1
|
Stotz HU, Brotherton D, Inal J. Communication is key: Extracellular vesicles as mediators of infection and defence during host-microbe interactions in animals and plants. FEMS Microbiol Rev 2021; 46:6358524. [PMID: 34448857 PMCID: PMC8767456 DOI: 10.1093/femsre/fuab044] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) are now understood to be ubiquitous mediators of cellular communication. In this review, we suggest that EVs have evolved into a highly regulated system of communication with complex functions including export of wastes, toxins and nutrients, targeted delivery of immune effectors and vectors of RNA silencing. Eukaryotic EVs come in different shapes and sizes and have been classified according to their biogenesis and size distributions. Small EVs (or exosomes) are released through fusion of endosome-derived multivesicular bodies with the plasma membrane. Medium EVs (or microvesicles) bud off the plasma membrane as a form of exocytosis. Finally, large EVs (or apoptotic bodies) are produced as a result of the apoptotic process. This review considers EV secretion and uptake in four eukaryotic kingdoms, three of which produce cell walls. The impacts cell walls have on EVs in plants and fungi are discussed, as are roles of fungal EVs in virulence. Contributions of plant EVs to development and innate immunity are presented. Compelling cases are sporophytic self-incompatibility and cellular invasion by haustorium-forming filamentous pathogens. The involvement of EVs in all of these eukaryotic processes is reconciled considering their evolutionary history.
Collapse
Affiliation(s)
- Henrik U Stotz
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Dominik Brotherton
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Jameel Inal
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK.,School of Human Sciences, London Metropolitan University, London, N7 8DB, UK
| |
Collapse
|
2
|
Haq IU, Calixto RODR, Yang P, Dos Santos GMP, Barreto-Bergter E, van Elsas JD. Chemotaxis and adherence to fungal surfaces are key components of the behavioral response of Burkholderia terrae BS001 to two selected soil fungi. FEMS Microbiol Ecol 2016; 92:fiw164. [PMID: 27495244 DOI: 10.1093/femsec/fiw164] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2016] [Indexed: 01/27/2023] Open
Abstract
Burkholderia terrae BS001 has previously been proposed to be a 'generalist' associate of soil fungi, but its strategies of interaction have been largely ignored. Here, we studied the chemotactic behavior of B. terrae BS001 towards Lyophyllum sp. strain Karsten and Trichoderma asperellum 302 and the role of fungal surface molecules in their physical interaction with the bacteria. To assess the involvement of the type 3 secretion system (T3SS), wild-type strain BS001 and T3SS mutant strain BS001-ΔsctD were used in the experiments. First, the two fungi showed divergent behavior when confronted with B. terrae BS001 on soil extract agar medium. Lyophyllum sp. strain Karsten revealed slow growth towards the bacterium, whereas T. asperellum 302 grew avidly over it. Both on soil extract and M9 agar, B. terrae BS001 and BS001-ΔsctD moved chemotactically towards the hyphae of both fungi, with a stronger response to Lyophyllum sp. strain Karsten than to T. asperellum 302. The presence of a progressively increasing glycerol level in the M9 agar enhanced the level of movement. Different oxalic acid concentrations exerted varied effects, with a significantly raised chemotactic response at lower, and a subdued response at higher concentrations. Testing of the adherence of B. terrae BS001 and BS001-ΔsctD to Lyophyllum sp. strain Karsten and to cell envelope-extracted ceramide monohexosides (CMHs) revealed that CMHs in both conidia and hyphae could bind strain BS001 cells. As BS001-ΔsctD adhered significantly less to the CMHs than BS001, the T3SS was presumed to have a role in the interaction. In contrast, such avid adherence was not detected with T. asperellum 302. Thus, B. terrae BS001 shows a behavior characterized by swimming towards Lyophyllum sp. strain Karsten and T. asperellum 302 and attachment to the CMH moiety in the cell envelope, in particular of the former.
Collapse
Affiliation(s)
- Irshad Ul Haq
- Microbial Ecology, Groningen Institute of Evolutionary Life Sciences (GELIFES), Nijenborgh 7, 9747 AG, University of Groningen, The Netherlands
| | - Renata Oliveira da Rocha Calixto
- Microbial Ecology, Groningen Institute of Evolutionary Life Sciences (GELIFES), Nijenborgh 7, 9747 AG, University of Groningen, The Netherlands Departamento de Microbiologia Geral, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, UFRJ, 21941-902, Rio de Janeiro, Brazil
| | - Pu Yang
- Microbial Ecology, Groningen Institute of Evolutionary Life Sciences (GELIFES), Nijenborgh 7, 9747 AG, University of Groningen, The Netherlands
| | - Giulia Maria Pires Dos Santos
- Departamento de Microbiologia Geral, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, UFRJ, 21941-902, Rio de Janeiro, Brazil
| | - Eliana Barreto-Bergter
- Departamento de Microbiologia Geral, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, UFRJ, 21941-902, Rio de Janeiro, Brazil
| | - Jan Dirk van Elsas
- Microbial Ecology, Groningen Institute of Evolutionary Life Sciences (GELIFES), Nijenborgh 7, 9747 AG, University of Groningen, The Netherlands
| |
Collapse
|
3
|
Extracellular Vesicles: Role in Inflammatory Responses and Potential Uses in Vaccination in Cancer and Infectious Diseases. J Immunol Res 2015; 2015:832057. [PMID: 26380326 PMCID: PMC4562184 DOI: 10.1155/2015/832057] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 02/21/2015] [Indexed: 12/18/2022] Open
Abstract
Almost all cells and organisms release membrane structures containing proteins, lipids, and nucleic acids called extracellular vesicles (EVs), which have a wide range of functions concerning intercellular communication and signaling events. Recently, the characterization and understanding of their biological role have become a main research area due to their potential role in vaccination, as biomarkers antigens, early diagnostic tools, and therapeutic applications. Here, we will overview the recent advances and studies of Evs shed by tumor cells, bacteria, parasites, and fungi, focusing on their inflammatory role and their potential use in vaccination and diagnostic of cancer and infectious diseases.
Collapse
|
4
|
Longo LVG, Nakayasu ES, Pires JHS, Gazos-Lopes F, Vallejo MC, Sobreira TJP, Almeida IC, Puccia R. Characterization of Lipids and Proteins Associated to the Cell Wall of the Acapsular Mutant Cryptococcus neoformans Cap 67. J Eukaryot Microbiol 2015; 62:591-604. [PMID: 25733123 DOI: 10.1111/jeu.12213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 12/22/2014] [Accepted: 01/13/2015] [Indexed: 01/02/2023]
Abstract
Cryptococcus neoformans is an opportunistic human pathogen that causes life-threatening meningitis. In this fungus, the cell wall is exceptionally not the outermost structure due to the presence of a surrounding polysaccharide capsule, which has been highly studied. Considering that there is little information about C. neoformans cell wall composition, we aimed at describing proteins and lipids extractable from this organelle, using as model the acapsular mutant C. neoformans cap 67. Purified cell wall preparations were extracted with either chloroform/methanol or hot sodium dodecyl sulfate. Total lipids fractionated in silica gel 60 were analyzed by electrospray ionization tandem mass spectrometry (ESI-MS/MS), while trypsin digested proteins were analyzed by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). We detected 25 phospholipid species among phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, and phosphatidic acid. Two glycolipid species were identified as monohexosyl ceramides. We identified 192 noncovalently linked proteins belonging to different metabolic processes. Most proteins were classified as secretory, mainly via nonclassical mechanisms, suggesting a role for extracellular vesicles (EV) in transwall transportation. In concert with that, orthologs from 86% of these proteins have previously been reported both in fungal cell wall and/or in EV. The possible role of the presently described structures in fungal-host relationship is discussed.
Collapse
Affiliation(s)
- Larissa V G Longo
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, EPM-UNIFESP, São Paulo, 04023-062, São Paulo, Brazil
| | - Ernesto S Nakayasu
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso (UTEP), El Paso, 79968-0519, Texas, USA
| | - Jhon H S Pires
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, EPM-UNIFESP, São Paulo, 04023-062, São Paulo, Brazil
| | - Felipe Gazos-Lopes
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso (UTEP), El Paso, 79968-0519, Texas, USA
| | - Milene C Vallejo
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, EPM-UNIFESP, São Paulo, 04023-062, São Paulo, Brazil
| | - Tiago J P Sobreira
- Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa em Energia e Materiais, Campinas, 13083-970, São Paulo, Brazil
| | - Igor C Almeida
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso (UTEP), El Paso, 79968-0519, Texas, USA
| | - Rosana Puccia
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, EPM-UNIFESP, São Paulo, 04023-062, São Paulo, Brazil
| |
Collapse
|
5
|
Barceló-Coblijn G, Fernández JA. Mass spectrometry coupled to imaging techniques: the better the view the greater the challenge. Front Physiol 2015; 6:3. [PMID: 25657625 PMCID: PMC4302787 DOI: 10.3389/fphys.2015.00003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 01/06/2015] [Indexed: 11/13/2022] Open
Abstract
These are definitively exciting times for membrane lipid researchers. Once considered just as the cell membrane building blocks, the important role these lipids play is steadily being acknowledged. The improvement occurred in mass spectrometry techniques (MS) allows the establishment of the precise lipid composition of biological extracts. However, to fully understand the biological function of each individual lipid species, we need to know its spatial distribution and dynamics. In the past 10 years, the field has experienced a profound revolution thanks to the development of MS-based techniques allowing lipid imaging (MSI). Images reveal and verify what many lipid researchers had already shown by different means, but none as convincing as an image: each cell type presents a specific lipid composition, which is highly sensitive to its physiological and pathological state. While these techniques will help to place membrane lipids in the position they deserve, they also open the black box containing all the unknown regulatory mechanisms accounting for such tailored lipid composition. Thus, these results urges to different disciplines to redefine their paradigm of study by including the complexity revealed by the MSI techniques.
Collapse
Affiliation(s)
- Gwendolyn Barceló-Coblijn
- Lipids in Human Pathology, Research Unit, Hospital Universitari Son Espases, Institut d'Investigació Sanitària de Palma (IdISPa) Palma, Spain
| | - José A Fernández
- Departamento de Química-Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco (UPV/EHU) Leioa, Spain
| |
Collapse
|
6
|
Rollin-Pinheiro R, Liporagi-Lopes LC, de Meirelles JV, de Souza LM, Barreto-Bergter E. Characterization of Scedosporium apiospermum glucosylceramides and their involvement in fungal development and macrophage functions. PLoS One 2014; 9:e98149. [PMID: 24878570 PMCID: PMC4039464 DOI: 10.1371/journal.pone.0098149] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 04/29/2014] [Indexed: 11/19/2022] Open
Abstract
Scedosporium apiospermum is an emerging fungal pathogen that causes both localized and disseminated infections in immunocompromised patients. Glucosylceramides (CMH, GlcCer) are the main neutral glycosphingolipids expressed in fungal cells. In this study, glucosylceramides (GlcCer) were extracted and purified in several chromatographic steps. Using high-performance thin layer chromatography (HPTLC) and electrospray ionization mass spectrometry (ESI-MS), N-2′-hydroxyhexadecanoyl-1-β-D-glucopyranosyl-9-methyl-4,8-sphingadienine was identified as the main GlcCer in S. apiospermum. A monoclonal antibody (Mab) against this molecule was used for indirect immunofluorescence experiments, which revealed that this CMH is present on the surface of the mycelial and conidial forms of S. apiospermum. Treatment of S. apiospermum conidia with the Mab significantly reduced fungal growth. In addition, the Mab also enhanced the phagocytosis and killing of S. apiospermum by murine cells. In vitro assays were performed to evaluate the CMHs for their cytotoxic activities against the mammalian cell lines L.929 and RAW, and an inhibitory effect on cell proliferation was observed. Synergistic invitro interactions were observed between the Mab against GlcCer and both amphotericin B (AmB) and itraconazole. Because Scedosporium species develop drug resistance, the number of available antifungal drugs is limited; our data indicate that combining immunotherapy with the available drugs might be a viable treatment option. These results suggest that in S. apiospermum, GlcCer are most likely cell wall components that are targeted by antifungal antibodies, which directly inhibit fungal development and enhance macrophage function; furthermore, these results suggest the combined use of monoclonal antibodies against GlcCer and antifungal drugs for antifungal immunotherapy.
Collapse
Affiliation(s)
- Rodrigo Rollin-Pinheiro
- Departamento de Microbiologia Geral, Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Livia Cristina Liporagi-Lopes
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jardel Vieira de Meirelles
- Departamento de Microbiologia Geral, Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lauro M. de Souza
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Eliana Barreto-Bergter
- Departamento de Microbiologia Geral, Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
7
|
Del Poeta M, Nimrichter L, Rodrigues ML, Luberto C. Synthesis and biological properties of fungal glucosylceramide. PLoS Pathog 2014; 10:e1003832. [PMID: 24415933 PMCID: PMC3887071 DOI: 10.1371/journal.ppat.1003832] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Maurizio Del Poeta
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
- * E-mail: (MD); (CL)
| | - Leonardo Nimrichter
- Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcio L. Rodrigues
- Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Fundação Oswaldo Cruz – Fiocruz, Centro de Desenvolvimento Tecnológico em Saúde (CDTS), Rio de Janeiro, Brazil
| | - Chiara Luberto
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York, United States of America
- * E-mail: (MD); (CL)
| |
Collapse
|
8
|
Ishibashi Y, Kohyama-Koganeya A, Hirabayashi Y. New insights on glucosylated lipids: metabolism and functions. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:1475-85. [PMID: 23770033 DOI: 10.1016/j.bbalip.2013.06.001] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 06/01/2013] [Accepted: 06/04/2013] [Indexed: 01/05/2023]
Abstract
Ceramide, cholesterol, and phosphatidic acid are major basic structures for cell membrane lipids. These lipids are modified with glucose to generate glucosylceramide (GlcCer), cholesterylglucoside (ChlGlc), and phosphatidylglucoside (PtdGlc), respectively. Glucosylation dramatically changes the functional properties of lipids. For instance, ceramide acts as a strong tumor suppressor that causes apoptosis and cell cycle arrest, while GlcCer has an opposite effect, downregulating ceramide activities. All glucosylated lipids are enriched in lipid rafts or microdomains and play fundamental roles in a variety of cellular processes. In this review, we discuss the biological functions and metabolism of these three glucosylated lipids.
Collapse
Affiliation(s)
- Yohei Ishibashi
- Laboratory for Molecular Membrane Neuroscience, RIKEN Brain Science Institute, Wako, Saitama, Japan
| | | | | |
Collapse
|
9
|
Longo LVG, Nakayasu ES, Gazos-Lopes F, Vallejo MC, Matsuo AL, Almeida IC, Puccia R. Characterization of cell wall lipids from the pathogenic phase of Paracoccidioides brasiliensis cultivated in the presence or absence of human plasma. PLoS One 2013; 8:e63372. [PMID: 23691038 PMCID: PMC3656940 DOI: 10.1371/journal.pone.0063372] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 04/02/2013] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND The fungal cell wall is a complex and dynamic outer structure. In pathogenic fungi its components interact with the host, determining the infection fate. The present work aimed to characterize cell wall lipids from P. brasiliensis grown in the presence and absence of human plasma. We compared the results from isolates Pb3 and Pb18, which represent different phylogenetic species that evoke distinct patterns of experimental paracoccidioidomycosis. METHODOLOGY/PRINCIPAL FINDINGS We comparatively characterized cell wall phospholipids, fatty acids, sterols, and neutral glycolipids by using both electrospray ionization- and gas chromatography-mass spectrometry analyses of lipids extracted with organic solvents followed by fractionation in silica-gel-60. We detected 49 phospholipid species in Pb3 and 38 in Pb18, including phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylglycerol, phosphatidylinositol, and phosphatidic acid. In both Pb3 and Pb18, PC and PE had the most numerous species. Among the fatty acids, C18:1 and C18:2 were the most abundant species in both isolates, although C18:2 was more abundant in Pb18. There was a different effect of plasma supplementation on fatty acids depending on the fungal isolate. The prevalent glycolipid species was Hex-C18:0-OH/d19:2-Cer, although other four minor species were also detected. The most abundant sterol in all samples was brassicasterol. Distinct profiles of cell wall and total yeast sterols suggested that the preparations were enriched for cell wall components. The presence of plasma in the culture medium specially increased cell wall brassicasterol abundance and also other lipids. CONCLUSIONS/SIGNIFICANCE We here report an original comparative lipidomic analysis of P. brasiliensis cell wall. Our results open doors to understanding the role of cell wall lipids in fungal biology, and interaction with anti-fungal drugs and the host.
Collapse
Affiliation(s)
- Larissa V. G. Longo
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina-Universidade Federal de São Paulo, EPM-UNIFESP, São Paulo, Brazil
| | - Ernesto S. Nakayasu
- Border Biomedical Research Center, Dept. of Biological Sciences, University of Texas at El Paso (UTEP), El Paso, Texas, United States of America
| | - Felipe Gazos-Lopes
- Border Biomedical Research Center, Dept. of Biological Sciences, University of Texas at El Paso (UTEP), El Paso, Texas, United States of America
| | - Milene C. Vallejo
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina-Universidade Federal de São Paulo, EPM-UNIFESP, São Paulo, Brazil
| | - Alisson L. Matsuo
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina-Universidade Federal de São Paulo, EPM-UNIFESP, São Paulo, Brazil
| | - Igor C. Almeida
- Border Biomedical Research Center, Dept. of Biological Sciences, University of Texas at El Paso (UTEP), El Paso, Texas, United States of America
| | - Rosana Puccia
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina-Universidade Federal de São Paulo, EPM-UNIFESP, São Paulo, Brazil
| |
Collapse
|
10
|
Puccia R, Vallejo MC, Matsuo AL, Longo LVG. The paracoccidioides cell wall: past and present layers toward understanding interaction with the host. Front Microbiol 2011; 2:257. [PMID: 22194733 PMCID: PMC3243086 DOI: 10.3389/fmicb.2011.00257] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 12/02/2011] [Indexed: 11/13/2022] Open
Abstract
The cell wall of pathogenic fungi plays import roles in the interaction with the host, so that its composition and structure may determine the course of infection. Here we present an overview of the current and past knowledge on the cell wall constituents of Paracoccidioides brasiliensis and P. lutzii. These are temperature-dependent dimorphic fungi that cause paracoccidioidomycosis, a systemic granulomatous, and debilitating disease. Focus is given on cell wall carbohydrate and protein contents, their immune-stimulatory features, adhesion properties, drug target characteristics, and morphological phase specificity. We offer a journey toward the future understanding of the dynamic nature of the cell wall and of the changes that may occur when the fungus infects the human host.
Collapse
Affiliation(s)
- Rosana Puccia
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo - Escola Paulista de Medicina São Paulo, Brazil
| | | | | | | |
Collapse
|
11
|
Tagliari L, Toledo MS, Lacerda TG, Suzuki E, Straus AH, Takahashi HK. Membrane microdomain components of Histoplasma capsulatum yeast forms, and their role in alveolar macrophage infectivity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:458-66. [PMID: 22197503 DOI: 10.1016/j.bbamem.2011.12.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 12/02/2011] [Accepted: 12/05/2011] [Indexed: 01/08/2023]
Abstract
Analysis of membrane lipids of Histoplasma capsulatum showed that ~40% of fungal ergosterol is present in membrane microdomain fractions resistant to treatment with non-ionic detergent at 4°C. Specific proteins were also enriched in these fractions, particularly Pma1p a yeast microdomain protein marker (a plasma membrane proton ATPase), a 30kDa laminin-binding protein, and a 50kDa protein recognized by anti-α5-integrin antibody. To better understand the role of ergosterol-dependent microdomains in fungal biology and pathogenicity, H. capsulatum yeast forms were treated with a sterol chelator, methyl-beta-cyclodextrin (mβCD). Removal of ergosterol by mβCD incubation led to disorganization of ergosterol-enriched microdomains containing Pma1p and the 30kDa protein, resulting in displacement of these proteins from detergent-insoluble to -soluble fractions in sucrose density gradient ultracentrifugation. mβCD treatment did not displace/remove the 50kDa α5-integrin-like protein nor had effect on the organization of glycosphingolipids present in the detergent-resistant fractions. Ergosterol-enriched membrane microdomains were also shown to be important for infectivity of alveolar macrophages; after treatment of yeasts with mβCD, macrophage infectivity was reduced by 45%. These findings suggest the existence of two populations of detergent-resistant membrane microdomains in H. capsulatum yeast forms: (i) ergosterol-independent microdomains rich in integrin-like proteins and glycosphingolipids, possibly involved in signal transduction; (ii) ergosterol-enriched microdomains containing Pma1p and the 30kDa laminin-binding protein; ergosterol and/or the 30kDa protein may be involved in macrophage infectivity.
Collapse
Affiliation(s)
- Loriane Tagliari
- Department of Biochemistry, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | | | | | | | | | | |
Collapse
|
12
|
Guimarães AJ, de Cerqueira MD, Nosanchuk JD. Surface architecture of histoplasma capsulatum. Front Microbiol 2011; 2:225. [PMID: 22121356 PMCID: PMC3220077 DOI: 10.3389/fmicb.2011.00225] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 10/25/2011] [Indexed: 12/22/2022] Open
Abstract
The dimorphic fungal pathogen Histoplasma capsulatum is the most frequent cause of clinically significant fungal pneumonia in humans. H. capsulatum virulence is achieved, in part, through diverse and dynamic alterations to the fungal cell surface. Surface components associated with H. capsulatum pathogenicity include carbohydrates, lipids, proteins, and melanins. Here, we describe the various structures comprising the cell surface of H. capsulatum that have been associated with virulence and discuss their involvement in the pathobiology of disease.
Collapse
Affiliation(s)
- Allan J Guimarães
- Department of Microbiology and Imunology, Albert Einstein College of Medicine of Yeshiva University Bronx, NY, USA
| | | | | |
Collapse
|
13
|
Rhome R, Singh A, Kechichian T, Drago M, Morace G, Luberto C, Poeta MD. Surface localization of glucosylceramide during Cryptococcus neoformans infection allows targeting as a potential antifungal. PLoS One 2011; 6:e15572. [PMID: 21283686 PMCID: PMC3024982 DOI: 10.1371/journal.pone.0015572] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2010] [Accepted: 11/14/2010] [Indexed: 01/30/2023] Open
Abstract
Cryptococcus neoformans (Cn) is a significant human pathogen that, despite current treatments, continues to have a high morbidity rate especially in sub-Saharan Africa. The need for more tolerable and specific therapies has been clearly shown. In the search for novel drug targets, the gene for glucosylceramide synthase (GCS1) was deleted in Cn, resulting in a strain (Δgcs1) that does not produce glucosylceramide (GlcCer) and is avirulent in mouse models of infection. To understand the biology behind the connection between virulence and GlcCer, the production and localization of GlcCer must be characterized in conditions that are prohibitive to the growth of Δgcs1 (neutral pH and high CO(2)). These prohibitive conditions are physiologically similar to those found in the extracellular spaces of the lung during infection. Here, using immunofluorescence, we have shown that GlcCer localization to the cell surface is significantly increased during growth in these conditions and during infection. We further seek to exploit this localization by treatment with Cerezyme (Cz), a recombinant enzyme that metabolizes GlcCer, as a potential treatment for Cn. Cz treatment was found to reduce the amount of GlcCer in vitro, in cultures, and in Cn cells inhabiting the mouse lung. Treatment with Cz induced a membrane integrity defect in wild type Cn cells similar to Δgcs1. Cz treatment also reduced the in vitro growth of Cn in a dose and condition dependent manner. Finally, Cz treatment was shown to have a protective effect on survival in mice infected with Cn. Taken together, these studies have established the legitimacy of targeting the GlcCer and other related sphingolipid systems in the development of novel therapeutics.
Collapse
Affiliation(s)
- Ryan Rhome
- Departments of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Arpita Singh
- Departments of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Talar Kechichian
- Departments of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Monica Drago
- Dipartimento di Sanita' Pubblica, Microbiologia-Virologia, Universita' degli Studi di Milano, Milan, Italy
| | - Giulia Morace
- Dipartimento di Sanita' Pubblica, Microbiologia-Virologia, Universita' degli Studi di Milano, Milan, Italy
| | - Chiara Luberto
- Departments of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Maurizio Del Poeta
- Departments of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, United States of America
- Departments of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, United States of America
- Department of Craniofacial Biology, Medical University of South Carolina, Charleston, South Carolina, United States of America
- Division of Infectious Diseases, Medical University of South Carolina, Charleston, South Carolina, United States of America
| |
Collapse
|
14
|
Toledo MS, Tagliari L, Suzuki E, Silva CM, Straus AH, Takahashi HK. Effect of anti-glycosphingolipid monoclonal antibodies in pathogenic fungal growth and differentiation. Characterization of monoclonal antibody MEST-3 directed to Manpalpha1-->3Manpalpha1-->2IPC. BMC Microbiol 2010; 10:47. [PMID: 20156351 PMCID: PMC2831884 DOI: 10.1186/1471-2180-10-47] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Accepted: 02/15/2010] [Indexed: 11/24/2022] Open
Abstract
Background Studies carried out during the 1990's demonstrated the presence of fungal glycoinositol phosphorylceramides (GIPCs) with unique structures, some of them showed reactivity with sera of patients with histoplasmosis, paracoccidioidomycosis or aspergillosis. It was also observed that fungal GIPCs were able to inhibit T lymphocyte proliferation "in vitro", and studies regarding the importance of these molecules to fungal survival showed that many species of fungi are vulnerable to inhibitors of sphingolipid biosynthesis. Results In this paper, we describe a detailed characterization of an IgG2a monoclonal antibody (mAb), termed MEST-3, directed to the Paracoccidioides brasiliensis glycolipid antigen Pb-2 (Manpα1→3Manpα1→2IPC). mAb MEST-3 also recognizes GIPCs bearing the same structure in other fungi. Studies performed on fungal cultures clearly showed the strong inhibitory activity of MEST-3 on differentiation and colony formation of Paracoccidioides brasiliensis, Histoplasma capsulatum and Sporothrix schenckii. Similar inhibitory results were observed when these fungi where incubated with a different mAb, which recognizes GIPCs bearing terminal residues of β-D-galactofuranose linked to mannose (mAb MEST-1). On the other hand, mAb MEST-2 specifically directed to fungal glucosylceramide (GlcCer) was able to promote only a weak inhibition on fungal differentiation and colony formation. Conclusions These results strongly suggest that mAbs directed to specific glycosphingolipids are able to interfere on fungal growth and differentiation. Thus, studies on surface distribution of GIPCs in yeast and mycelium forms of fungi may yield valuable information regarding the relevance of glycosphingolipids in processes of fungal growth, morphological transition and infectivity.
Collapse
Affiliation(s)
- Marcos S Toledo
- Division of Glycoconjugate Immunochemistry, Department of Biochemistry, Universidade Federal de São Paulo/Escola Paulista de Medicina, Rua Botucatu 862, São Paulo, SP, Brazil
| | | | | | | | | | | |
Collapse
|
15
|
Maza PK, Straus AH, Toledo MS, Takahashi HK, Suzuki E. Interaction of epithelial cell membrane rafts with Paracoccidioides brasiliensis leads to fungal adhesion and Src-family kinase activation. Microbes Infect 2008; 10:540-7. [PMID: 18403242 DOI: 10.1016/j.micinf.2008.02.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Revised: 01/16/2008] [Accepted: 02/07/2008] [Indexed: 11/28/2022]
Abstract
Membrane rafts are cholesterol- and sphingolipid-enriched cell membrane domains, which are ubiquitous in mammals and play an essential role in different cellular functions, including host cell-pathogen interaction. In this work, by using several approaches, we demonstrated the involvement of epithelial cell membrane rafts in adhesion process of the pathogenic fungus Paracoccidioides brasiliensis. This conclusion was supported by the localization of ganglioside GM1, a membrane raft marker, at P. brasiliensis-epithelial cell contact sites, and by the inhibition of this fungus adhesion to host cells pre-treated with cholesterol-extractor (methyl-beta-cyclodextrin, MbetaCD) or -binding (nystatin) agents. In addition, at a very early stage of P. brasiliensis-A549 cell interaction, this fungus promoted activation of Src-family kinases (SFKs) and extracellular signal-regulated kinase 1/2 (ERK1/2) of these epithelial cells. Whereas SFKs were partially responsible for activation of ERK1/2, membrane raft disruption with MbetaCD in A549 cells led to total inhibition of SFK activation. Taking together, these data indicate for the first time that epithelial cell membrane rafts are essential for P. brasiliensis adhesion and activation of cell signaling molecules.
Collapse
Affiliation(s)
- Paloma K Maza
- Division of Glycoconjugate Immunochemistry, Department of Biochemistry, Universidade Federal de São Paulo, Rua Botucatu, 862, Ed J Leal Prado, São Paulo, SP 04023-900, Brazil
| | | | | | | | | |
Collapse
|
16
|
Rhome R, McQuiston T, Kechichian T, Bielawska A, Hennig M, Drago M, Morace G, Luberto C, Del Poeta M. Biosynthesis and immunogenicity of glucosylceramide in Cryptococcus neoformans and other human pathogens. EUKARYOTIC CELL 2007; 6:1715-26. [PMID: 17693597 PMCID: PMC2043385 DOI: 10.1128/ec.00208-07] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Ryan Rhome
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Bertini S, Colombo AL, Takahashi HK, Straus AH. Expression of antibodies directed to Paracoccidioides brasiliensis glycosphingolipids during the course of paracoccidioidomycosis treatment. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2006; 14:150-6. [PMID: 17135452 PMCID: PMC1797792 DOI: 10.1128/cvi.00285-06] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Paracoccidioidomycosis (PCM) is a granulomatous disease caused by the dimorphic fungus Paracoccidioides brasiliensis. The immunoglobulin classes and isotypes of antibodies directed to acidic glycosphingolipids (GSLs) and glucosylceramide of P. brasiliensis were determined by enzyme-linked immunosorbent assay of sera from 31 PCM patients. The reactivities of 38 serum samples were analyzed by considering the stage of treatment: before antifungal treatment (n = 10), during 1 to 4 months of treatment (T1-4; n = 9), during 5 to 12 months of treatment (T5-12; n = 9), and posttreatment (PT; n = 10). Sera from healthy subjects (n = 12) were used as controls. Only the GSL Pb-1 antigen, which presents the carbohydrate structure Galfbeta1-6(Manalpha1-3)Manbeta1, was reactive with the PCM patient sera. The PCM patient sera did not react with Pb-2, which lacks the Galf residue and which is considered the biosynthetic precursor of Pb-1, indicating that the Galf residue is essential for antibody reactivity. The Pb-1 glycolipid from nontreated patients elicited a primary immune response with immunoglobulin M (IgM) production and subsequent switching to IgG1 production. The IgG1 titer increased after the start of antifungal treatment (T1-4 group), and general decreases in the anti-Pb-1 antibody titers were observed after 5 months of treatment (T5-12 and PT groups). The Pb-1 antigen, an acidic GSL with terminal Galf residue, has potential application as an elicitor of the host immune response in patients with PCM.
Collapse
Affiliation(s)
- Silvio Bertini
- Department of Biochemistry, Universidade Federal de São Paulo/Escola Paulista de Medicina, Rua Botucatu, 862, São Paulo, SP 04023-900, Brazil
| | | | | | | |
Collapse
|
18
|
Yoneyama KAG, Tanaka AK, Silveira TGV, Takahashi HK, Straus AH. Characterization of Leishmania (Viannia) braziliensis membrane microdomains, and their role in macrophage infectivity. J Lipid Res 2006; 47:2171-8. [PMID: 16861743 DOI: 10.1194/jlr.m600285-jlr200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Detergent-resistant membranes (DRMs) from Leishmania (Viannia) braziliensis promastigotes, insoluble in 1% Triton X-100 at 4 degrees C, were fractionated by sucrose density gradient ultracentrifugation. They were composed of glycoinositolphospholipids (GIPLs), inositol phosphorylceramide (IPC), phosphatidylinositol (PI), phosphatidylethanolamine (PE), and sterols. In contrast, 1% Triton X-100-soluble fraction was composed of PE, phosphatidylcholine, phosphatidylserine, PI, IPC, sterol, and lyso-PI. High-performance thin-layer chromatography (HPTLC) immunostaining using monoclonal antibody SST-1 showed that 85% of GIPLs are present in DRMs, and immunoelectron microscopic analysis showed that SST-1-reactive components are located in patches along the parasite surface. No difference in GIPL pattern was observed by HPTLC between Triton X-100-soluble versus -insoluble fractions at 4 degrees C. Analysis of fatty acid composition in DRMs by GC-MS showed the presence of GIPLs containing an alkylacylglycerol, presenting mainly saturated acyl and alkyl chains. DRMs also contained sterol, IPC with saturated fatty acids, PI with at least one saturated acyl chain, and PE with predominantly oleic acid. Promastigotes treated with methyl-beta-cyclodextrin to disrupt lipid microdomains showed significantly lower macrophage infectivity, suggesting a relationship between lipid microdomains and the infectivity of these parasites.
Collapse
Affiliation(s)
- Kelly A G Yoneyama
- Department of Biochemistry, Universidade Federal de São Paulo/Escola Paulista de Medicina, São Paulo, SP 04023-900, Brazil
| | | | | | | | | |
Collapse
|
19
|
Rittershaus PC, Kechichian TB, Allegood JC, Merrill AH, Hennig M, Luberto C, Del Poeta M. Glucosylceramide synthase is an essential regulator of pathogenicity of Cryptococcus neoformans. J Clin Invest 2006; 116:1651-9. [PMID: 16741577 PMCID: PMC1466548 DOI: 10.1172/jci27890] [Citation(s) in RCA: 174] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Accepted: 03/07/2006] [Indexed: 11/17/2022] Open
Abstract
The pathogenic fungus Cryptococcus neoformans infects humans upon inhalation and causes the most common fungal meningoencephalitis in immunocompromised subjects worldwide. In the host, C. neoformans is found both intracellularly and extracellularly, but how these two components contribute to the development of the disease is largely unknown. Here we show that the glycosphingolipid glucosylceramide (GlcCer), which is present in C. neoformans, was essential for fungal growth in host extracellular environments, such as in alveolar spaces and in the bloodstream, which are characterized by a neutral/alkaline pH, but not in the host intracellular environment, such as in the phagolysosome of macrophages, which is characteristically acidic. Indeed, a C. neoformans mutant strain lacking GlcCer did not grow in vitro at a neutral/alkaline pH, yet it had no growth defect at an acidic pH. The mechanism by which GlcCer regulates alkali tolerance was by allowing the transition of C. neoformans through the cell cycle. This study establishes C. neoformans GlcCer as a key virulence factor of cryptococcal pathogenicity, with important implications for future development of new antifungal strategies.
Collapse
Affiliation(s)
- Philipp C. Rittershaus
- Departments of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA.
School of Biology, Georgia Institute of Technology, Atlanta, Georgia, USA.
Department of Molecular Biology, Scripps Research Institute, La Jolla, California, USA.
Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Talar B. Kechichian
- Departments of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA.
School of Biology, Georgia Institute of Technology, Atlanta, Georgia, USA.
Department of Molecular Biology, Scripps Research Institute, La Jolla, California, USA.
Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Jeremy C. Allegood
- Departments of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA.
School of Biology, Georgia Institute of Technology, Atlanta, Georgia, USA.
Department of Molecular Biology, Scripps Research Institute, La Jolla, California, USA.
Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Alfred H. Merrill
- Departments of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA.
School of Biology, Georgia Institute of Technology, Atlanta, Georgia, USA.
Department of Molecular Biology, Scripps Research Institute, La Jolla, California, USA.
Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Mirko Hennig
- Departments of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA.
School of Biology, Georgia Institute of Technology, Atlanta, Georgia, USA.
Department of Molecular Biology, Scripps Research Institute, La Jolla, California, USA.
Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Chiara Luberto
- Departments of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA.
School of Biology, Georgia Institute of Technology, Atlanta, Georgia, USA.
Department of Molecular Biology, Scripps Research Institute, La Jolla, California, USA.
Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Maurizio Del Poeta
- Departments of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA.
School of Biology, Georgia Institute of Technology, Atlanta, Georgia, USA.
Department of Molecular Biology, Scripps Research Institute, La Jolla, California, USA.
Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
20
|
Affiliation(s)
- Lena J Heung
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 173 Ashley Ave., BSB 503, Charleston, SC 29425, USA
| | | | | |
Collapse
|
21
|
Structural and Functional Aspects of Fungal Glycosphingolipids. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/s1572-5995(06)80045-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
22
|
Villas-Boas MH, Wait R, Silva RB, Rodrigues ML, Barreto-Bergter E. Ceramide glycosylation and fatty acid hydroxylation influence serological reactivity in Trypanosoma cruzi glycosphingolipids. FEMS Microbiol Lett 2005; 244:47-52. [PMID: 15727820 DOI: 10.1016/j.femsle.2005.01.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2004] [Revised: 11/22/2004] [Accepted: 01/09/2005] [Indexed: 11/27/2022] Open
Abstract
Ceramide mono (CMH) or dihexoside (CDH) fractions from Trypanosoma cruzi (Dm28c clone) were identified as glucosyl and lactosylceramides containing non-hydroxylated fatty acids. The di-glycosylated form was much more efficiently recognized by sera from T. cruzi-immunized rabbits, indicating that glycosylation influences antigenicity. Fatty acid hydroxylation was also a determinant of serological reactivity, since an alpha-hydroxylated CMH, only present at the Y clone, was recognized by the hyperimmune sera. In summary, these data indicate that T. cruzi CMHs with non-hydroxylated fatty acids are unable to induce antibody responses in animal hosts, which is reverted by the addition of a sugar residue or an alpha-hydroxyl group.
Collapse
Affiliation(s)
- Maria Helena Villas-Boas
- Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Janeiro, Rio de Janeiro, RJ 21941, Brazil
| | | | | | | | | |
Collapse
|
23
|
Abstract
Sphingosines, or sphingoids, are a family of naturally occurring long-chain hydrocarbon derivatives sharing a common 1,3-dihydroxy-2-amino-backbone motif. The majority of sphingolipids, as their derivatives are collectively known, can be found in cell membranes in the form of amphiphilic conjugates, each composed of a polar head group attached to an N-acylated sphingoid, or ceramide. Glycosphingolipids (GSLs), which are the glycosides of either ceramide or myo-inositol-(1-O)-phosphoryl-(O-1)-ceramide, are a structurally and functionally diverse sphingolipid subclass; GSLs are ubiquitously distributed among all eukaryotic species and are found in some bacteria. Since GSLs are secondary metabolites, direct and comprehensive analysis (metabolomics) must be considered an essential complement to genomic and proteomic approaches for establishing the structural repertoire within an organism and deducing its possible functional roles. The glycosphingolipidome clearly comprises an important and extensive subset of both the glycome and the lipidome, but the complexities of GSL structure, biosynthesis, and function form the outlines of a considerable analytical problem, especially since their structural diversity confers by extension an enormous variability with respect to physicochemical properties. This chapter covers selected developments and applications of techniques in mass spectrometric (MS) that have contributed to GSL structural analysis and glycosphingolipidomics since 1990. Sections are included on basic characteristics of ionization and fragmentation of permethylated GSLs and of lithium-adducted nonderivatized GSLs under positive-ion electrospray ionization mass spectrometry (ESI-MS) and collision-induced mass spectrometry (CID-MS) conditions; on the analysis of sulfatides, mainly using negative-ion techniques; and on selected applications of ESI-MS and matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) to emerging GSL structural, functional, and analytical issues. The latter section includes a particular focus on evolving techniques for analysis of gangliosides, GSLs containing sialic acid, as well as on characterizations of GSLs from selected nonmammalian eukaryotes, such as dipterans, nematodes, cestodes, and fungi. Additional sections focus on the issue of whether it is better to leave GSLs intact or remove the ceramide; on development and uses of thin-layer chromatography (TLC) blotting and TLC-MS techniques; and on emerging issues of high-throughput analysis, including the use of flow injection, liquid chromatography mass spectrometry (LC-MS), and capillary electrophoresis mass spectrometry (CE-MS).
Collapse
Affiliation(s)
- Steven B Levery
- Department of Chemistry, University of New Hamphsire, Durham, USA
| |
Collapse
|
24
|
Nimrichter L, Barreto-Bergter E, Mendonça-Filho RR, Kneipp LF, Mazzi MT, Salve P, Farias SE, Wait R, Alviano CS, Rodrigues ML. A monoclonal antibody to glucosylceramide inhibits the growth of Fonsecaea pedrosoi and enhances the antifungal action of mouse macrophages. Microbes Infect 2004; 6:657-65. [PMID: 15158773 DOI: 10.1016/j.micinf.2004.03.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2004] [Accepted: 03/11/2004] [Indexed: 10/26/2022]
Abstract
Fungal glucosylceramides (GlcCer) are conserved lipid components in a large variety of pathogenic and non-pathogenic fungal species, but their biological functions are still unclear. Recent studies demonstrate that GlcCer are immunologically active components inducing the production of antifungal antibodies. In this work, a major GlcCer was purified and characterized from mycelial forms of Fonsecaea pedrosoi, the most frequent causative agent of chromoblastomycosis. As determined by fast atom bombardment mass spectrometry (FAB-MS) analysis, the purified molecule was identified as the conserved structure N-2'-hydroxyhexadecanoyl-1-beta-D-glucopyranosyl-9-methyl-4,8-sphingadienine. A monoclonal antibody (Mab) against this structure was used in indirect immunofluorescence with the different morphological stages of F. pedrosoi. Only the surface of young dividing cells was recognized by the antibody. Treatment of F. pedrosoi conidia with the Mab against GlcCer resulted in a clear reduction in fungal growth. In addition, the Mab also enhanced phagocytosis and killing of F. pedrosoi by murine cells. These results suggest that, in F. pedrosoi, GlcCer seem to be cell wall components targeted by antifungal antibodies that directly inhibit fungal development and also enhance macrophage function, supporting the use of monoclonal antibodies to GlcCer as potential tools in antifungal immunotherapy.
Collapse
Affiliation(s)
- Leonardo Nimrichter
- Departamento de Microbiologia Geral, Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Cidade Universitária, CCS, Bloco I, Ilha do Fundão, 21941-590, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Barreto-Bergter E, Pinto MR, Rodrigues ML. Structure and biological functions of fungal cerebrosides. AN ACAD BRAS CIENC 2004; 76:67-84. [PMID: 15048196 DOI: 10.1590/s0001-37652004000100007] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ceramide monohexosides (CMHs, cerebrosides) are glycosphingolipids composed of a hydrophobic ceramide linked to one sugar unit. In fungal cells, CMHs are very conserved molecules consisting of a ceramide moiety containing 9-methyl-4,8-sphingadienine in amidic linkage to 2-hydroxyoctadecanoic or 2-hydroxyhexadecanoic acids, and a carbohydrate portion consisting of one residue of glucose or galactose. 9-Methyl 4,8-sphingadienine-containing ceramides are usually glycosylated to form fungal cerebrosides, but the recent description of a ceramide dihexoside (CDH) presenting phytosphingosine in Magnaporthe grisea suggests the existence of alternative pathways of ceramide glycosylation in fungal cells. Along with their unique structural characteristics, fungal CMHs have a peculiar subcellular distribution and striking biological properties. In Pseudallescheria boydii, Candida albicans, Cryptococcus neoformans, Aspergillus nidulans, A. fumigatus, and Schizophyllum commune, CMHs are apparently involved in morphological transitions and fungal growth. The elucidation of structural and functional aspects of fungal cerebrosides may therefore contribute to the design of new antifungal agents inhibiting growth and differentiation of pathogenic species.
Collapse
Affiliation(s)
- Eliana Barreto-Bergter
- Instituto de Microbiologia Professor Paulo de Góes, Departamento de Microbiologia Geral, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-590, Brasil.
| | | | | |
Collapse
|
26
|
da Silva AFC, Rodrigues ML, Farias SE, Almeida IC, Pinto MR, Barreto-Bergter E. Glucosylceramides inColletotrichum gloeosporioidesare involved in the differentiation of conidia into mycelial cells. FEBS Lett 2004; 561:137-43. [PMID: 15013765 DOI: 10.1016/s0014-5793(04)00156-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2003] [Revised: 01/30/2004] [Accepted: 02/03/2004] [Indexed: 11/16/2022]
Abstract
Glucosylceramides (GlcCer) were extracted from the plant pathogen Colletotrichum gloeosporioides and purified by several chromatographic steps. By using electrospray ionization mass spectrometry and nuclear magnetic resonance, GlcCer from C. gloeosporioides were identified as N-2'-hydroxyoctadecanoyl-1-beta-D-glucopyranosyl-9-methyl-4,8-sphingadienine and N-2'-hydroxyoctadecenoyl-1-beta-D-glucopyranosyl-9-methyl-4,8-sphingadienine. Monoclonal antibodies against these structures were produced and used as tools for the evaluation of the role of GlcCer in the morphological transition of C. gloeosporioides. In the presence of antibodies to GlcCer, the differentiation of conidia into mycelia was blocked. Since GlcCer is present in several plant pathogens, the inhibitory activity of external ligands recognizing these structures may be applicable in other models of fungal infections.
Collapse
Affiliation(s)
- André F C da Silva
- Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Centro de Ciências da Saúde, Bloco I, Cidade Universitária, Rio de Janeiro 21941-590, Brazil
| | | | | | | | | | | |
Collapse
|
27
|
Thevissen K, Warnecke DC, François IEJA, Leipelt M, Heinz E, Ott C, Zähringer U, Thomma BPHJ, Ferket KKA, Cammue BPA. Defensins from insects and plants interact with fungal glucosylceramides. J Biol Chem 2003; 279:3900-5. [PMID: 14604982 DOI: 10.1074/jbc.m311165200] [Citation(s) in RCA: 282] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Growth of the yeast species Candida albicans and Pichia pastoris is inhibited by RsAFP2, a plant defensin isolated from radish seed (Raphanus sativus), at micromolar concentrations. In contrast, gcs-deletion mutants of both yeast species are resistant toward RsAFP2. GCS genes encode UDP-glucose:ceramide glucosyltransferases, which catalyze the final step in the biosynthesis of the membrane lipid glucosylceramide. In an enzyme-linked immunosorbent assay-based binding assay, RsAFP2 was found to interact with glucosylceramides isolated from P. pastoris but not with soybean nor human glucosylceramides. Furthermore, the P. pastoris parental strain is sensitive toward RsAFP2-induced membrane permeabilization, whereas the corresponding gcs-deletion mutant is highly resistant to RsAFP2-mediated membrane permeabilization. A model for the mode of action of RsAFP2 is presented in which all of these findings are linked. Similarly to RsAFP2, heliomicin, a defensin-like peptide from the insect Heliothis virescens, is active on C. albicans and P. pastoris parental strains but displays no activity on the gcs-deletion mutants of both yeast species. Furthermore, heliomicin interacts with glucosylceramides isolated from P. pastoris and soybean but not with human glucosylceramides. These data indicate that structurally homologous anti-fungal peptides present in species from different eukaryotic kingdoms interact with the same target in the fungal plasma membrane, namely glucosylceramides, and as such support the hypothesis that defensins from plants and insects have evolved from a single precursor.
Collapse
Affiliation(s)
- Karin Thevissen
- Centre of Microbial and Plant Genetics, Kasteelpark Arenberg 20, Heverlee B-3001, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Leipelt M, Warnecke D, Zähringer U, Ott C, Müller F, Hube B, Heinz E. Glucosylceramide synthases, a gene family responsible for the biosynthesis of glucosphingolipids in animals, plants, and fungi. J Biol Chem 2001; 276:33621-9. [PMID: 11443131 DOI: 10.1074/jbc.m104952200] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glucosylceramides are membrane lipids in most eukaryotic organisms and in a few bacteria. The physiological functions of these glycolipids have only been documented in mammalian cells, whereas very little information is available of their roles in plants, fungi, and bacteria. In an attempt to establish appropriate experimental systems to study glucosylceramide functions in these organisms, we performed a systematic functional analysis of a glycosyltransferase gene family with members of animal, plant, fungal, and bacterial origin. Deletion of such putative glycosyltransferase genes in Candida albicans and Pichia pastoris resulted in the complete loss of glucosylceramides. When the corresponding knock-out strains were used as host cells for homologous or heterologous expression of candidate glycosyltransferase genes, five novel glucosylceramide synthase (UDP-glucose:ceramide glucosyltransferase) genes were identified from the plant Gossypium arboreum (cotton), the nematode Caenorhabditis elegans, and the fungi Magnaporthe grisea, Candida albicans, and P. pastoris. The glycosyltransferase gene expressions led to the biosynthesis of different molecular species of glucosylceramides that contained either C18 or very long chain fatty acids. The latter are usually channeled exclusively into inositol-containing sphingolipids known from Saccharomyces cerevisiae and other yeasts. Implications for the biosynthesis, transport, and function of sphingolipids will be discussed.
Collapse
Affiliation(s)
- M Leipelt
- Institut für Allgemeine Botanik, University of Hamburg, Ohnhorststr. 18, 22609 Hamburg, Germany
| | | | | | | | | | | | | |
Collapse
|
29
|
Suzuki E, Mortara RA, Takahashi HK, Straus AH. Reactivity of MEST-1 (antigalactofuranose) with Trypanosoma cruzi glycosylinositol phosphorylceramides (GIPCs): immunolocalization of GIPCs in acidic vesicles of epimastigotes. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2001; 8:1031-5. [PMID: 11527825 PMCID: PMC96193 DOI: 10.1128/cdli.8.5.1031-1035.2001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2001] [Accepted: 07/11/2001] [Indexed: 11/20/2022]
Abstract
Using confocal microscopy, MEST-1-positive immunofluorescence was observed within various Trypanosoma cruzi forms, except in cell-derived trypomastigotes. Glycosylinositol phosphorylceramides were identified by thin-layer chromatography immunostaining as the antigens recognized by MEST-1 in these parasites. In epimastigotes, labeling of MEST-1 coincided with acidic vesicles, indicating an internal localization of these glycoconjugates.
Collapse
Affiliation(s)
- E Suzuki
- Departamento de Bioquímica, Universidade Federal de São Paulo, Escola Paulista de Medicina, Rua Botucatu 862, São Paulo, SP 04023-900, Brazil
| | | | | | | |
Collapse
|