lara Valderrama
- Sección Entomología y Genética Vectores, Sección Genética de Agentes Infecciosos, Subdepartamento de Genómica y Genética Molecular, Instituto de Salud Pública de Chile, Santiago, Chile
| | - Lorena Llanos
- Sección Entomología y Genética Vectores, Sección Genética de Agentes Infecciosos, Subdepartamento de Genómica y Genética Molecular, Instituto de Salud Pública de Chile, Santiago, Chile
| | - Jorge Fernández
- Sección Entomología y Genética Vectores, Sección Genética de Agentes Infecciosos, Subdepartamento de Genómica y Genética Molecular, Instituto de Salud Pública de Chile, Santiago, Chile
| | - Gillian Eastwood
- Department of Entomology, College of Agriculture and Life Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Beatriz Cancino-Faure
- Laboratorio de Microbiología y Parasitología, Departamento de Ciencias Preclínicas, Facultad de Medicina, Universidad Católica del Maule, Talca, Chile
| |
Collapse
|
3
|
Mulio SÅ, Zwolińska A, Klejdysz T, Prus‐Frankowska M, Michalik A, Kolasa M, Łukasik P. Limited variation in microbial communities across populations of Macrosteles leafhoppers (Hemiptera: Cicadellidae). ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13279. [PMID: 38855918 PMCID: PMC11163331 DOI: 10.1111/1758-2229.13279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/26/2024] [Indexed: 06/11/2024]
Abstract
Microbial symbionts play crucial roles in insect biology, yet their diversity, distribution, and temporal dynamics across host populations remain poorly understood. In this study, we investigated the spatio-temporal distribution of bacterial symbionts within the widely distributed and economically significant leafhopper genus Macrosteles, with a focus on Macrosteles laevis. Using host and symbiont marker gene amplicon sequencing, we explored the intricate relationships between these insects and their microbial partners. Our analysis of the cytochrome oxidase subunit I (COI) gene data revealed several intriguing findings. First, there was no strong genetic differentiation across M. laevis populations, suggesting gene flow among them. Second, we observed significant levels of heteroplasmy, indicating the presence of multiple mitochondrial haplotypes within individuals. Third, parasitoid infections were prevalent, highlighting the complex ecological interactions involving leafhoppers. The 16S rRNA data confirmed the universal presence of ancient nutritional endosymbionts-Sulcia and Nasuia-in M. laevis. Additionally, we found a high prevalence of Arsenophonus, another common symbiont. Interestingly, unlike most previously studied species, M. laevis exhibited only occasional cases of infection with known facultative endosymbionts and other bacteria. Notably, there was no significant variation in symbiont prevalence across different populations or among sampling years within the same population. Comparatively, facultative endosymbionts such as Rickettsia, Wolbachia, Cardinium and Lariskella were more common in other Macrosteles species. These findings underscore the importance of considering both host and symbiont dynamics when studying microbial associations. By simultaneously characterizing host and symbiont marker gene amplicons in large insect collections, we gain valuable insights into the intricate interplay between insects and their microbial partners. Understanding these dynamics contributes to our broader comprehension of host-microbe interactions in natural ecosystems.
Collapse
Affiliation(s)
- Sandra Åhlén Mulio
- Institute of Environmental Sciences, Faculty of BiologyJagiellonian UniversityKrakówPoland
| | - Agnieszka Zwolińska
- Department of Plant Physiology, Faculty of BiologyAdam Mickiewicz UniversityPoznanPoland
| | - Tomasz Klejdysz
- Institute of Plant Protection – National Research InstituteResearch Centre for Registration of AgrochemicalsPoznańPoland
| | - Monika Prus‐Frankowska
- Institute of Environmental Sciences, Faculty of BiologyJagiellonian UniversityKrakówPoland
| | - Anna Michalik
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology and Biomedical Research, Faculty of BiologyJagiellonian UniversityKrakówPoland
| | - Michał Kolasa
- Institute of Environmental Sciences, Faculty of BiologyJagiellonian UniversityKrakówPoland
| | - Piotr Łukasik
- Institute of Environmental Sciences, Faculty of BiologyJagiellonian UniversityKrakówPoland
| |
Collapse
|
4
|
Lehman SS, Verhoeve VI, Driscoll TP, Beckmann JF, Gillespie JJ. Metagenome diversity illuminates the origins of pathogen effectors. mBio 2024; 15:e0075923. [PMID: 38564675 PMCID: PMC11077975 DOI: 10.1128/mbio.00759-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 02/12/2024] [Indexed: 04/04/2024] Open
Abstract
Recent metagenome-assembled genome (MAG) analyses have profoundly impacted Rickettsiology systematics. The discovery of basal lineages (novel families Mitibacteraceae and Athabascaceae) with predicted extracellular lifestyles exposed an evolutionary timepoint for the transition to host dependency, which seemingly occurred independent of mitochondrial evolution. Notably, these basal rickettsiae carry the Rickettsiales vir homolog (rvh) type IV secretion system and purportedly use rvh to kill congener microbes rather than parasitize host cells as described for later-evolving rickettsial pathogens. MAG analysis also substantially increased diversity for the genus Rickettsia and delineated a sister lineage (the novel genus Tisiphia) that stands to inform on the emergence of human pathogens from protist and invertebrate endosymbionts. Herein, we probed Rickettsiales MAG and genomic diversity for the distribution of Rickettsia rvh effectors to ascertain their origins. A sparse distribution of most Rickettsia rvh effectors outside of Rickettsiaceae lineages illuminates unique rvh evolution from basal extracellular species and other rickettsial families. Remarkably, nearly every effector was found in multiple divergent forms with variable architectures, indicating profound roles for gene duplication and recombination in shaping effector repertoires in Rickettsia pathogens. Lateral gene transfer plays a prominent role in shaping the rvh effector landscape, as evinced by the discovery of many effectors on plasmids and conjugative transposons, as well as pervasive effector gene exchange between Rickettsia and Legionella species. Our study exemplifies how MAGs can yield insight into pathogen effector origins, particularly how effector architectures might become tailored to the discrete host cell functions of different eukaryotic hosts.IMPORTANCEWhile rickettsioses are deadly vector-borne human diseases, factors distinguishing Rickettsia pathogens from the innumerable bevy of environmental rickettsial endosymbionts remain lacking. Recent metagenome-assembled genome (MAG) studies revealed evolutionary timepoints for rickettsial transitions to host dependency. The rvh type IV secretion system was likely repurposed from congener killing in basal extracellular species to parasitizing host cells in later-evolving pathogens. Our analysis of MAG diversity for over two dozen rvh effectors unearthed their presence in some non-pathogens. However, most effectors were found in multiple divergent forms with variable architectures, indicating gene duplication and recombination-fashioned effector repertoires of Rickettsia pathogens. Lateral gene transfer substantially shaped pathogen effector arsenals, evinced by the discovery of effectors on plasmids and conjugative transposons, as well as pervasive effector gene exchanges between Rickettsia and Legionella species. Our study exemplifies how MAGs yield insight into pathogen effector origins and evolutionary processes tailoring effectors to eukaryotic host cell biology.
Collapse
Affiliation(s)
- Stephanie S. Lehman
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Victoria I. Verhoeve
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Timothy P. Driscoll
- Department of Biology, West Virginia University, Morgantown, West Virginia, USA
| | - John F. Beckmann
- Department of Microbiology and Immunology, University of South Alabama, Mobile, Alabama, USA
| | - Joseph J. Gillespie
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
5
|
Poulain M, Rosinski E, Henri H, Balmand S, Delignette-Muller ML, Heddi A, Lasseur R, Vavre F, Zaidman-Rémy A, Kremer N. Development, feeding, and sex shape the relative quantity of the nutritional obligatory symbiont Wolbachia in bed bugs. Front Microbiol 2024; 15:1386458. [PMID: 38774500 PMCID: PMC11106466 DOI: 10.3389/fmicb.2024.1386458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/12/2024] [Indexed: 05/24/2024] Open
Abstract
The common bed bug, Cimex lectularius, is a hemipteran insect that feeds only on blood, and whose bites cause public health issues. Due to globalization and resistance to insecticides, this pest has undergone a significant and global resurgence in recent decades. Blood is an unbalanced diet, lacking notably sufficient B vitamins. Like all strict hematophagous arthropods, bed bugs host a nutritional symbiont supplying B vitamins. In C. lectularius, this nutritional symbiont is the intracellular bacterium Wolbachia (wCle). It is located in specific symbiotic organs, the bacteriomes, as well as in ovaries. Experimental depletion of wCle has been shown to result in longer nymphal development and lower fecundity. These phenotypes were rescued by B vitamin supplementation. Understanding the interaction between wCle and the bed bug may help to develop new pest control methods targeting the disruption of this symbiotic interaction. The objective of this work was thus to quantify accurately the density of wCle over the life cycle of the host and to describe potential associated morphological changes in the bacteriome. We also sought to determine the impact of sex, feeding status, and aging on the bacterial population dynamics. We showed that the relative quantity of wCle continuously increases during bed bug development, while the relative size of the bacteriome remains stable. We also showed that adult females harbor more wCle than males and that wCle relative quantity decreases slightly in adults with age, except in weekly-fed males. These results are discussed in the context of bed bug ecology and will help to define critical points of the symbiotic interaction during the bed bug life cycle.
Collapse
Affiliation(s)
- Marius Poulain
- Université Lyon 1, CNRS, VetAgroSup, Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, Villeurbanne, France
- INSA Lyon, INRAE, BF2I, UMR203, Villeurbanne, France
- Izinovation SAS, Lyon, France
| | - Elodie Rosinski
- Université Lyon 1, CNRS, VetAgroSup, Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, Villeurbanne, France
| | - Hélène Henri
- Université Lyon 1, CNRS, VetAgroSup, Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, Villeurbanne, France
| | | | | | | | | | - Fabrice Vavre
- Université Lyon 1, CNRS, VetAgroSup, Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, Villeurbanne, France
| | - Anna Zaidman-Rémy
- INSA Lyon, INRAE, BF2I, UMR203, Villeurbanne, France
- Institut Universitaire de France, Paris, France
| | - Natacha Kremer
- Université Lyon 1, CNRS, VetAgroSup, Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, Villeurbanne, France
| |
Collapse
|
6
|
Yang H, Verhoeve VI, Chandler CE, Nallar S, Snyder GA, Ernst RK, Gillespie JJ. Structural determination of Rickettsia lipid A without chemical extraction confirms shorter acyl chains in later-evolving spotted fever group pathogens. mSphere 2024; 9:e0060923. [PMID: 38259062 PMCID: PMC10900879 DOI: 10.1128/msphere.00609-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/12/2023] [Indexed: 01/24/2024] Open
Abstract
Rickettsiae are Gram-negative obligate intracellular parasites of numerous eukaryotes. Human pathogens of the transitional group (TRG), typhus group (TG), and spotted fever group (SFG) rickettsiae infect blood-feeding arthropods, have dissimilar clinical manifestations, and possess unique genomic and morphological attributes. Lacking glycolysis, rickettsiae pilfer numerous metabolites from the host cytosol to synthesize peptidoglycan and lipopolysaccharide (LPS). For LPS, O-antigen immunogenicity varies between SFG and TG pathogens; however, lipid A proinflammatory potential is unknown. We previously demonstrated that Rickettsia akari (TRG), Rickettsia typhi (TG), and Rickettsia montanensis (SFG) produce lipid A with long 2' secondary acyl chains (C16 or C18) compared to short 2' secondary acyl chains (C12) in Rickettsia rickettsii (SFG) lipid A. To further probe this structural heterogeneity and estimate a time point when shorter 2' secondary acyl chains originated, we generated lipid A structures for two additional SFG rickettsiae (Rickettsia rhipicephali and Rickettsia parkeri) utilizing fast lipid analysis technique adopted for use with tandem mass spectrometry (FLATn). FLATn allowed analysis of lipid A structure directly from host cell-purified bacteria, providing a substantial improvement over lipid A chemical extraction. FLATn-derived structures indicate SFG rickettsiae diverging after R. rhipicephali evolved shorter 2' secondary acyl chains. While 2' secondary acyl chain lengths do not distinguish Rickettsia pathogens from non-pathogens, in silico analyses of Rickettsia LpxL late acyltransferases revealed discrete active sites and hydrocarbon rulers for long versus short 2' secondary acyl chain addition. Our collective data warrant determining Rickettsia lipid A inflammatory potential and how structural heterogeneity impacts lipid A-host receptor interactions.IMPORTANCEDeforestation, urbanization, and homelessness lead to spikes in Rickettsioses. Vector-borne human pathogens of transitional group (TRG), typhus group (TG), and spotted fever group (SFG) rickettsiae differ by clinical manifestations, immunopathology, genome composition, and morphology. We previously showed that lipid A (or endotoxin), the membrane anchor of Gram-negative bacterial lipopolysaccharide (LPS), structurally differs in Rickettsia rickettsii (later-evolving SFG) relative to Rickettsia montanensis (basal SFG), Rickettsia typhi (TG), and Rickettsia akari (TRG). As lipid A structure influences recognition potential in vertebrate LPS sensors, further assessment of Rickettsia lipid A structural heterogeneity is needed. Here, we sidestepped the difficulty of ex vivo lipid A chemical extraction by utilizing fast lipid analysis technique adopted for use with tandem mass spectrometry, a new procedure for generating lipid A structures directly from host cell-purified bacteria. These data confirm that later-evolving SFG pathogens synthesize structurally distinct lipid A. Our findings impact interpreting immune responses to different Rickettsia pathogens and utilizing lipid A adjuvant or anti-inflammatory properties in vaccinology.
Collapse
Affiliation(s)
- Hyojik Yang
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, Maryland, USA
| | - Victoria I. Verhoeve
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Courtney E. Chandler
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, Maryland, USA
| | - Shreeram Nallar
- Division of Vaccine Research, Institute of Human Virology, University of Maryland, Baltimore, Maryland, USA
| | - Greg A. Snyder
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, Maryland, USA
- Division of Vaccine Research, Institute of Human Virology, University of Maryland, Baltimore, Maryland, USA
| | - Robert K. Ernst
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, Maryland, USA
| | - Joseph J. Gillespie
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| |
Collapse
|
7
|
Wierz JC, Dirksen P, Kirsch R, Krüsemer R, Weiss B, Pauchet Y, Engl T, Kaltenpoth M. Intracellular symbiont Symbiodolus is vertically transmitted and widespread across insect orders. THE ISME JOURNAL 2024; 18:wrae099. [PMID: 38874172 PMCID: PMC11322605 DOI: 10.1093/ismejo/wrae099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/05/2024] [Accepted: 06/05/2024] [Indexed: 06/15/2024]
Abstract
Insects engage in manifold interactions with bacteria that can shift along the parasitism-mutualism continuum. However, only a small number of bacterial taxa managed to successfully colonize a wide diversity of insects, by evolving mechanisms for host-cell entry, immune evasion, germline tropism, reproductive manipulation, and/or by providing benefits to the host that stabilize the symbiotic association. Here, we report on the discovery of an Enterobacterales endosymbiont (Symbiodolus, type species Symbiodolus clandestinus) that is widespread across at least six insect orders and occurs at high prevalence within host populations. Fluorescence in situ hybridization in several Coleopteran and one Dipteran species revealed Symbiodolus' intracellular presence in all host life stages and across tissues, with a high abundance in female ovaries, indicating transovarial vertical transmission. Symbiont genome sequencing across 16 host taxa revealed a high degree of functional conservation in the eroding and transposon-rich genomes. All sequenced Symbiodolus genomes encode for multiple secretion systems, alongside effectors and toxin-antitoxin systems, which likely facilitate host-cell entry and interactions with the host. However, Symbiodolus-infected insects show no obvious signs of disease, and biosynthetic pathways for several amino acids and cofactors encoded by the bacterial genomes suggest that the symbionts may also be able to provide benefits to the hosts. A lack of host-symbiont cospeciation provides evidence for occasional horizontal transmission, so Symbiodolus' success is likely based on a mixed transmission mode. Our findings uncover a hitherto undescribed and widespread insect endosymbiont that may present valuable opportunities to unravel the molecular underpinnings of symbiosis establishment and maintenance.
Collapse
Affiliation(s)
- Jürgen C Wierz
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Philipp Dirksen
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, 55128 Mainz, Germany
| | - Roy Kirsch
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Ronja Krüsemer
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Benjamin Weiss
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Yannick Pauchet
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Tobias Engl
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Martin Kaltenpoth
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| |
Collapse
|
8
|
Davison HR, Crozier J, Pirro S, Kampen H, Werner D, Hurst GDD. 'Candidatus Tisiphia' is a widespread Rickettsiaceae symbiont in the mosquito Anopheles plumbeus (Diptera: Culicidae). Environ Microbiol 2023; 25:3064-3074. [PMID: 37658745 PMCID: PMC10947512 DOI: 10.1111/1462-2920.16486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 08/08/2023] [Indexed: 09/05/2023]
Abstract
Symbiotic bacteria can alter host biology by providing protection from natural enemies, or alter reproduction or vectoral competence. Symbiont-linked control of vector-borne disease in Anopheles has been hampered by a lack of symbioses that can establish stable vertical transmission in the host. Previous screening found the symbiont 'Candidatus Tisiphia' in Anopheles plumbeus, an aggressive biter and potential secondary vector of malaria parasites and West Nile virus. We screened samples collected over 10-years across Germany and used climate databases to assess environmental influence on incidence. We observed a 95% infection rate, and that the frequency of infection did not fluctuate with broad environmental factors. Maternal inheritance is indicated by presence in the ovaries through FISH microscopy. Finally, we assembled a high-quality 1.6 Mbp draft genome of 'Ca. Tisiphia' to explore its phylogeny and potential metabolic competence. The infection is closely related to strains found in Culicoides biting midges and shows similar patterns of metabolism, providing no evidence of the capacity to synthesize B-vitamins. This infection offers avenues for onward research in anopheline mosquito symbioses. Additionally, it provides future opportunity to study the impact of 'Ca. Tisiphia' on natural and transinfected hosts, especially in relation to reproductive fitness and vectorial competence and capacity.
Collapse
Affiliation(s)
- Helen R. Davison
- Institute of Infection, Veterinary and Ecological Sciences (IVES)University of LiverpoolLiverpoolUK
| | - Jessica Crozier
- Institute of Infection, Veterinary and Ecological Sciences (IVES)University of LiverpoolLiverpoolUK
| | | | - Helge Kampen
- Institute of Infectology (IMED)Friedrich‐Loeffler‐Institut, Federal Research Institute for Animal HealthGreifswaldIsle of RiemsGermany
| | - Doreen Werner
- Land Use and GovernanceLeibniz Centre for Agricultural Landscape Research (ZALF)MünchebergGermany
| | - Gregory D. D. Hurst
- Institute of Infection, Veterinary and Ecological Sciences (IVES)University of LiverpoolLiverpoolUK
| |
Collapse
|
9
|
Kolasa M, Kajtoch Ł, Michalik A, Maryańska-Nadachowska A, Łukasik P. Till evolution do us part: The diversity of symbiotic associations across populations of Philaenus spittlebugs. Environ Microbiol 2023; 25:2431-2446. [PMID: 37525959 DOI: 10.1111/1462-2920.16473] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 07/15/2023] [Indexed: 08/02/2023]
Abstract
Symbiotic bacteria have played crucial roles in the evolution of sap-feeding insects and can strongly affect host function. However, their diversity and distribution within species are not well understood; we do not know to what extent environmental factors or associations with other species may affect microbial community profiles. We addressed this question in Philaenus spittlebugs by surveying both insect and bacterial marker gene amplicons across multiple host populations. Host mitochondrial sequence data confirmed morphology-based identification of six species and revealed two divergent clades of Philaenus spumarius. All of them hosted the primary symbiont Sulcia that was almost always accompanied by Sodalis. Interestingly, populations and individuals often differed in the presence of Sodalis sequence variants, suggestive of intra-genome 16S rRNA variant polymorphism combined with rapid genome evolution and/or recent additional infections or replacements of the co-primary symbiont. The prevalence of facultative endosymbionts, including Wolbachia, Rickettsia, and Spiroplasma, varied among populations. Notably, cytochrome I oxidase (COI) amplicon data also showed that nearly a quarter of P. spumarius were infected by parasitoid flies (Verralia aucta). One of the Wolbachia operational taxonomic units (OTUs) was exclusively present in Verralia-parasitized specimens, suggestive of parasitoids as their source and highlighting the utility of host gene amplicon sequencing in microbiome studies.
Collapse
Affiliation(s)
- Michał Kolasa
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Krakow, Poland
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Krakow, Poland
| | - Łukasz Kajtoch
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Krakow, Poland
| | - Anna Michalik
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | | | - Piotr Łukasik
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
10
|
Archer J, Hurst GDD, Hornett EA. Male-killer symbiont screening reveals novel associations in Adalia ladybirds. Access Microbiol 2023; 5:acmi000585.v3. [PMID: 37601442 PMCID: PMC10436010 DOI: 10.1099/acmi.0.000585.v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/18/2023] [Indexed: 08/22/2023] Open
Abstract
While male-killing bacteria are known to infect across arthropods, ladybird beetles represent a hotspot for these symbioses. In some host species, there are multiple different symbionts that vary in presence and frequency between populations. To further our understanding of spatial and frequency variation, we tested for the presence of three male-killing bacteria: Wolbachia , Rickettsia and Spiroplasma , in two Adalia ladybird species from a previously unexplored UK population. The two-spot ladybird, A. bipunctata, is known to harbour all three male-killers, and we identified Spiroplasma infection in the Merseyside population for the first time. However, in contrast to previous studies on two-spot ladybirds from continental Europe, evidence from egg-hatch rates indicates the Spiroplasma strain present in the Merseyside population does not cause embryonic male-killing. In the related ten-spot ladybird, A. decempunctata, there is only one previous record of a male-killing symbiont, a Rickettsia , which we did not detect in the Merseyside sample. However, PCR assays indicated the presence of a Spiroplasma in a single A. decempunctata specimen. Marker sequence indicated that this Spiroplasma was divergent from that found in sympatric A. bipunctata. Genome sequencing of the Spiroplasma -infected A. decempunctata additionally revealed the presence of cobionts in the form of a Centistes parasitoid wasp and the parasitic fungi Beauveria. Further study of A. decempunctata from this population is needed to resolve whether it is the ladybird or wasp cobiont that harbours Spiroplasma , and to establish the phenotype of this strain. These data indicate first that microbial symbiont phenotype should not be assumed from past studies conducted in different locations, and second that cobiont presence may confound screening studies aimed to detect the frequency of a symbiont in field collected material from a focal host species.
Collapse
Affiliation(s)
- Jack Archer
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Gregory D. D. Hurst
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Emily A. Hornett
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| |
Collapse
|
11
|
Yang H, Verhoeve VI, Chandler CE, Nallar S, Snyder GA, Ernst RK, Gillespie JJ. Structural determination of Rickettsia lipid A without chemical extraction confirms shorter acyl chains in later-evolving Spotted Fever Group pathogens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.06.547954. [PMID: 37461656 PMCID: PMC10350050 DOI: 10.1101/2023.07.06.547954] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Rickettsiae are Gram-negative obligate intracellular parasites of numerous eukaryotes. Human pathogens of the Transitional Group (TRG), Typhus Group (TG), and Spotted Fever Group (SFG) rickettsiae infect blood-feeding arthropods, have dissimilar clinical manifestations, and possess unique genomic and morphological attributes. Lacking glycolysis, rickettsiae pilfer numerous metabolites from host cytosol to synthesize peptidoglycan and lipopolysaccharide (LPS). For LPS, O-antigen immunogenicity varies between SFG and TG pathogens; however, lipid A proinflammatory potential is unknown. We previously demonstrated that R. akari (TRG), R. typhi (TG), and R. montanensis (SFG) produce lipid A with long 2' secondary acyl chains (C16 or C18) compared to short 2' secondary acyl chains (C12) in R. rickettsii (SFG) lipid A. To further probe this structural heterogeneity and estimate a time point when shorter 2' secondary acyl chains originated, we generated lipid A structures for two additional SFG rickettsiae ( R. rhipicephali and R. parkeri ) utilizing Fast Lipid Analysis Technique adopted for use with tandem mass spectrometry (FLAT n ). FLAT n allowed analysis of lipid A structure directly from host cell-purified bacteria, providing substantial improvement over lipid A chemical extraction. FLAT n -derived structures indicate SFG rickettsiae diverging after R. rhipicephali evolved shorter 2' secondary acyl chains. Bioinformatics analysis of Rickettsia LpxL late acyltransferases revealed discrete active sites and hydrocarbon rulers for long versus short 2' secondary acyl chain addition. While the significance of different lipid A structures for diverse Rickettsia pathogens is unknown, our success using FLAT n will facilitate determining how structural heterogeneity impacts interactions with host lipid A receptors and overall inflammatory potential. IMPORTANCE Deforestation, urbanization, and homelessness lead to spikes in Rickettsioses. Vector-borne human pathogens of Transitional Group (TRG), Typhus Group (TG), and Spotted Fever Group (SFG) rickettsiae differ by clinical manifestations, immunopathology, genome composition, and morphology. We previously showed that lipid A (or endotoxin), the membrane anchor of Gram-negative bacterial lipopolysaccharide (LPS), structurally differs in R. rickettsii (later-evolving SFG) relative to R. montanensis (basal SFG), R. typhi (TG), and R. akari (TRG). As lipid A structure influences recognition potential in vertebrate LPS sensors, further assessment of Rickettsia lipid A structural heterogeneity is needed. Here, we sidestepped the difficulty of ex vivo lipid A chemical extraction by utilizing FLAT n , a new procedure for generating lipid A structures directly from host cell-purified bacteria. These data confirm later-evolving SFG pathogens synthesize structurally distinct lipid A. Our findings impact interpreting immune responses to different Rickettsia pathogens and utilizing lipid A adjuvant or anti-inflammatory properties in vaccinology.
Collapse
|
12
|
Moore LD, Ballinger MJ. The toxins of vertically transmitted Spiroplasma. Front Microbiol 2023; 14:1148263. [PMID: 37275155 PMCID: PMC10232968 DOI: 10.3389/fmicb.2023.1148263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/19/2023] [Indexed: 06/07/2023] Open
Abstract
Vertically transmitted (VT) microbial symbionts play a vital role in the evolution of their insect hosts. A longstanding question in symbiont research is what genes help promote long-term stability of vertically transmitted lifestyles. Symbiont success in insect hosts is due in part to expression of beneficial or manipulative phenotypes that favor symbiont persistence in host populations. In Spiroplasma, these phenotypes have been linked to toxin and virulence domains among a few related strains. However, these domains also appear frequently in phylogenetically distant Spiroplasma, and little is known about their distribution across the Spiroplasma genus. In this study, we present the complete genome sequence of the Spiroplasma symbiont of Drosophila atripex, a non-manipulating member of the Ixodetis clade of Spiroplasma, for which genomic data are still limited. We perform a genus-wide comparative analysis of toxin domains implicated in defensive and reproductive phenotypes. From 12 VT and 31 non-VT Spiroplasma genomes, ribosome-inactivating proteins (RIPs), OTU-like cysteine proteases (OTUs), ankyrins, and ETX/MTX2 domains show high propensity for VT Spiroplasma compared to non-VT Spiroplasma. Specifically, OTU and ankyrin domains can be found only in VT-Spiroplasma, and RIP domains are found in all VT Spiroplasma and three non-VT Spiroplasma. These domains are frequently associated with Spiroplasma plasmids, suggesting a possible mechanism for dispersal and maintenance among heritable strains. Searching insect genome assemblies available on public databases uncovered uncharacterized Spiroplasma genomes from which we identified several spaid-like genes encoding RIP, OTU, and ankyrin domains, suggesting functional interactions among those domain types. Our results suggest a conserved core of symbiont domains play an important role in the evolution and persistence of VT Spiroplasma in insects.
Collapse
Affiliation(s)
- Logan D. Moore
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, United States
| | | |
Collapse
|
13
|
Gimmi E, Wallisch J, Vorburger C. Defensive symbiosis in the wild: Seasonal dynamics of parasitism risk and symbiont-conferred resistance. Mol Ecol 2023. [PMID: 37160764 DOI: 10.1111/mec.16976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/19/2023] [Accepted: 04/25/2023] [Indexed: 05/11/2023]
Abstract
Parasite-mediated selection can rapidly drive up resistance levels in host populations, but fixation of resistance traits may be prevented by costs of resistance. Black bean aphids (Aphis fabae) benefit from increased resistance to parasitoids when carrying the defensive bacterial endosymbiont Hamiltonella defensa. However, due to fitness costs that come with symbiont infection, symbiont-conferred resistance may result in either a net benefit or a net cost to the aphid host, depending on parasitoid presence as well as on the general ecological context. Balancing selection may therefore explain why in natural aphid populations, H. defensa is often found at intermediate frequencies. Here we present a 2-year field study where we set out to look for signatures of balancing selection in natural aphid populations. We collected temporally well-resolved data on the prevalence of H. defensa in A. f. fabae and estimated the risk imposed by parasitoids using sentinel hosts. Despite a marked and consistent early-summer peak in parasitism risk, and significant changes in symbiont prevalence over time, we found just a weak correlation between parasitism risk and H. defensa frequency dynamics. H. defensa prevalence in the populations under study was, in fact, better explained by the number of heat days that previous aphid generations were exposed to. Our study grants an unprecedentedly well-resolved insight into the dynamics of endosymbiont and parasitoid communities of A. f. fabae populations, and it adds to a growing body of empirical evidence suggesting that not only parasitism risk, but rather multifarious selection is shaping H. defensa prevalence in the wild.
Collapse
Affiliation(s)
- Elena Gimmi
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- D-USYS, Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| | - Jesper Wallisch
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Christoph Vorburger
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- D-USYS, Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
14
|
Gillespie JJ, Salje J. Orientia and Rickettsia: different flowers from the same garden. Curr Opin Microbiol 2023; 74:102318. [PMID: 37080115 DOI: 10.1016/j.mib.2023.102318] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 04/22/2023]
Abstract
Recent discoveries of basal extracellular Rickettsiales have illuminated divergent evolutionary paths to host dependency in later-evolving lineages. Family Rickettsiaceae, primarily comprised of numerous protist- and invertebrate-associated species, also includes human pathogens from two genera, Orientia and Rickettsia. Once considered sister taxa, these bacteria form distinct lineages with newly appreciated lifestyles and morphological traits. Contrasting other rickettsial human pathogens in Family Anaplasmataceae, Orientia and Rickettsia species do not reside in host-derived vacuoles and lack glycolytic potential. With only a few described mechanisms, strategies for commandeering host glycolysis to support cytosolic growth remain to be discovered. While regulatory systems for this unique mode of intracellular parasitism are unclear, conjugative transposons unique to Orientia and Rickettsia species provide insights that are critical for determining how these obligate intracellular pathogens overtake eukaryotic cytosol.
Collapse
Affiliation(s)
- Joseph J Gillespie
- Department of Microbiology and Immunology, School of Medicine, University of Maryland Baltimore, USA.
| | - Jeanne Salje
- Department of Biochemistry, Department of Pathology, and Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK.
| |
Collapse
|
15
|
Dittmer J, Bredon M, Moumen B, Raimond M, Grève P, Bouchon D. The terrestrial isopod symbiont 'Candidatus Hepatincola porcellionum' is a potential nutrient scavenger related to Holosporales symbionts of protists. ISME COMMUNICATIONS 2023; 3:18. [PMID: 36882494 PMCID: PMC9992710 DOI: 10.1038/s43705-023-00224-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 02/09/2023] [Accepted: 02/23/2023] [Indexed: 03/09/2023]
Abstract
The order Holosporales (Alphaproteobacteria) encompasses obligate intracellular bacterial symbionts of diverse Eukaryotes. These bacteria have highly streamlined genomes and can have negative fitness effects on the host. Herein, we present a comparative analysis of the first genome sequences of 'Ca. Hepatincola porcellionum', a facultative symbiont occurring extracellularly in the midgut glands of terrestrial isopods. Using a combination of long-read and short-read sequencing, we obtained the complete circular genomes of two Hepatincola strains and an additional metagenome-assembled draft genome. Phylogenomic analysis validated its phylogenetic position as an early-branching family-level clade relative to all other established Holosporales families associated with protists. A 16S rRNA gene survey revealed that this new family encompasses diverse bacteria associated with both marine and terrestrial host species, which expands the host range of Holosporales bacteria from protists to several phyla of the Ecdysozoa (Arthropoda and Priapulida). Hepatincola has a highly streamlined genome with reduced metabolic and biosynthetic capacities as well as a large repertoire of transmembrane transporters. This suggests that this symbiont is rather a nutrient scavenger than a nutrient provider for the host, likely benefitting from a nutrient-rich environment to import all necessary metabolites and precursors. Hepatincola further possesses a different set of bacterial secretion systems compared to protist-associated Holosporales, suggesting different host-symbiont interactions depending on the host organism.
Collapse
Affiliation(s)
- Jessica Dittmer
- Dipartimento di Scienze Agrarie e Ambientali (DISAA), Università degli Studi di Milano, Via Celoria 2, 20133, Milano, Italy.
- UMR 1345, Université d'Angers, Institut Agro, INRAE, IRHS, SFR Quasav, 42 Rue Georges Morel, 49070, Beaucouzé, France.
| | - Marius Bredon
- UMR CNRS 7267, Ecologie et Biologie des Interactions, Université de Poitiers, 3 Rue Jacques Fort, 86073, Poitiers, France
- Université Paris-Sorbonne, Centre de Recherche Saint-Antoine, Equipe Microbiote, Intestin et Inflammation, 27 Rue Chaligny, 75012, Paris, France
| | - Bouziane Moumen
- UMR CNRS 7267, Ecologie et Biologie des Interactions, Université de Poitiers, 3 Rue Jacques Fort, 86073, Poitiers, France
| | - Maryline Raimond
- UMR CNRS 7267, Ecologie et Biologie des Interactions, Université de Poitiers, 3 Rue Jacques Fort, 86073, Poitiers, France
| | - Pierre Grève
- UMR CNRS 7267, Ecologie et Biologie des Interactions, Université de Poitiers, 3 Rue Jacques Fort, 86073, Poitiers, France
| | - Didier Bouchon
- UMR CNRS 7267, Ecologie et Biologie des Interactions, Université de Poitiers, 3 Rue Jacques Fort, 86073, Poitiers, France.
| |
Collapse
|
16
|
Verhoeve VI, Lehman SS, Driscoll TP, Beckmann JF, Gillespie JJ. Metagenome diversity illuminates origins of pathogen effectors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.26.530123. [PMID: 36909625 PMCID: PMC10002696 DOI: 10.1101/2023.02.26.530123] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Recent metagenome assembled genome (MAG) analyses have profoundly impacted Rickettsiology systematics. Discovery of basal lineages (Mitibacteraceae and Athabascaceae) with predicted extracellular lifestyles reveals an evolutionary timepoint for the transition to host dependency, which occurred independent of mitochondrial evolution. Notably, these basal rickettsiae carry the Rickettsiales vir homolog (rvh) type IV secretion system (T4SS) and purportedly use rvh to kill congener microbes rather than parasitize host cells as described for derived rickettsial pathogens. MAG analysis also substantially increased diversity for genus Rickettsia and delineated a basal lineage (Tisiphia) that stands to inform on the rise of human pathogens from protist and invertebrate endosymbionts. Herein, we probed Rickettsiales MAG and genomic diversity for the distribution of Rickettsia rvh effectors to ascertain their origins. A sparse distribution of most Rickettsia rvh effectors outside of Rickettsiaceae lineages indicates unique rvh evolution from basal extracellular species and other rickettsial families. Remarkably, nearly every effector was found in multiple divergent forms with variable architectures, illuminating profound roles for gene duplication and recombination in shaping effector repertoires in Rickettsia pathogens. Lateral gene transfer plays a prominent role shaping the rvh effector landscape, as evinced by the discover of many effectors on plasmids and conjugative transposons, as well as pervasive effector gene exchange between Rickettsia and Legionella species. Our study exemplifies how MAGs can provide incredible insight on the origins of pathogen effectors and how their architectural modifications become tailored to eukaryotic host cell biology.
Collapse
Affiliation(s)
- Victoria I Verhoeve
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Stephanie S Lehman
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Timothy P Driscoll
- Department of Biology, West Virginia University, Morgantown, West Virginia, USA
| | - John F Beckmann
- Microbiology and Immunology, University of South Alabama, Mobile, AL, USA
| | - Joseph J Gillespie
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
17
|
Halter T, Köstlbacher S, Rattei T, Hendrickx F, Manzano-Marín A, Horn M. One to host them all: genomics of the diverse bacterial endosymbionts of the spider Oedothorax gibbosus. Microb Genom 2023; 9:mgen000943. [PMID: 36757767 PMCID: PMC9997750 DOI: 10.1099/mgen.0.000943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 12/04/2022] [Indexed: 02/10/2023] Open
Abstract
Bacterial endosymbionts of the groups Wolbachia, Cardinium and Rickettsiaceae are well known for their diverse effects on their arthropod hosts, ranging from mutualistic relationships to reproductive phenotypes. Here, we analysed a unique system in which the dwarf spider Oedothorax gibbosus is co-infected with up to five different endosymbionts affiliated with Wolbachia, 'Candidatus Tisiphia' (formerly Torix group Rickettsia), Cardinium and Rhabdochlamydia. Using short-read genome sequencing data, we show that the endosymbionts are heterogeneously distributed among O. gibbosus populations and are frequently found co-infecting spider individuals. To study this intricate host-endosymbiont system on a genome-resolved level, we used long-read sequencing to reconstruct closed genomes of the Wolbachia, 'Ca. Tisiphia' and Cardinium endosymbionts. We provide insights into the ecology and evolution of the endosymbionts and shed light on the interactions with their spider host. We detected high quantities of transposable elements in all endosymbiont genomes and provide evidence that ancestors of the Cardinium, 'Ca. Tisiphia' and Wolbachia endosymbionts have co-infected the same hosts in the past. Our findings contribute to broadening our knowledge about endosymbionts infecting one of the largest animal phyla on Earth and show the usefulness of transposable elements as an evolutionary 'contact-tracing' tool.
Collapse
Affiliation(s)
- Tamara Halter
- Centre for Microbiology and Environmental Systems Science, University of Vienna. Djerassiplatz 1, 1030 Vienna, Austria
- Doctoral School in Microbiology and Environmental Science, University of Vienna. Universitätsring 1, 1010 Vienna, Austria
| | - Stephan Köstlbacher
- Centre for Microbiology and Environmental Systems Science, University of Vienna. Djerassiplatz 1, 1030 Vienna, Austria
- Doctoral School in Microbiology and Environmental Science, University of Vienna. Universitätsring 1, 1010 Vienna, Austria
- Current address: Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6700 EH Wageningen, The Netherlands
| | - Thomas Rattei
- Centre for Microbiology and Environmental Systems Science, University of Vienna. Djerassiplatz 1, 1030 Vienna, Austria
| | - Frederik Hendrickx
- OD Taxonomy and Phylogeny, Royal Belgian Institute of Natural Sciences. Rue Vautier/Vautierstraat 29,, 1000 Brussels, Belgium
| | - Alejandro Manzano-Marín
- Centre for Microbiology and Environmental Systems Science, University of Vienna. Djerassiplatz 1, 1030 Vienna, Austria
| | - Matthias Horn
- Centre for Microbiology and Environmental Systems Science, University of Vienna. Djerassiplatz 1, 1030 Vienna, Austria
| |
Collapse
|
18
|
Pilgrim J. The opportunities of research parasitism: A case study using the Barcode of Life Data System (BOLD). Gigascience 2022; 11:6874524. [PMID: 36472572 PMCID: PMC9724551 DOI: 10.1093/gigascience/giac123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 08/04/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
The Barcode of Life Data System (BOLD) is primarily used to identify biological specimens based on a mitochondrial gene sequence and has been an underpinning resource for life science researchers. Importantly, curators of BOLD archive DNA extracts where possible, and also record contaminant sequences that can be made available on request. This collegial offering of samples and data led to our work describing the serendipitous discovery of new interactions between a Torix Rickettsia bacterium and their arthropod hosts and resulted in winning the 2022 Junior Research Parasite Award. A case study of this work is presented, which discusses the opportunities provided by secondary data and how careful maintenance of such large-scale repositories plays a vital role in scientific research that goes beyond obvious lines of enquiry.
Collapse
Affiliation(s)
- Jack Pilgrim
- Correspondence address. Jack Pilgrim, Biosciences Building, Crown Street, University of Liverpool, Liverpool, UK L69 7BE, UK E-mail:
| |
Collapse
|
19
|
Štarhová Serbina L, Gajski D, Pafčo B, Zurek L, Malenovský I, Nováková E, Schuler H, Dittmer J. Microbiome of pear psyllids: A tale about closely related species sharing their endosymbionts. Environ Microbiol 2022; 24:5788-5808. [PMID: 36054322 PMCID: PMC10086859 DOI: 10.1111/1462-2920.16180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 08/20/2022] [Indexed: 01/12/2023]
Abstract
Psyllids are phloem-feeding insects that can transmit plant pathogens such as phytoplasmas, intracellular bacteria causing numerous plant diseases worldwide. Their microbiomes are essential for insect physiology and may also influence the capacity of vectors to transmit pathogens. Using 16S rRNA gene metabarcoding, we compared the microbiomes of three sympatric psyllid species associated with pear trees in Central Europe. All three species are able to transmit 'Candidatus Phytoplasma pyri', albeit with different efficiencies. Our results revealed potential relationships between insect biology and microbiome composition that varied during psyllid ontogeny and between generations in Cacopsylla pyri and C. pyricola, as well as between localities in C. pyri. In contrast, no variations related to psyllid life cycle and geography were detected in C. pyrisuga. In addition to the primary endosymbiont Carsonella ruddii, we detected another highly abundant endosymbiont (unclassified Enterobacteriaceae). C. pyri and C. pyricola shared the same taxon of Enterobacteriaceae which is related to endosymbionts harboured by other psyllid species from various families. In contrast, C. pyrisuga carried a different Enterobacteriaceae taxon related to the genus Sodalis. Our study provides new insights into host-symbiont interactions in psyllids and highlights the importance of host biology and geography in shaping microbiome structure.
Collapse
Affiliation(s)
- Liliya Štarhová Serbina
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy.,Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Domagoj Gajski
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Barbora Pafčo
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Ludek Zurek
- Central European Institute of Technology, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic.,Department of Microbiology, Nutrition and Dietetics/CINeZ, Czech University of Life Sciences, Prague, Czech Republic
| | - Igor Malenovský
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Eva Nováková
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Hannes Schuler
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy.,Competence Centre for Plant Health, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Jessica Dittmer
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy.,Université d'Angers, Institut Agro, INRAE, IRHS, SFR Quasav, Angers, France
| |
Collapse
|
20
|
Park E, Poulin R. Extremely divergent COI sequences within an amphipod species complex: A possible role for endosymbionts? Ecol Evol 2022; 12:e9448. [PMID: 36311398 PMCID: PMC9609454 DOI: 10.1002/ece3.9448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 11/10/2022] Open
Abstract
Some heritable endosymbionts can affect host mtDNA evolution in various ways. Amphipods host diverse endosymbionts, but whether their mtDNA has been influenced by these endosymbionts has yet to be considered. Here, we investigated the role of endosymbionts (microsporidians and Rickettsia) in explaining highly divergent COI sequences in Paracalliope fluviatilis species complex, the most common freshwater amphipods in New Zealand. We first contrasted phylogeographic patterns using COI, ITS, and 28S sequences. While molecular species delimitation methods based on 28S sequences supported 3-4 potential species (N, C, SA, and SB) among freshwater lineages, COI sequences supported 17-27 putative species reflecting high inter-population divergence. The deep divergence between NC and S lineages (~20%; 28S) and the substitution saturation on the 3rd codon position of COI detected even within one lineage (SA) indicate a very high level of morphological stasis. Interestingly, individuals infected and uninfected by Rickettsia comprised divergent COI lineages in one of four populations tested, suggesting a potential influence of endosymbionts in mtDNA patterns. We propose several plausible explanations for divergent COI lineages, although they would need further testing with multiple lines of evidence. Lastly, due to common morphological stasis and the presence of endosymbionts, phylogeographic patterns of amphipods based on mtDNA should be interpreted with caution.
Collapse
Affiliation(s)
- Eunji Park
- Department of ZoologyUniversity of OtagoDunedinNew Zealand
- Department of BotanyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Robert Poulin
- Department of ZoologyUniversity of OtagoDunedinNew Zealand
| |
Collapse
|
21
|
Schuler H, Dittmer J, Borruso L, Galli J, Fischnaller S, Anfora G, Rota‐Stabelli O, Weil T, Janik K. Investigating the microbial community of Cacopsylla spp. as potential factor in vector competence of phytoplasma. Environ Microbiol 2022; 24:4771-4786. [PMID: 35876309 PMCID: PMC9804460 DOI: 10.1111/1462-2920.16138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 07/11/2022] [Accepted: 07/15/2022] [Indexed: 01/05/2023]
Abstract
Phytoplasmas are obligatory intracellular bacteria that colonize the phloem of many plant species and cause hundreds of plant diseases worldwide. In nature, phytoplasmas are primarily transmitted by hemipteran vectors. While all phloem-feeding insects could in principle transmit phytoplasmas, only a limited number of species have been confirmed as vectors. Knowledge about factors that might determine the vector capacity is currently scarce. Here, we characterized the microbiomes of vector and non-vector species of apple proliferation (AP) phytoplasma 'Candidatus Phytoplasma mali' to investigate their potential role in the vector capacity of the host. We performed high-throughput 16S rRNA metabarcoding of the two principal AP-vectors Cacopsylla picta and Cacopsylla melanoneura and eight Cacopsylla species, which are not AP-vectors but co-occur in apple orchards. The microbiomes of all species are dominated by Carsonella, the primary endosymbiont of psyllids and a second uncharacterized Enterobacteriaceae endosymbiont. Each Cacopsylla species harboured a species-specific phylotype of both symbionts. Moreover, we investigated differences between the microbiomes of AP-vector versus non-vector species and identified the predominant endosymbionts but also Wolbachia and several minor taxa as potential indicator species. Our study highlights the importance of considering the microbiome in future investigations of potential factors influencing host vector competence. We investigated the potential role of symbiotic bacteria in the acquisition and transmission of phytoplasma. By comparing the two main psyillid vector species of Apple proliferation (AP) phytoplasma and eight co-occurring species, which are not able to vector AP-phytoplasma, we found differences in the microbial communities of AP-vector and non-vector species, which appear to be driven by the predominant symbionts in both vector species and Wolbachia and several minor taxa in the non-vector species. In contrast, infection with AP-phytoplasma did not affect microbiome composition in both vector species. Our study provides new insights into the endosymbiont diversity of Cacopsylla spp. and highlights the importance of considering the microbiome when investigating potential factors influencing host vector competence.
Collapse
Affiliation(s)
- Hannes Schuler
- Faculty of Science and TechnologyFree University of Bozen‐BolzanoBozen‐BolzanoItaly,Competence Centre for Plant HealthFree University of Bozen‐BolzanoBozen‐BolzanoItaly
| | - Jessica Dittmer
- Faculty of Science and TechnologyFree University of Bozen‐BolzanoBozen‐BolzanoItaly,Université d'Angers, Institut Agro, INRAE, IRHS, SFR QuasavAngersFrance
| | - Luigimaria Borruso
- Faculty of Science and TechnologyFree University of Bozen‐BolzanoBozen‐BolzanoItaly
| | - Jonas Galli
- Department of Forest and Soil Sciences, BOKUUniversity of Natural Resources and Life Sciences ViennaViennaAustria
| | | | - Gianfranco Anfora
- Research and Innovation CenterFondazione Edmund MachSan Michele all'AdigeItaly,Center Agriculture Food EnvironmentUniversity of TrentoSan Michele all'AdigeItaly
| | - Omar Rota‐Stabelli
- Research and Innovation CenterFondazione Edmund MachSan Michele all'AdigeItaly,Center Agriculture Food EnvironmentUniversity of TrentoSan Michele all'AdigeItaly
| | - Tobias Weil
- Research and Innovation CenterFondazione Edmund MachSan Michele all'AdigeItaly
| | - Katrin Janik
- Center Agriculture Food EnvironmentUniversity of TrentoSan Michele all'AdigeItaly
| |
Collapse
|
22
|
Davison HR, Pilgrim J, Wybouw N, Parker J, Pirro S, Hunter-Barnett S, Campbell PM, Blow F, Darby AC, Hurst GDD, Siozios S. Genomic diversity across the Rickettsia and 'Candidatus Megaira' genera and proposal of genus status for the Torix group. Nat Commun 2022; 13:2630. [PMID: 35551207 PMCID: PMC9098888 DOI: 10.1038/s41467-022-30385-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 04/29/2022] [Indexed: 11/09/2022] Open
Abstract
Members of the bacterial genus Rickettsia were originally identified as causative agents of vector-borne diseases in mammals. However, many Rickettsia species are arthropod symbionts and close relatives of 'Candidatus Megaira', which are symbiotic associates of microeukaryotes. Here, we clarify the evolutionary relationships between these organisms by assembling 26 genomes of Rickettsia species from understudied groups, including the Torix group, and two genomes of 'Ca. Megaira' from various insects and microeukaryotes. Our analyses of the new genomes, in comparison with previously described ones, indicate that the accessory genome diversity and broad host range of Torix Rickettsia are comparable to those of all other Rickettsia combined. Therefore, the Torix clade may play unrecognized roles in invertebrate biology and physiology. We argue this clade should be given its own genus status, for which we propose the name 'Candidatus Tisiphia'.
Collapse
Affiliation(s)
- Helen R Davison
- Institute of Infection, Veterinary and Ecological sciences, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Jack Pilgrim
- Institute of Infection, Veterinary and Ecological sciences, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Nicky Wybouw
- Terrestrial Ecology Unit, Department of Biology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Joseph Parker
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E California Boulevard, Pasadena, CA, 91125, USA
| | | | - Simon Hunter-Barnett
- Institute of Infection, Veterinary and Ecological sciences, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Paul M Campbell
- Institute of Infection, Veterinary and Ecological sciences, University of Liverpool, Liverpool, L69 7ZB, UK
- School of Health and Life Sciences, Faculty of Biology Medicine and Health, the University of Manchester, Manchester, UK
| | - Frances Blow
- Institute of Infection, Veterinary and Ecological sciences, University of Liverpool, Liverpool, L69 7ZB, UK
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA
| | - Alistair C Darby
- Institute of Infection, Veterinary and Ecological sciences, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Gregory D D Hurst
- Institute of Infection, Veterinary and Ecological sciences, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Stefanos Siozios
- Institute of Infection, Veterinary and Ecological sciences, University of Liverpool, Liverpool, L69 7ZB, UK.
| |
Collapse
|
23
|
Examination of Rickettsial Host Range for Shuttle Vectors Based on dnaA and parA Genes from the pRM Plasmid of Rickettsia monacensis. Appl Environ Microbiol 2022; 88:e0021022. [PMID: 35323021 PMCID: PMC9004397 DOI: 10.1128/aem.00210-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The genus Rickettsia encompasses a diverse group of obligate intracellular bacteria that are highly virulent disease agents of mankind as well as symbionts of arthropods. Native plasmids of Rickettsia amblyommatis (AaR/SC) have been used as models to construct shuttle vectors for genetic manipulation of several Rickettsia species. Here, we report on the isolation of the complete plasmid (pRM658B) from Rickettsia monacensis IrR/Munich mutant Rmona658B and the construction of shuttle vectors based on pRM. To identify regions essential for replication, we made vectors containing the dnaA and parA genes of pRM with various portions of the region surrounding these genes and a selection reporter cassette conferring resistance to spectinomycin and expression of green fluorescent protein. Rickettsia amblyommatis (AaR/SC), R. monacensis (IrR/Munich), Rickettsia bellii (RML 369-C), Rickettsia parkeri (Tate’s Hell), and Rickettsia montanensis (M5/6) were successfully transformed with shuttle vectors containing pRM parA and dnaA. PCR assays targeting pRM regions not included in the vectors revealed that native pRM was retained in R. monacensis transformants. Determination of native pRM copy number using a plasmid-carried gene (RM_p5) in comparison to chromosomally carried gltA indicated reduced copy numbers in R. monacensis transformants. In transformed R. monacensis strains, native pRM and shuttle vectors with homologous parA and dnaA formed native plasmid-shuttle vector complexes. These studies provide insight on the maintenance of plasmids and shuttle vectors in rickettsiae. IMPORTANCERickettsia spp. are found in a diverse array of organisms, from ticks, mites, and fleas to leeches and insects. Many are not pathogenic, but others, such as Rickettsia rickettsii and Rickettsia prowazeckii, can cause severe illness or death. Plasmids are found in a large percentage of nonpathogenic rickettsiae, but not in species that cause severe disease. Studying these plasmids can reveal their role in the biology of these bacteria, as well as the molecular mechanism whereby they are maintained and replicate in rickettsiae. Here, we describe a new series of shuttle plasmids for the transformation of rickettsiae based on parA and dnaA sequences of plasmid pRM from Rickettsia monacensis. These shuttle vectors support transformation of diverse rickettsiae, including the native host of pRM, and are useful for investigating genetic determinants that govern rickettsial virulence or their ability to function as symbionts.
Collapse
|
24
|
Genomic evolution and adaptation of arthropod-associated Rickettsia. Sci Rep 2022; 12:3807. [PMID: 35264613 PMCID: PMC8907221 DOI: 10.1038/s41598-022-07725-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 02/16/2022] [Indexed: 11/17/2022] Open
Abstract
Rickettsia species are endosymbionts hosted by arthropods and are known to cause mild to fatal diseases in humans. Here, we analyse the evolution and diversity of 34 Rickettsia species using a pangenomic meta-analysis (80 genomes/41 plasmids). Phylogenomic trees showed that Rickettsia spp. diverged into two Spotted Fever groups, a Typhus group, a Canadensis group and a Bellii group, and may have inherited their plasmids from an ancestral plasmid that persisted in some strains or may have been lost by others. The results suggested that the ancestors of Rickettsia spp. might have infected Acari and/or Insecta and probably diverged by persisting inside and/or switching hosts. Pangenomic analysis revealed that the Rickettsia genus evolved through a strong interplay between genome degradation/reduction and/or expansion leading to possible distinct adaptive trajectories. The genus mainly shared evolutionary relationships with α-proteobacteria, and also with γ/β/δ-proteobacteria, cytophagia, actinobacteria, cyanobacteria, chlamydiia and viruses, suggesting lateral exchanges of several critical genes. These evolutionary processes have probably been orchestrated by an abundance of mobile genetic elements, especially in the Spotted Fever and Bellii groups. In this study, we provided a global evolutionary genomic view of the intracellular Rickettsia that may help our understanding of their diversity, adaptation and fitness.
Collapse
|
25
|
Dally M, Izraeli Y, Belausov E, Mozes-Daube N, Coll M, Zchori-Fein E. Rickettsia association with two Macrolophus (Heteroptera: Miridae) species: A comparative study of phylogenies and within-host localization patterns. Front Microbiol 2022; 13:1107153. [PMID: 36909844 PMCID: PMC9998071 DOI: 10.3389/fmicb.2022.1107153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 12/28/2022] [Indexed: 02/25/2023] Open
Abstract
Many arthropods host bacterial symbionts, some of which are known to influence host nutrition and diet breadth. Omnivorous bugs of the genus Macrolophus (Heteroptera: Miridae) are mainly predatory, but may also feed on plants. The species M. pygmaeus and M. melanotoma (=M. caliginosus) are key natural enemies of various economically important agricultural pests, and are known to harbor two Rickettsia species, R. bellii and R. limoniae. To test for possible involvement of symbiotic bacteria in the nutritional ecology of these biocontrol agents, the abundance, phylogeny, and distribution patterns of the two Rickettsia species in M. pygmaeus and M. melanotoma were studied. Both of the Rickettsia species were found in 100 and 84% of all tested individuals of M. pygmaeus and M. melanotoma, respectively. Phylogenetic analysis showed that a co-evolutionary process between Macrolophus species and their Rickettsia is infrequent. Localization of R. bellii and R. limoniae has been detected in both female and male of M. pygmaeus and M. melanotoma. FISH analysis of female gonads revealed the presence of both Rickettsia species in the germarium of both bug species. Each of the two Rickettsia species displayed a unique distribution pattern along the digestive system of the bugs, mostly occupying separate epithelial cells, unknown caeca-like organs, the Malpighian tubules and the salivary glands. This pattern differed between the two Macrolophus species: in M. pygmaeus, R. limoniae was distributed more broadly along the host digestive system and R. bellii was located primarily in the foregut and midgut. In contrast, in M. melanotoma, R. bellii was more broadly distributed along the digestive system than the clustered R. limoniae. Taken together, these results suggest that Rickettsia may have a role in the nutritional ecology of their plant-and prey-consuming hosts.
Collapse
Affiliation(s)
- Maria Dally
- Department of Entomology, RH Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel.,Department of Entomology, Newe-Ya'ar Research Center, ARO, Ramat-Yishay, Israel
| | - Yehuda Izraeli
- Department of Entomology, Newe-Ya'ar Research Center, ARO, Ramat-Yishay, Israel.,Department of Evolution and Environmental Biology, University of Haifa, Haifa, Israel
| | - Eduard Belausov
- The Institute of Plant Sciences, The Volcani Center, ARO, Rishon LeZion, Israel
| | - Netta Mozes-Daube
- Department of Entomology, Newe-Ya'ar Research Center, ARO, Ramat-Yishay, Israel
| | - Moshe Coll
- Department of Entomology, RH Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Einat Zchori-Fein
- Department of Entomology, Newe-Ya'ar Research Center, ARO, Ramat-Yishay, Israel
| |
Collapse
|
26
|
Pilgrim J, Thongprem P, Davison HR, Siozios S, Baylis M, Zakharov EV, Ratnasingham S, deWaard JR, Macadam CR, Smith MA, Hurst GDD. Torix Rickettsia are widespread in arthropods and reflect a neglected symbiosis. Gigascience 2021; 10:giab021. [PMID: 33764469 PMCID: PMC7992394 DOI: 10.1093/gigascience/giab021] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 11/05/2020] [Accepted: 03/05/2021] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Rickettsia are intracellular bacteria best known as the causative agents of human and animal diseases. Although these medically important Rickettsia are often transmitted via haematophagous arthropods, other Rickettsia, such as those in the Torix group, appear to reside exclusively in invertebrates and protists with no secondary vertebrate host. Importantly, little is known about the diversity or host range of Torix group Rickettsia. RESULTS This study describes the serendipitous discovery of Rickettsia amplicons in the Barcode of Life Data System (BOLD), a sequence database specifically designed for the curation of mitochondrial DNA barcodes. Of 184,585 barcode sequences analysed, Rickettsia is observed in ∼0.41% of barcode submissions and is more likely to be found than Wolbachia (0.17%). The Torix group of Rickettsia are shown to account for 95% of all unintended amplifications from the genus. A further targeted PCR screen of 1,612 individuals from 169 terrestrial and aquatic invertebrate species identified mostly Torix strains and supports the "aquatic hot spot" hypothesis for Torix infection. Furthermore, the analysis of 1,341 SRA deposits indicates that Torix infections represent a significant proportion of all Rickettsia symbioses found in arthropod genome projects. CONCLUSIONS This study supports a previous hypothesis that suggests that Torix Rickettsia are overrepresented in aquatic insects. In addition, multiple methods reveal further putative hot spots of Torix Rickettsia infection, including in phloem-feeding bugs, parasitoid wasps, spiders, and vectors of disease. The unknown host effects and transmission strategies of these endosymbionts make these newly discovered associations important to inform future directions of investigation involving the understudied Torix Rickettsia.
Collapse
Affiliation(s)
- Jack Pilgrim
- Institute of Infection, Veterinary and Ecological Sciences, Faculty of Health and Life Sciences, University of Liverpool, Leahurst Campus, Chester High Road, Neston, Wirral CH64 7TE, UK
| | - Panupong Thongprem
- Institute of Infection, Veterinary and Ecological Sciences, Faculty of Health and Life Sciences, University of Liverpool, Leahurst Campus, Chester High Road, Neston, Wirral CH64 7TE, UK
| | - Helen R Davison
- Institute of Infection, Veterinary and Ecological Sciences, Faculty of Health and Life Sciences, University of Liverpool, Leahurst Campus, Chester High Road, Neston, Wirral CH64 7TE, UK
| | - Stefanos Siozios
- Institute of Infection, Veterinary and Ecological Sciences, Faculty of Health and Life Sciences, University of Liverpool, Leahurst Campus, Chester High Road, Neston, Wirral CH64 7TE, UK
| | - Matthew Baylis
- Institute of Infection, Veterinary and Ecological Sciences, Faculty of Health and Life Sciences, University of Liverpool, Leahurst Campus, Chester High Road, Neston, Wirral CH64 7TE, UK
- Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, 8 West Derby Street, Liverpool L69 7BE, UK
| | - Evgeny V Zakharov
- Centre for Biodiversity Genomics, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G2W1, Canada
| | - Sujeevan Ratnasingham
- Centre for Biodiversity Genomics, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G2W1, Canada
| | - Jeremy R deWaard
- Centre for Biodiversity Genomics, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G2W1, Canada
| | - Craig R Macadam
- Buglife – The Invertebrate Conservation Trust, Balallan House, 24 Allan Park, Stirling FK8 2QG, UK
| | - M Alex Smith
- Department of Integrative Biology, University of Guelph, Summerlee Science Complex, Guelph, Ontario N1G 2W1, Canada
| | - Gregory D D Hurst
- Institute of Infection, Veterinary and Ecological Sciences, Faculty of Health and Life Sciences, University of Liverpool, Leahurst Campus, Chester High Road, Neston, Wirral CH64 7TE, UK
| |
Collapse
|