1
|
Wang G, Bai X, Ren Y, Su Y, Han J. Development of nucleotide signatures for common poisonous organisms provides a new strategy for food poisoning diagnosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 265:115529. [PMID: 37776823 DOI: 10.1016/j.ecoenv.2023.115529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/12/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023]
Abstract
DNA barcoding is widely used in toxic species authentication, but due to serious DNA degradation of forensic materials, the application of full-length barcode sequences in food poisoning diagnosis is greatly limited. Nucleotide signature, a shorter specific molecular marker, derived from traditional DNA barcoding has been proposed as an emerging tool of toxic species detection in deeply processed materials. In this study, to resolve the frequent food poisoning accidents with unknown origin, we envisioned developing a nucleotide signature data set of common poisonous organisms and combining high-throughput sequencing (HTS) to reveal the poisoning cause. Ninety-three individuals and 1093 DNA barcode sequences of twelve common poisonous plants, fish, mushrooms and their related species were collected. Through sequence alignment and screening, the nucleotide signatures were respectively developed and validated as their specific molecular markers. The sequence length varied from 19 bp to 38 bp. These fragments were conserved within the same species or genera, and the specificity between related species has been also demonstrated. To further evaluate the application potential of nucleotide signature in forensic diagnosis, simulated forensic specimens (SFS) containing different poisonous ingredients were sequenced by HTS with PCR-free libraries. As a result, the nucleotide signature was successfully captured from original HTS data without assembly and annotation, accompanied by a high detection sensitivity of 0.1 ng/µl in mixture system. Therefore, this method was suitable for the assay of forensic materials with serious DNA degradation. The present study undoubtedly provides a new perspective and strong support for the detection of toxic ingredients and the diagnosis of food poisoning.
Collapse
Affiliation(s)
- Gang Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Xuanjiao Bai
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Ying Ren
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Yuying Su
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jianping Han
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| |
Collapse
|
2
|
Csabai Z, Čiamporová-Zaťovičová Z, Boda P, Čiampor F. 50%, not great, not terrible: Pan-European gap-analysis shows the real status of the DNA barcode reference libraries in two aquatic invertebrate groups and points the way ahead. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160922. [PMID: 36539085 DOI: 10.1016/j.scitotenv.2022.160922] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
The essential key to routine molecular species identification (DNA barcoding/metabarcoding) is the existence of an error-free DNA barcode reference library providing full coverage of all species. Published studies generally state the need to produce more barcodes, and control their quality, but unfortunately, the number of barcoded species is still low. However, to initiate real progress, we need to know where the gaps lie, how big they are and why they persist. Our aims were to draw and understand the current state of knowledge regarding species diversity, distribution, and barcode coverage, and offer solutions for improvement. In this study, we used two groups of aquatic insects, beetles and true bugs. We have compiled and critically evaluated an essentially complete and up-to-date European list, containing 1527 species. The list served as a basis for the barcode gap analyses in the Barcode-of-Life-Data-System (BOLD) conducted in three subsequent years (2020-2022). The overall barcode coverage of the pan-European fauna was around 50 % in both groups. The lowest coverage was in the Mediterranean, the Balkans and South-eastern Europe. The coverage in each country depended significantly on the local diversity, the number of rare, endemic species and the similarity of its fauna to that of the most active barcoding European countries. Gap analyses showed a very small increase in species coverage (<1 % in European aquatic beetles) despite an ~25 % increase in the number of barcodes. Hence, it is clear that future barcoding campaigns must prioritise quality over quantity. To visibly improve reference libraries, we need to increase the involvement of taxonomic experts and focus on targeted studies and underexplored but biodiversity-rich areas.
Collapse
Affiliation(s)
- Zoltán Csabai
- University of Pécs, Faculty of Sciences, Department of Hydrobiology, Ifjúság útja 6, H7624 Pécs, Hungary; Masaryk University, Faculty of Sciences, Department of Zoology and Botany, Kotlářská 2, 62500 Brno, Czech Republic; Balaton Limnological Research Institute, Klebelsberg Kuno utca 3, 8237 Tihany, Hungary.
| | - Zuzana Čiamporová-Zaťovičová
- Slovak Academy of Sciences, Plant Science and Biodiversity Centre, Department of Biodiversity and Ecology, Dúbravská cesta 9, 84523 Bratislava, Slovakia; Department of Ecology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia.
| | - Pál Boda
- Centre for Ecological Research, Institute of Aquatic Ecology, Bem tér 18/c, H4026 Debrecen, Hungary.
| | - Fedor Čiampor
- Slovak Academy of Sciences, Plant Science and Biodiversity Centre, Department of Biodiversity and Ecology, Dúbravská cesta 9, 84523 Bratislava, Slovakia.
| |
Collapse
|
3
|
Klimova A, Rodríguez‐Estrella R, Meng G, Gutiérrez‐Rivera JN, Jimenez‐Jimenez ML, Liu S. Metabarcoding reveals seasonal and spatial patterns of arthropod community assemblages in two contrasting habitats: Desert and oasis of the Baja California Peninsula, Mexico. DIVERS DISTRIB 2023. [DOI: 10.1111/ddi.13672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Affiliation(s)
- Anastasia Klimova
- Centro de Investigaciones Biológicas del Noroeste S.C. La Paz Mexico
| | | | - Guanliang Meng
- Zoological Research Museum Alexander Koenig, Leibniz Institute for the Analysis of Biodiversity Change Bonn Germany
| | | | | | - Shanlin Liu
- Department of Entomology, College of Plant Protection China Agricultural University Beijing China
| |
Collapse
|
4
|
Balasubramanian VK, Joseph Maran MI, Ramteke D, Vijaykumar DS, Kottarathail Rajendran A, Ramachandran P, Ramachandran R. Environmental DNA reveals aquatic biodiversity of an urban backwater area, southeast coast of India. MARINE POLLUTION BULLETIN 2021; 171:112786. [PMID: 34371435 DOI: 10.1016/j.marpolbul.2021.112786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 07/07/2021] [Accepted: 07/25/2021] [Indexed: 06/13/2023]
Abstract
Strong conservation management needs comprehensive data on biodiversity. Rapid methods that document aquatic biodiversity or assess the health condition of an ecosystem remain scarce. Herein, we have performed a metagenomics study on environmental DNA (eDNA) collected from an urban backwater area - Muttukadu, located in the southeast coast of India. Shotgun metagenomics approach using Illumina®NextSeq500 sequencing yielded 88.4 million raw reads. The processed data was assigned as 80% prokaryotes, 0.4% eukaryotes, ~2% viruses, and ~17% remain unknown. This approach has the potential to identify small micro-eukaryote, unseen species from both estuarine and marine environments. We have identified 156 eukaryote organisms represented from 21 phyla and 112 families, including those that are of conservational significance and ecological importance. Furthermore, our data also demonstrated the presence of pathogenic microorganisms due to sewage mixing with the backwaters. Given its sensitivity, we suggest this approach for an initial assessment of biodiversity structure in an ecosystem for the biomonitoring program.
Collapse
Affiliation(s)
- Vignesh Kumar Balasubramanian
- Conservation of Coastal and Marine Resources Division (CMR), National Centre for Sustainable Coastal Management (NCSCM), India
| | - Midhuna Immaculate Joseph Maran
- Conservation of Coastal and Marine Resources Division (CMR), National Centre for Sustainable Coastal Management (NCSCM), India
| | - Darwin Ramteke
- Conservation of Coastal and Marine Resources Division (CMR), National Centre for Sustainable Coastal Management (NCSCM), India
| | - Deepak Samuel Vijaykumar
- Conservation of Coastal and Marine Resources Division (CMR), National Centre for Sustainable Coastal Management (NCSCM), India.
| | - Abhilash Kottarathail Rajendran
- Conservation of Coastal and Marine Resources Division (CMR), National Centre for Sustainable Coastal Management (NCSCM), India
| | - Purvaja Ramachandran
- Conservation of Coastal and Marine Resources Division (CMR), National Centre for Sustainable Coastal Management (NCSCM), India
| | - Ramesh Ramachandran
- Conservation of Coastal and Marine Resources Division (CMR), National Centre for Sustainable Coastal Management (NCSCM), India
| |
Collapse
|
5
|
Tedersoo L, Albertsen M, Anslan S, Callahan B. Perspectives and Benefits of High-Throughput Long-Read Sequencing in Microbial Ecology. Appl Environ Microbiol 2021; 87:e0062621. [PMID: 34132589 PMCID: PMC8357291 DOI: 10.1128/aem.00626-21] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Short-read, high-throughput sequencing (HTS) methods have yielded numerous important insights into microbial ecology and function. Yet, in many instances short-read HTS techniques are suboptimal, for example, by providing insufficient phylogenetic resolution or low integrity of assembled genomes. Single-molecule and synthetic long-read (SLR) HTS methods have successfully ameliorated these limitations. In addition, nanopore sequencing has generated a number of unique analysis opportunities, such as rapid molecular diagnostics and direct RNA sequencing, and both Pacific Biosciences (PacBio) and nanopore sequencing support detection of epigenetic modifications. Although initially suffering from relatively low sequence quality, recent advances have greatly improved the accuracy of long-read sequencing technologies. In spite of great technological progress in recent years, the long-read HTS methods (PacBio and nanopore sequencing) are still relatively costly, require large amounts of high-quality starting material, and commonly need specific solutions in various analysis steps. Despite these challenges, long-read sequencing technologies offer high-quality, cutting-edge alternatives for testing hypotheses about microbiome structure and functioning as well as assembly of eukaryote genomes from complex environmental DNA samples.
Collapse
Affiliation(s)
- Leho Tedersoo
- Mycology and Microbiology Center, University of Tartu, Tartu, Estonia
| | - Mads Albertsen
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Sten Anslan
- Mycology and Microbiology Center, University of Tartu, Tartu, Estonia
- Braunschweig University of Technology, Zoological Institute, Braunschweig, Germany
| | - Benjamin Callahan
- Department of Population Health and Pathobiology, College of Veterinary Medicine and Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
6
|
Yang C, Zheng Y, Tan S, Meng G, Rao W, Yang C, Bourne DG, O'Brien PA, Xu J, Liao S, Chen A, Chen X, Jia X, Zhang AB, Liu S. Efficient COI barcoding using high throughput single-end 400 bp sequencing. BMC Genomics 2020; 21:862. [PMID: 33276723 PMCID: PMC7716423 DOI: 10.1186/s12864-020-07255-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 11/18/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Over the last decade, the rapid development of high-throughput sequencing platforms has accelerated species description and assisted morphological classification through DNA barcoding. However, the current high-throughput DNA barcoding methods cannot obtain full-length barcode sequences due to read length limitations (e.g. a maximum read length of 300 bp for the Illumina's MiSeq system), or are hindered by a relatively high cost or low sequencing output (e.g. a maximum number of eight million reads per cell for the PacBio's SEQUEL II system). RESULTS Pooled cytochrome c oxidase subunit I (COI) barcodes from individual specimens were sequenced on the MGISEQ-2000 platform using the single-end 400 bp (SE400) module. We present a bioinformatic pipeline, HIFI-SE, that takes reads generated from the 5' and 3' ends of the COI barcode region and assembles them into full-length barcodes. HIFI-SE is written in Python and includes four function modules of filter, assign, assembly and taxonomy. We applied the HIFI-SE to a set of 845 samples (30 marine invertebrates, 815 insects) and delivered a total of 747 fully assembled COI barcodes as well as 70 Wolbachia and fungi symbionts. Compared to their corresponding Sanger sequences (72 sequences available), nearly all samples (71/72) were correctly and accurately assembled, including 46 samples that had a similarity score of 100% and 25 of ca. 99%. CONCLUSIONS The HIFI-SE pipeline represents an efficient way to produce standard full-length barcodes, while the reasonable cost and high sensitivity of our method can contribute considerably more DNA barcodes under the same budget. Our method thereby advances DNA-based species identification from diverse ecosystems and increases the number of relevant applications.
Collapse
Affiliation(s)
| | - Yuxuan Zheng
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | | | | | - Wei Rao
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Caiqing Yang
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - David G Bourne
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia
- Australian Institute of Marine Science, Townsville, QLD, Australia
- AIMS@JCU, Townsville, QLD, Australia
| | - Paul A O'Brien
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia
- Australian Institute of Marine Science, Townsville, QLD, Australia
- AIMS@JCU, Townsville, QLD, Australia
| | | | - Sha Liao
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Ao Chen
- BGI-Shenzhen, Shenzhen, 518083, China
| | | | - Xinrui Jia
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Ai-Bing Zhang
- College of Life Sciences, Capital Normal University, Beijing, 100048, China.
| | - Shanlin Liu
- BGI-Shenzhen, Shenzhen, 518083, China.
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
7
|
Hao M, Jin Q, Meng G, Yang C, Yang S, Shi Z, Tang M, Liu S, Li Y, Li J, Zhang D, Su X, Shih C, Sun Y, Wilson JJ, Zhou X, Zhang A. Using full-length metabarcoding and DNA barcoding to infer community assembly for speciose taxonomic groups: a case study. Evol Ecol 2020. [DOI: 10.1007/s10682-020-10072-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
8
|
Bohmann K, Mirarab S, Bafna V, Gilbert MTP. Beyond DNA barcoding: The unrealized potential of genome skim data in sample identification. Mol Ecol 2020; 29:2521-2534. [PMID: 32542933 PMCID: PMC7496323 DOI: 10.1111/mec.15507] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 02/06/2023]
Abstract
Genetic tools are increasingly used to identify and discriminate between species. One key transition in this process was the recognition of the potential of the ca 658bp fragment of the organelle cytochrome c oxidase I (COI) as a barcode region, which revolutionized animal bioidentification and lead, among others, to the instigation of the Barcode of Life Database (BOLD), containing currently barcodes from >7.9 million specimens. Following this discovery, suggestions for other organellar regions and markers, and the primers with which to amplify them, have been continuously proposed. Most recently, the field has taken the leap from PCR-based generation of DNA references into shotgun sequencing-based "genome skimming" alternatives, with the ultimate goal of assembling organellar reference genomes. Unfortunately, in genome skimming approaches, much of the nuclear genome (as much as 99% of the sequence data) is discarded, which is not only wasteful, but can also limit the power of discrimination at, or below, the species level. Here, we advocate that the full shotgun sequence data can be used to assign an identity (that we term for convenience its "DNA-mark") for both voucher and query samples, without requiring any computationally intensive pretreatment (e.g. assembly) of reads. We argue that if reference databases are populated with such "DNA-marks," it will enable future DNA-based taxonomic identification to complement, or even replace PCR of barcodes with genome skimming, and we discuss how such methodology ultimately could enable identification to population, or even individual, level.
Collapse
Affiliation(s)
- Kristine Bohmann
- Section for Evolutionary GenomicsThe GLOBE InstituteUniversity of CopenhagenCopenhagenDenmark
| | - Siavash Mirarab
- Department of Electrical and Computer EngineeringUniversity of CaliforniaSan DiegoCAUSA
| | - Vineet Bafna
- Department of Computer Science and EngineeringUniversity of CaliforniaSan DiegoCAUSA
| | - M. Thomas P. Gilbert
- Section for Evolutionary GenomicsThe GLOBE InstituteUniversity of CopenhagenCopenhagenDenmark
- Center for Evolutionary HologenomicsThe GLOBE InstituteUniversity of CopenhagenCopenhagenDenmark
- NTNU University MuseumTrondheimNorway
| |
Collapse
|
9
|
Ortega A, Geraldi NR, Díaz-Rúa R, Ørberg SB, Wesselmann M, Krause-Jensen D, Duarte CM. A DNA mini-barcode for marine macrophytes. Mol Ecol Resour 2020; 20:920-935. [PMID: 32279439 DOI: 10.1111/1755-0998.13164] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 03/13/2020] [Accepted: 03/27/2020] [Indexed: 11/26/2022]
Abstract
Studies focusing on marine macrophyte metabarcoding from environmental samples are scarce, due to the lack of a universal barcode for these taxa, and to their poor representation in DNA databases. Here, we searched for a short barcode able to identify marine macrophytes from tissue samples; then, we created a DNA reference library which was used to identify macrophytes in eDNA from coastal sediments. Barcoding of seagrasses, mangroves and marine macroalgae (Chlorophyta, Rhodophyta and Phaeophyceae) was tested using 18 primer pairs from six barcoding genes: the plant barcodes rbcL, matK and trnL, plus the genes ITS2, COI and 18S. The 18S gene showed the highest universality among marine macrophytes, amplifying 95%-100% of samples; amplification performance of the other barcodes was limited. Taxonomy was assigned using a phylogeny-based approach to create an 18S DNA reference library. Macrophyte tissue sequences were accurately identified within their phyla (88%), order (76%), genus (71%) and species (23%). Nevertheless, out of 86 macrophytes tested, only 48% and 15% had a reference sequence at genus and at species level, respectively. Identification at these levels can be improved by more inclusive reference libraries. Using the 18S mini-barcode and the reference library, we recovered eDNA from 21 marine macrophytes in sediments, demonstrating the barcode's ability to trace primary producers that contribute to blue carbon. We expect this barcode to also be useful for other ecological questions, such as tracing macro primary producers in marine food webs.
Collapse
Affiliation(s)
- Alejandra Ortega
- Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Nathan R Geraldi
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Rubén Díaz-Rúa
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Sarah B Ørberg
- Department of Bioscience, and Arctic Research Centre, Aarhus University, Aarhus, Denmark
| | - Marlene Wesselmann
- Global Change Research Group, Institut Mediterrani d'Estudis Avançats IMEDEA (CSIC-UIB), Esporles, Spain
| | - Dorte Krause-Jensen
- Department of Bioscience, and Arctic Research Centre, Aarhus University, Aarhus, Denmark
| | - Carlos M Duarte
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
10
|
Yang CQ, Lv Q, Zhang AB. Sixteen Years of DNA Barcoding in China: What Has Been Done? What Can Be Done? Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00057] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
11
|
Lang D, Tang M, Hu J, Zhou X. Genome-skimming provides accurate quantification for pollen mixtures. Mol Ecol Resour 2019; 19:1433-1446. [PMID: 31325909 PMCID: PMC6900181 DOI: 10.1111/1755-0998.13061] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 05/31/2019] [Accepted: 06/24/2019] [Indexed: 01/04/2023]
Abstract
Studies on foraging partitioning in pollinators can provide critical information to the understanding of food-web niche and pollination functions, thus aiding conservation. Metabarcoding based on PCR amplification and high-throughput sequencing has seen increasing applications in characterizing pollen loads carried by pollinators. However, amplification bias across taxa could lead to unpredictable artefacts in estimation of pollen compositions. We examined the efficacy of a genome-skimming method based on direct shotgun sequencing in quantifying mixed pollen, using mock samples (five and 14 mocks of flower and bee pollen, respectively). The results demonstrated a high level of repeatability and accuracy in identifying pollen from mixtures of varied species ratios. All pollen species were detected in all mocks, and pollen frequencies estimated from the number of sequence reads of each species were significantly correlated with pollen count proportions (linear model, R2 = 86.7%, p = 2.2e-16). For >97% of the mixed taxa, pollen proportion could be quantified by sequencing to the correct order of magnitude, even for species which constituted only 0.2% of the total pollen. In addition, DNA extracted from pollen grains equivalent to those collected from a single honeybee corbicula was sufficient for genome-skimming. We conclude that genome-skimming is a feasible approach to identifying and quantifying mixed pollen samples. By providing reliable and sensitive taxon identification and relative abundance, this method is expected to improve our understanding in studies that involve plant-pollinator interactions, such as pollen preference in corbiculate bees, pollen diet analyses and identification of landscape pollen resource use from beehives.
Collapse
Affiliation(s)
- Dandan Lang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Plant Protection, China Agricultural University, Beijing, China
| | - Min Tang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jiahui Hu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xin Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
12
|
Piper AM, Batovska J, Cogan NOI, Weiss J, Cunningham JP, Rodoni BC, Blacket MJ. Prospects and challenges of implementing DNA metabarcoding for high-throughput insect surveillance. Gigascience 2019; 8:giz092. [PMID: 31363753 PMCID: PMC6667344 DOI: 10.1093/gigascience/giz092] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 06/25/2019] [Accepted: 07/09/2019] [Indexed: 12/21/2022] Open
Abstract
Trap-based surveillance strategies are widely used for monitoring of invasive insect species, aiming to detect newly arrived exotic taxa as well as track the population levels of established or endemic pests. Where these surveillance traps have low specificity and capture non-target endemic species in excess of the target pests, the need for extensive specimen sorting and identification creates a major diagnostic bottleneck. While the recent development of standardized molecular diagnostics has partly alleviated this requirement, the single specimen per reaction nature of these methods does not readily scale to the sheer number of insects trapped in surveillance programmes. Consequently, target lists are often restricted to a few high-priority pests, allowing unanticipated species to avoid detection and potentially establish populations. DNA metabarcoding has recently emerged as a method for conducting simultaneous, multi-species identification of complex mixed communities and may lend itself ideally to rapid diagnostics of bulk insect trap samples. Moreover, the high-throughput nature of recent sequencing platforms could enable the multiplexing of hundreds of diverse trap samples on a single flow cell, thereby providing the means to dramatically scale up insect surveillance in terms of both the quantity of traps that can be processed concurrently and number of pest species that can be targeted. In this review of the metabarcoding literature, we explore how DNA metabarcoding could be tailored to the detection of invasive insects in a surveillance context and highlight the unique technical and regulatory challenges that must be considered when implementing high-throughput sequencing technologies into sensitive diagnostic applications.
Collapse
Affiliation(s)
- Alexander M Piper
- Agriculture Victoria Research, AgriBio Centre, 5 Ring Road, Bundoora 3083, VIC, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora 3083, VIC, Australia
| | - Jana Batovska
- Agriculture Victoria Research, AgriBio Centre, 5 Ring Road, Bundoora 3083, VIC, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora 3083, VIC, Australia
| | - Noel O I Cogan
- Agriculture Victoria Research, AgriBio Centre, 5 Ring Road, Bundoora 3083, VIC, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora 3083, VIC, Australia
| | - John Weiss
- Agriculture Victoria Research, AgriBio Centre, 5 Ring Road, Bundoora 3083, VIC, Australia
| | - John Paul Cunningham
- Agriculture Victoria Research, AgriBio Centre, 5 Ring Road, Bundoora 3083, VIC, Australia
| | - Brendan C Rodoni
- Agriculture Victoria Research, AgriBio Centre, 5 Ring Road, Bundoora 3083, VIC, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora 3083, VIC, Australia
| | - Mark J Blacket
- Agriculture Victoria Research, AgriBio Centre, 5 Ring Road, Bundoora 3083, VIC, Australia
| |
Collapse
|
13
|
Dean GH, Asmarayani R, Ardiyani M, Santika Y, Triono T, Mathews S, Webb CO. Generating DNA sequence data with limited resources for molecular biology: Lessons from a barcoding project in Indonesia. APPLICATIONS IN PLANT SCIENCES 2018; 6:e01167. [PMID: 30131909 PMCID: PMC6055555 DOI: 10.1002/aps3.1167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 05/15/2018] [Indexed: 05/29/2023]
Abstract
The advent of the DNA sequencing age has led to a revolution in biology. The rapid and cost-effective generation of high-quality sequence data has transformed many fields, including those focused on discovering species and surveying biodiversity, monitoring movement of biological materials, forensic biology, and disease diagnostics. There is a need to build capacity to generate useful sequence data in countries with limited historical access to laboratory resources, so that researchers can benefit from the advantages offered by these data. Commonly used molecular techniques such as DNA extraction, PCR, and DNA sequencing are within the reach of small laboratories in many countries, with the main obstacles to successful implementation being lack of funding and limited practical experience. Here we describe a successful approach that we developed to obtain DNA sequence data during a small DNA barcoding project in Indonesia.
Collapse
Affiliation(s)
- Gillian H. Dean
- Department of BotanyUniversity of British ColumbiaVancouverV6T1Z4British ColumbiaCanada
| | - Rani Asmarayani
- Herbarium BogorienseBotany DivisionResearch Center for BiologyIndonesian Institute of Sciences (LIPI)Cibinong16911BogorWest JavaIndonesia
- Present address:
Department of BiologyUniversity of Missouri–St. LouisSt. LouisMissouri63121USA
| | - Marlina Ardiyani
- Herbarium BogorienseBotany DivisionResearch Center for BiologyIndonesian Institute of Sciences (LIPI)Cibinong16911BogorWest JavaIndonesia
| | - Yessi Santika
- Herbarium BogorienseBotany DivisionResearch Center for BiologyIndonesian Institute of Sciences (LIPI)Cibinong16911BogorWest JavaIndonesia
| | - Teguh Triono
- Herbarium BogorienseBotany DivisionResearch Center for BiologyIndonesian Institute of Sciences (LIPI)Cibinong16911BogorWest JavaIndonesia
- Present address:
Zoological Society of London (ZSL) Indonesia ProgramBogor16128Indonesia
| | - Sarah Mathews
- Arnold Arboretum of Harvard UniversityBostonMassachusetts02131USA
- Present address:
CSIROAustralian National HerbariumCanberraAustralian Capital Territory2601Australia
| | - Campbell O. Webb
- Arnold Arboretum of Harvard UniversityBostonMassachusetts02131USA
- Present address:
University of Alaska Museum of the NorthFairbanksAlaska99775USA
| |
Collapse
|
14
|
Pomerantz A, Peñafiel N, Arteaga A, Bustamante L, Pichardo F, Coloma LA, Barrio-Amorós CL, Salazar-Valenzuela D, Prost S. Real-time DNA barcoding in a rainforest using nanopore sequencing: opportunities for rapid biodiversity assessments and local capacity building. Gigascience 2018; 7:4958980. [PMID: 29617771 PMCID: PMC5905381 DOI: 10.1093/gigascience/giy033] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 02/13/2018] [Accepted: 03/22/2018] [Indexed: 01/09/2023] Open
Abstract
Background Advancements in portable scientific instruments provide promising avenues to expedite field work in order to understand the diverse array of organisms that inhabit our planet. Here, we tested the feasibility for in situ molecular analyses of endemic fauna using a portable laboratory fitting within a single backpack in one of the world's most imperiled biodiversity hotspots, the Ecuadorian Chocó rainforest. We used portable equipment, including the MinION nanopore sequencer (Oxford Nanopore Technologies) and the miniPCR (miniPCR), to perform DNA extraction, polymerase chain reaction amplification, and real-time DNA barcoding of reptile specimens in the field. Findings We demonstrate that nanopore sequencing can be implemented in a remote tropical forest to quickly and accurately identify species using DNA barcoding, as we generated consensus sequences for species resolution with an accuracy of >99% in less than 24 hours after collecting specimens. The flexibility of our mobile laboratory further allowed us to generate sequence information at the Universidad Tecnológica Indoamérica in Quito for rare, endangered, and undescribed species. This includes the recently rediscovered Jambato toad, which was thought to be extinct for 28 years. Sequences generated on the MinION required as few as 30 reads to achieve high accuracy relative to Sanger sequencing, and with further multiplexing of samples, nanopore sequencing can become a cost-effective approach for rapid and portable DNA barcoding. Conclusions Overall, we establish how mobile laboratories and nanopore sequencing can help to accelerate species identification in remote areas to aid in conservation efforts and be applied to research facilities in developing countries. This opens up possibilities for biodiversity studies by promoting local research capacity building, teaching nonspecialists and students about the environment, tackling wildlife crime, and promoting conservation via research-focused ecotourism.
Collapse
Affiliation(s)
- Aaron Pomerantz
- Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Nicolás Peñafiel
- Centro de Investigación de la Biodiversidad y Cambio Climático (BioCamb) e Ingeniería en Biodiversidad y Recursos Genéticos, Facultad de Ciencias de Medio Ambiente, Universidad Tecnológica Indoamérica, Machala y Sabanilla, Quito, Ecuador
| | - Alejandro Arteaga
- Richard Gilder Graduate School, American Museum of Natural History, New York, USA
- Department of Herpetology, American Museum of Natural History, New York, USA
- Tropical Herping, Quito, Ecuador
| | | | | | - Luis A Coloma
- Centro Jambatu de Investigación y Conservación de Anfibios, Fundación Otonga, Quito, Ecuador
| | | | - David Salazar-Valenzuela
- Centro de Investigación de la Biodiversidad y Cambio Climático (BioCamb) e Ingeniería en Biodiversidad y Recursos Genéticos, Facultad de Ciencias de Medio Ambiente, Universidad Tecnológica Indoamérica, Machala y Sabanilla, Quito, Ecuador
| | - Stefan Prost
- Department of Integrative Biology, University of California, Berkeley, CA, USA
- Program for Conservation Genomics, Department of Biology, Stanford University, Stanford, CA, USA
| |
Collapse
|
15
|
Liu S, Yang C, Zhou C, Zhou X. Filling reference gaps via assembling DNA barcodes using high-throughput sequencing-moving toward barcoding the world. Gigascience 2017; 6:1-8. [PMID: 29077841 PMCID: PMC5726475 DOI: 10.1093/gigascience/gix104] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/26/2017] [Accepted: 10/23/2017] [Indexed: 01/17/2023] Open
Abstract
Over the past decade, biodiversity researchers have dedicated tremendous efforts to constructing DNA reference barcodes for rapid species registration and identification. Although analytical cost for standard DNA barcoding has been significantly reduced since early 2000, further dramatic reduction in barcoding costs is unlikely because Sanger sequencing is approaching its limits in throughput and chemistry cost. Constraints in barcoding cost not only led to unbalanced barcoding efforts around the globe, but also prevented high-throughput sequencing (HTS)-based taxonomic identification from applying binomial species names, which provide crucial linkages to biological knowledge. We developed an Illumina-based pipeline, HIFI-Barcode, to produce full-length Cytochrome c oxidase subunit I (COI) barcodes from pooled polymerase chain reaction amplicons generated by individual specimens. The new pipeline generated accurate barcode sequences that were comparable to Sanger standards, even for different haplotypes of the same species that were only a few nucleotides different from each other. Additionally, the new pipeline was much more sensitive in recovering amplicons at low quantity. The HIFI-Barcode pipeline successfully recovered barcodes from more than 78% of the polymerase chain reactions that didn't show clear bands on the electrophoresis gel. Moreover, sequencing results based on the single molecular sequencing platform Pacbio confirmed the accuracy of the HIFI-Barcode results. Altogether, the new pipeline can provide an improved solution to produce full-length reference barcodes at about one-tenth of the current cost, enabling construction of comprehensive barcode libraries for local fauna, leading to a feasible direction for DNA barcoding global biomes.
Collapse
Affiliation(s)
- Shanlin Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Plant Protection, China Agricultural University, Beijing 100193, People's Republic of China
- BGI-Shenzhen, Shenzhen, 518083, China
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, 1350, Copenhagen, Denmark
| | | | - Chengran Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Plant Protection, China Agricultural University, Beijing 100193, People's Republic of China
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Xin Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Plant Protection, China Agricultural University, Beijing 100193, People's Republic of China
- National Engineering Research Center for Fruit and Vegetable Processing, China Agricultural University, Beijing 100193, People's Republic of China
| |
Collapse
|