1
|
De Pourcq K, De Schutter K, Callewaert N. Engineering of glycosylation in yeast and other fungi: current state and perspectives. Appl Microbiol Biotechnol 2010; 87:1617-31. [PMID: 20585772 DOI: 10.1007/s00253-010-2721-1] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Revised: 06/08/2010] [Accepted: 06/08/2010] [Indexed: 11/28/2022]
Abstract
With the increasing demand for recombinant proteins and glycoproteins, research on hosts for producing these proteins is focusing increasingly on more cost-effective expression systems. Yeasts and other fungi are promising alternatives because they provide easy and cheap systems that can perform eukaryotic post-translational modifications. Unfortunately, yeasts and other fungi modify their glycoproteins with heterogeneous high-mannose glycan structures, which is often detrimental to a therapeutic protein's pharmacokinetic behavior and can reduce the efficiency of downstream processing. This problem can be solved by engineering the glycosylation pathways to produce homogeneous and, if so desired, human-like glycan structures. In this review, we provide an overview of the most significant recently reported approaches for engineering the glycosylation pathways in yeasts and fungi.
Collapse
Affiliation(s)
- Karen De Pourcq
- Unit for Molecular Glycobiology, Department for Molecular Biomedical Research, VIB-Ghent University, Technologiepark 927, 9052, Ghent-Zwijnaarde, Belgium
| | | | | |
Collapse
|
2
|
Parente JA, Borges CL, Bailão AM, Felipe MSS, Pereira M, de Almeida Soares CM. Comparison of transcription of multiple genes during mycelia transition to yeast cells of Paracoccidioides brasiliensis reveals insights to fungal differentiation and pathogenesis. Mycopathologia 2008; 165:259-73. [PMID: 18777633 DOI: 10.1007/s11046-007-9078-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The ascomycete Paracoccidioides brasiliensis is a human pathogen with a broad distribution in Latin America. The infection process of P. brasiliensis is initiated by aerially dispersed mycelia propagules, which differentiate into the yeast parasitic phase in human lungs. Therefore, the transition to yeast is an initial and fundamental step in the infective process. In order to identify and characterize genes involved in P. brasiliensis transition to yeast, which could be potentially associated to early fungal adaptation to the host, expressed sequence tags (ESTs) were examined from a cDNA library, prepared from mycelia ongoing differentiation to yeast cells. In this study, it is presented a screen for a set of genes related to protein synthesis and to protein folding/modification/destination expressed during morphogenesis from mycelium to yeast. Our analysis revealed 43 genes that are induced during the early transition process, when compared to mycelia. In addition, eight novel genes related to those processes were described in the P. brasiliensis transition cDNA library. The types of induced and novel genes in the transition cDNA library highlight some metabolic aspects, such as putative increase in protein synthesis, in protein glycosylation, and in the control of protein folding that seem to be relevant to the fungal transition to the parasitic phase.
Collapse
Affiliation(s)
- Juliana Alves Parente
- Laboratório de Biologia Molecular, ICB II, Campus II, Universidade Federal de Goiás, 74001-970 Goiânia, Goiás, Brazil
| | | | | | | | | | | |
Collapse
|
3
|
Abstract
Recombinant protein expression has become a standard laboratory tool, and a wide variety of systems and techniques are now in use. Because there are so many systems to choose from, the investigator has to be careful to use the combination that will give the best results for the protein being studied. This overview unit discusses expression and production choices, including post-translational modifications (e.g., glycosylation, acylation, sulfation, and removal of N-terminal methionine), in vivo and in vitro folding, and influence of downstream elements on expression.
Collapse
Affiliation(s)
- D Gray
- Chiron Corporation, Emeryville, California, USA
| | | |
Collapse
|
4
|
Oka T, Jigami Y. Reconstruction of de novo pathway for synthesis of UDP-glucuronic acid and UDP-xylose from intrinsic UDP-glucose in Saccharomyces cerevisiae. FEBS J 2006; 273:2645-57. [PMID: 16817893 DOI: 10.1111/j.1742-4658.2006.05281.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
UDP-D-glucuronic acid and UDP-D-xylose are required for the biosynthesis of glycosaminoglycan in mammals and of cell wall polysaccharides in plants. Given the importance of these glycans to some organisms, the development of a system for production of UDP-D-glucuronic acid and UDP-D-xylose from a common precursor could prove useful for a number of applications. The budding yeast Saccharomyces cerevisiae lacks an endogenous ability to synthesize or consume UDP-D-glucuronic acid and UDP-D-xylose. However, yeast have a large cytoplasmic pool of UDP-D-glucose that could be used to synthesize cell wall beta-glucan, as a precursor of UDP-D-glucuronic acid and UDP-D-xylose. Thus, if a mechanism for converting the precursors into the end-products can be identified, yeast may be harnessed as a system for production of glycans. Here we report a novel S. cerevisiae strain that coexpresses the Arabidopsis thaliana genes UGD1 and UXS3, which encode a UDP-glucose dehydrogenase (AtUGD1) and a UDP-glucuronic acid decarboxylase (AtUXS3), respectively, which are required for the conversion of UDP-D-glucose to UDP-D-xylose in plants. The recombinant yeast strain was capable of converting UDP-D-glucose to UDP-D-glucuronic acid, and UDP-D-glucuronic acid to UDP-D-xylose, in the cytoplasm, demonstrating the usefulness of this yeast system for the synthesis of glycans. Furthermore, we observed that overexpression of AtUGD1 caused a reduction in the UDP-D-glucose pool, whereas coexpression of AtUXS3 and AtUGD1 did not result in reduction of the UDP-D-glucose pool. Enzymatic analysis of the purified hexamer His-AtUGD1 revealed that AtUGD1 activity is strongly inhibited by UDP-D-xylose, suggesting that AtUGD1 maintains intracellular levels of UDP-D-glucose in cooperation with AtUXS3 via the inhibition of AtUGD1 by UDP-D-xylose.
Collapse
Affiliation(s)
- Takuji Oka
- Research Center for Glycoscience, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | | |
Collapse
|
5
|
Sadamoto R, Niikura K, Monde K, Nishimura SI. Cell wall engineering of living bacteria through biosynthesis. Methods Enzymol 2003; 362:273-86. [PMID: 12968370 DOI: 10.1016/s0076-6879(03)01019-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Cell wall precursors that have been modified at their peptide moiety were incorporated into the living bacterial cell wall. Using chemically synthesized bacterial cell wall precursors, a variety of compounds could be attached to the bacterial surface. Escherichia coli took the modified precursors into the cell wall after EDTA treatment, whereas lactobacilli took the compounds more effectively without EDTA treatment. Microscopic observation showed that the incorporated ketone moiety retained its reactivity. On the basis of this strategy, any compound can be displayed on the bacterial surface. This strategy for bacterial cell surface engineering will open the door for new technologies and therapies utilizing bacteria.
Collapse
Affiliation(s)
- Reiko Sadamoto
- Sapporo Laboratory for Glycocluster Project, Japan Bioindustry Association, N10 W8, Kita-ku, Sapporo 060-0810, Japan
| | | | | | | |
Collapse
|
6
|
Chiba Y, Sakuraba H, Kotani M, Kase R, Kobayashi K, Takeuchi M, Ogasawara S, Maruyama Y, Nakajima T, Takaoka Y, Jigami Y. Production in yeast of alpha-galactosidase A, a lysosomal enzyme applicable to enzyme replacement therapy for Fabry disease. Glycobiology 2002; 12:821-8. [PMID: 12499404 DOI: 10.1093/glycob/cwf096] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A mammalian-like sugar moiety was created in glycoprotein by Saccharomyces cerevisiae in combination with bacterial alpha-mannosidase to produce a more economic enzyme replacement therapy for patients with Fabry disease. We introduced the human alpha-galactosidase A (alpha-GalA) gene into an S. cerevisiae mutant that was deficient in the outer chains of N-linked mannan. The recombinant alpha-GalA contained both neutral (Man(8)GlcNAc(2)) and acidic ([Man-P](1-2)Man(8)GlcNAc(2)) sugar chains. Because an efficient incorporation of alpha-GalA into lysosomes of human cells requires mannose-6-phosphate (Man-6-P) residues that should be recognized by the specific receptor, we trimmed down the sugar chains of the alpha-GalA by a newly isolated bacterial alpha-mannosidase. Treatment of the alpha-GalA with the alpha-mannosidase resulted in the exposure of a Man-6-P residue on a nonreduced end of oligosaccharide chains after the removal of phosphodiester-linked nonreduced-end mannose. The treated alpha-GalA was efficiently incorporated into fibroblasts derived from patients with Fabry disease. The uptake was three to four times higher than that of the nontreated alpha-GalA and was inhibited by the addition of 5 mM Man-6-P. Incorporated alpha-GalA was targeted to the lysosome, and hydrolyzed ceramide trihexoside accumulated in the Fabry fibroblasts after 5 days. This method provides an effective and economic therapy for many lysosomal disorders, including Fabry disease.
Collapse
Affiliation(s)
- Yasunori Chiba
- Research Center for Glycoscience, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8566, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Callewaert N, Laroy W, Cadirgi H, Geysens S, Saelens X, Min Jou W, Contreras R. Use of HDEL-tagged Trichoderma reesei mannosyl oligosaccharide 1,2-alpha-D-mannosidase for N-glycan engineering in Pichia pastoris. FEBS Lett 2001; 503:173-8. [PMID: 11513877 DOI: 10.1016/s0014-5793(01)02676-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Therapeutic glycoprotein production in the widely used expression host Pichia pastoris is hampered by the differences in the protein-linked carbohydrate biosynthesis between this yeast and the target organisms such as man. A significant step towards the generation of human-compatible N-glycans in this organism is the conversion of the yeast-type high-mannose glycans to mammalian-type high-mannose and/or complex glycans. In this perspective, we have co-expressed an endoplasmic reticulum-targeted Trichoderma reesei 1,2-alpha-D-mannosidase with two glycoproteins: influenza virus haemagglutinin and Trypanosoma cruzi trans-sialidase. Analysis of the N-glycans of the two purified proteins showed a >85% decrease in the number of alpha-1,2-linked mannose residues. Moreover, the human-type high-mannose oligosaccharide Man(5)GlcNAc(2) was the major N-glycan of the glyco-engineered trans-sialidase, indicating that N-glycan engineering can be effectively accomplished in P. pastoris.
Collapse
Affiliation(s)
- N Callewaert
- Unit of Fundamental and Applied Molecular Biology, Department of Molecular Biology, Ghent University, Ghent, Belgium
| | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
The Golgi apparatus serves as the major site of glycosylation reactions. Nucleotide sugars which are substrates of the Golgi localized glycosyltransferases are synthesized in the cytoplasm (cell nucleus in case of CMP-sialic acid) and must be transported into the compartment lumen. This transport function is carried out by nucleotide sugar transporters. The first genes were cloned in the year 1996 and revealed a family of structurally conserved multi-transmembrane-spanning proteins. Due to the high structural and functional conservation, the identification of many putative nucleotide sugar transporter sequences has become possible in the existing gene data bases and accelerates the increase in knowledge on structure-function-relationships. Recent developments in the nucleotide sugar transporter field are discussed in this article.
Collapse
Affiliation(s)
- R Gerardy-Schahn
- Institut für Physiologische Chemie, Proteinstruktur, Medizinische Hochschule Hannover, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany.
| | | | | |
Collapse
|
9
|
Kainuma M, Chiba Y, Takeuchi M, Jigami Y. Overexpression of HUT1 gene stimulates in vivo galactosylation by enhancing UDP-galactose transport activity in Saccharomyces cerevisiae. Yeast 2001; 18:533-41. [PMID: 11284009 DOI: 10.1002/yea.708] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Transfer of activated sugar-nucleotides from the cytoplasm to the lumen of the Golgi is an essential requirement for glycosylation of glycoproteins, proteoglycans and glycosphingolipids. Although mannosylation is the major modification in the yeast Saccharomyces cerevisiae, several reports suggest the presence of galactose residues on yeast proteins and sphingolipids. We have detected alpha-galactosylated O-linked chitinase by lectin blotting from cells that functionally express the gma12(+) gene, encoding alpha 1,2-galactosyltransferase from Schizosaccharomyces pombe. This result implies the presence of a UDP-galactose transporter in S. cerevisiae. A conserved gene, HUT1, which encodes a putative multi-transmembrane protein, was cloned and characterized for its possible involvement in galactosylation. The HUT1 gene is not essential and is expressed at a relatively low level under the physiological conditions we examined. The disruption of this gene did not show any apparent impairments in glycosylation. However, a temperature- and concentration-dependent increase in UDP--galactose transport activity was detected from cells overexpressing HUT1 in the presence of gma12(+). The surface of these cells was confirmed to carry galactose residues by staining with FITC-conjugated alpha-galactose-specific lectin. These results suggest a role for Hut1p in the transport of UDP--galactose from the cytosol into the Golgi lumen in S. cerevisiae.
Collapse
Affiliation(s)
- M Kainuma
- Department of Molecular Biology, National Institute of Bioscience and Human Technology, Tsukuba, Ibaraki 305-8566, Japan
| | | | | | | |
Collapse
|
10
|
Production of therapeutic glycoproteins through the engineering of glycosylation pathway in yeast. BIOTECHNOL BIOPROC E 2000. [DOI: 10.1007/bf02942177] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Roy SK, Chiba Y, Takeuchi M, Jigami Y. Characterization of Yeast Yea4p, a uridine diphosphate-N-acetylglucosamine transporter localized in the endoplasmic reticulum and required for chitin synthesis. J Biol Chem 2000; 275:13580-7. [PMID: 10788474 DOI: 10.1074/jbc.275.18.13580] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chitin is an essential cell wall component, synthesis of which is regulated throughout the cell cycle in the yeast Saccharomyces cerevisiae. We cloned an S. cerevisiae gene, YEA4, whose product is homologous to the Kluyveromyces lactis uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc) transporter. An epitope-tagged Yea4p localized mainly in the 10,000 x g pellet (P2), suggesting endoplasmic reticulum (ER) localization. Membrane vesicles from the P2 fraction showed an 8-fold higher UDP-GlcNAc transport activity in cells harboring a multicopy YEA4 plasmid than in cells harboring vector alone. The activity distribution is identical with the protein distribution in P2, whether the gene is overexpressed or not, suggesting its native localization in P2. Immunolocalization of epitope-tagged Yea4p further revealed ER localization. The increase in transport activity due to the YEA4 overexpression is specific for UDP-GlcNAc, but not for UDP-galactose and GDP-mannose. Deltayea4-disrupted cells showed a reduced rate of UDP-GlcNAc transport, contained less chitin, and were larger and rounder in shape than the wild type cells. Our results indicate that YEA4 encodes an ER-localized UDP-GlcNAc transporter that is required for cell wall chitin synthesis in S. cerevisiae.
Collapse
Affiliation(s)
- S K Roy
- National Institute of Bioscience and Human Technology, Tsukuba, Ibaraki 305-8566 and Central Laboratories for Key Technology, Kirin Brewery Co., Ltd., Yokohama, Kanagawa 236-0004, Japan
| | | | | | | |
Collapse
|
12
|
Segawa H, Ishida N, Takegawa K, Kawakita M. Schizosaccharomyces pombe UDP-galactose transporter: identification of its functional form through cDNA cloning and expression in mammalian cells. FEBS Lett 1999; 451:295-8. [PMID: 10371208 DOI: 10.1016/s0014-5793(99)00596-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The Schizosaccharomyces pombe UDP-galactose transporter cDNA (SpUGT cDNA), encoding the product of the gms1+ gene which consists of two exon sequences separated by a 173-bp intron, was cloned by RT-PCR. Its product, a hydrophobic protein of 353 amino acid residues resembling its human counterpart, was expressed in the Golgi membranes of UDP-galactose transporter-deficient Lec8 cells, and complemented the genetic defect of the mutant cells. This indicated that SpUGT cDNA encodes the functional S. pombe UDP-galactose transporter. The product of an ORF found in the second exon, which was previously assumed to be the S. pombe UDP-galactose transporter, thus represents an inactive, truncated form of the SpUGT protein.
Collapse
Affiliation(s)
- H Segawa
- Department of Physiological Chemistry, The Tokyo Metropolitan Institute of Medical Science (Rinshoken), Japan
| | | | | | | |
Collapse
|