1
|
Okuda T, Kato K, Kitamura M, Kasahara S. Purification of anti-glycoconjugate monoclonal antibodies using newly developed porous zirconia particles. Sci Rep 2021; 11:3233. [PMID: 33564002 PMCID: PMC7873262 DOI: 10.1038/s41598-021-82457-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/20/2021] [Indexed: 11/09/2022] Open
Abstract
Here, we describe porous zirconia particles (PZPs) optimized for the purification of immunoglobulins. PZPs, with a pore size of approximately 10 nm, were designed to specifically interact with antibodies via surface modification with a phosphate functional group. A simple PZP purification method based on precipitation enabled efficient purification of mouse anti-glycosphingolipid globoside/Gb4Cer monoclonal IgM (κ-light chains) from hybridoma culture supernatants. Over 99% of contaminating proteins were removed by the PZP purification process, and approximately 50% of the IgM was recovered in the purified fraction after eluting the PZP-adsorbed antibodies with 100 mM phosphate buffer. Other IgG3 and IgM monoclonal antibodies that react with Gb4Cer or α2,6-sialyl LacNAc-modified glycoproteins could also be purified using PZPs and elution buffer at concentrations of 100–500 mM. All of the purified antibodies retained their antigen reactivity and specificity, indicating that PZP purification does not affect antibody function. As PZP purification is also suitable for purification of IgM consisting of λ-light chains and IgG derived from other mammalian species, it is expected to be applied to the purification of a variety of antibodies, including anti-glycoconjugate IgMs.
Collapse
Affiliation(s)
- Tetsuya Okuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan.
| | - Katsuya Kato
- NGK Spark Plug-AIST Healthcare ・ Materials Cooperative Research Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), 2266-98 Anagahora, Shimoshidami, Moriyama-ku, Nagoya, 463-8560, Japan
| | - Masahiro Kitamura
- NGK Spark Plug-AIST Healthcare ・ Materials Cooperative Research Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), 2266-98 Anagahora, Shimoshidami, Moriyama-ku, Nagoya, 463-8560, Japan
| | - Shinjiro Kasahara
- NGK Spark Plug Co., Ltd., 2808 Iwasaki, Komaki, Aichi, 485-8510, Japan
| |
Collapse
|
2
|
Altevogt P, Sammar M, Hüser L, Kristiansen G. Novel insights into the function of CD24: A driving force in cancer. Int J Cancer 2020; 148:546-559. [PMID: 32790899 DOI: 10.1002/ijc.33249] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/23/2020] [Accepted: 07/28/2020] [Indexed: 12/12/2022]
Abstract
CD24 is a highly glycosylated protein with a small protein core that is linked to the plasma membrane via a glycosyl-phosphatidylinositol anchor. CD24 is primarily expressed by immune cells but is often overexpressed in human tumors. In cancer, CD24 is a regulator of cell migration, invasion and proliferation. Its expression is associated with poor prognosis and it is used as cancer stemness marker. Recently, CD24 on tumor cells was identified as a phagocytic inhibitor ("do not eat me" signal) having a suppressive role in tumor immunity via binding to Siglec-10 on macrophages. This finding is reminiscent of the demonstration that soluble CD24-Fc can dampen the immune system in autoimmune disease. In the present review, we summarize recent progress on the role of the CD24-Siglec-10 binding axis at the interface between tumor cells and the immune system, and the role of CD24 genetic polymorphisms in cancer. We describe the specific function of cytoplasmic CD24 and discuss the presence of CD24 on tumor-released extracellular vesicles. Finally, we evaluate the potential of CD24-based immunotherapy.
Collapse
Affiliation(s)
- Peter Altevogt
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Marei Sammar
- ORT Braude College for Engineering, Karmiel, Israel
| | - Laura Hüser
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | | |
Collapse
|
3
|
Differences in CD75s- and iso-CD75s-ganglioside content and altered mRNA expression of sialyltransferases ST6GAL1 and ST3GAL6 in human hepatocellular carcinomas and nontumoral liver tissues. Glycobiology 2010; 21:584-94. [DOI: 10.1093/glycob/cwq200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
4
|
Kirsch S, Müthing J, Peter-Katalinić J, Bindila L. On-line nano-HPLC/ESI QTOF MS monitoring of alpha2-3 and alpha2-6 sialylation in granulocyte glycosphingolipidome. Biol Chem 2009; 390:657-72. [PMID: 19361287 DOI: 10.1515/bc.2009.066] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A novel glycosphingolipidomic protocol using nano-high performance liquid chromatography coupled on-line to electrospray ionization quadrupole time-of-flight mass spectrometry (ESI-QTOF-MS) focusing on the separation of isomeric ganglioside structures is described here. A highly efficient separation of alpha2-3- and alpha2-6-sialylated ganglioside species of different carbohydrate chain length was achieved on an HILIC-amido column, followed by sensitive flow-through ESI-QTOF-MS detection and unambiguous structural identification by tandem MS experiments. The protocol was applied to encompass the glycosphingolipidome of human granulocytes, where 182 distinct components could be clearly identified and assigned regarding the ganglioside type and the isomer distribution.
Collapse
Affiliation(s)
- Stephan Kirsch
- Institute of Medical Physics and Biophysics, University of Münster, D-48149 Münster, Germany
| | | | | | | |
Collapse
|
5
|
Eichler W. Characteristics of two CD75-related cell-surface expressed antigens of human lymphocytes. Mol Immunol 2006; 44:2047-55. [PMID: 17067678 DOI: 10.1016/j.molimm.2006.09.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2006] [Accepted: 09/11/2006] [Indexed: 11/18/2022]
Abstract
The structure of cell surface carbohydrates expressed on human leukocytes is dependent on the cell's developmental stage, differentiation, and activation. Although modification of oligosaccharide side chains by sialylation is quite common, antigenic determinants on lymphocytes associated with the presence of sialoglycans are still incompletely defined. In the study presented here, monoclonal antibodies (mAbs) were used to characterize two novel but related cell surface carbohydrate antigens. One antigen, denominated as B8, is largely masked by sialyl residues on most lymphocytes, while it is detectable on the majority of B cells. Treatment with sialidase resulted in the exposure of B8 on the surface of blood cells including lymphocytes. Although the second carbohydrate antigen, C1, was sialidase-sensitive, its molecular properties and cellular distribution place it in close vicinity to B8. B8(+) as well as C1(+) lymphocytes were found predominantly in the mantle zone of secondary follicles of tonsillar tissue. These findings raised the possibility that B8 and C1 are closely related to a category of carbohydrate antigens previously classified as CDw76 (recently assigned to CD75s). MAbs directed against B8 or C1 precipitated 34, 37, 43, and 200kDa glycoproteins from tonsillar lymphocytes, indicating that identical cell surface proteins are associated with both antigens. In contrast to B8, however, the expression of C1 was increased on lymphocytes upon activation. Together the results suggest that CD75-related epitopes are distinct molecular entities which may be exposed on glycoproteins and are differently expressed on lymphocytes.
Collapse
Affiliation(s)
- Wolfram Eichler
- University of Leipzig, Eye Hospital, Liebigstrasse 10-14, D-04103 Leipzig, Germany.
| |
Collapse
|
6
|
Müthing J, Meisen I, Kniep B, Haier J, Senninger N, Neumann U, Langer M, Witthohn K, Milosević J, Peter-Katalinić J. Tumor-associated CD75s gangliosides and CD75s-bearing glycoproteins with Neu5Acalpha2-6Galbeta1-4GlcNAc-residues are receptors for the anticancer drug rViscumin. FASEB J 2004; 19:103-5. [PMID: 15520251 DOI: 10.1096/fj.04-2494fje] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The anticancer drug rViscumin, currently under clinical development, has been shown in previous studies to be a sialic acid specific ribosome inactivating protein (RIP). Comparative binding assays with the CD75s-specific monoclonal antibodies HB6 and J3-89 revealed rViscumin to be a CD75s-specific RIP due to identical binding characteristics toward CD75s gangliosides. The receptor gangliosides are IV6nLc4Cer, VI6nLc6Cer, and the newly characterized ganglioside VIII6nLc8Cer, all three carrying the Neu5Acalpha2-6Galbeta1-4GlcNAc motif. To elucidate the clinical potential of the rViscumin targets, CD75s gangliosides were determined in several randomly collected gastrointestinal tumors. The majority of the tumors showed an enhanced expression of CD75s gangliosides compared with the unaffected tissues. The rViscumin binding specificity was further investigated with reference glycoproteins carrying sialylated and desialylated type II N-glycans. Comparative Western blots of rViscumin and ricin, an rViscumin homologous but galactoside-specific RIP, revealed specific recognition of type II N-glycans with CD75s determinants by rViscumin, whereas ricin failed to react with terminally sialylated oligosaccharides such as CD75s motifs and others. This strict binding specificity of rViscumin and the increased expression of CD75s gangliosides in various tumors suggest this anticancer drug as a promising candidate for an individualised adjuvant therapy of human tumors.
Collapse
MESH Headings
- Antibodies, Monoclonal/metabolism
- Antigens, CD/chemistry
- Antigens, CD/classification
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Antigens, Tumor-Associated, Carbohydrate/classification
- Antigens, Tumor-Associated, Carbohydrate/immunology
- Antigens, Tumor-Associated, Carbohydrate/metabolism
- Antineoplastic Agents/metabolism
- Blotting, Western/methods
- Brain/metabolism
- Chromatography, Thin Layer/methods
- Electrophoresis, Polyacrylamide Gel/methods
- G(M1) Ganglioside/isolation & purification
- G(M1) Ganglioside/metabolism
- Gangliosides/isolation & purification
- Gangliosides/metabolism
- Gastrointestinal Neoplasms/chemistry
- Glycoproteins/blood
- Glycoproteins/chemistry
- Granulocytes/chemistry
- Granulocytes/metabolism
- Humans
- Models, Statistical
- Plant Preparations/immunology
- Plant Proteins/immunology
- Receptors, Drug/metabolism
- Ribosome Inactivating Proteins, Type 2
- Ricin/chemistry
- Sialyltransferases
- Spectrometry, Mass, Electrospray Ionization/methods
- Toxins, Biological/immunology
Collapse
Affiliation(s)
- Johannes Müthing
- Institute for Medical Physics and Biophysics, University of Münster, Münster 48149, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Meisen I, Peter-Katalinić J, Müthing J. Direct Analysis of Silica Gel Extracts from Immunostained Glycosphingolipids by Nanoelectrospray Ionization Quadrupole Time-of-Flight Mass Spectrometry. Anal Chem 2004; 76:2248-55. [PMID: 15080734 DOI: 10.1021/ac035511t] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A combined strategy of preparative high-performance thin-layer chromatography overlay assay and mass spectrometry was established for the structural characterization of immunostained glycosphingolipids (GSLs) in silica gel extracts. Crude chloroform/methanol/water (30/60/8, v/v/v) extracts of immunostained TLC bands were analyzed by nanoelectrospray low-energy CID mass spectrometry without further purification. The GSL species investigated were isomeric monosialogangliosides of the neolacto series from a ganglioside preparation of human granulocytes, the disialoganglioside GD3 from a human melanoma lipid extract, and ganglio series Gg3Cer of a neutral GSL preparation from murine lymphoreticular MDAY-D2 cells. For the specific detection of lipid-bound oligosaccharides, polyclonal chicken IgY, murine monoclonal IgG3, and IgM antibodies were used. The resulting mass spectra show that only analytical quantities of approximately 1 microg of a single GSL within a complex mixture are required for the structure determination of immunostained GSLs by MS and MS/MS. All species investigated were detected as singly charged deprotonated molecular ions, and neither buffer-derived salt adducts nor coextracted contaminants from the immunostaining procedure or the silica gel layer were observed. This effective HPTLC-MS-joined procedure offers a wide range of applications for any carbohydrate binding agents such as bacterial toxins, plant lectins, and others.
Collapse
Affiliation(s)
- Iris Meisen
- Institute for Medical Physics and Biophysics, University of Münster, Robert-Koch-Strasse 31, D-48149 Münster, Germany
| | | | | |
Collapse
|
8
|
Schilling B, Gibson BW, Filiatrault M, Campagnari AA. Characterization of lipooligosaccharides from Haemophilus ducreyi containing polylactosamine repeats. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2002; 13:724-734. [PMID: 12056572 DOI: 10.1016/s1044-0305(02)00375-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Haemophilus ducreyi, a gram-negative human mucosal pathogen, is one of the principal causes of genital ulcer disease. The lipooligosaccharides (LOS) of these bacteria are considered to be a major virulence factor and have been implicated in the adherence and invasion of H. ducreyi to several human cell types. An isogenic heptosyltransferase-III knockout strain (waaQ) was recently constructed from H. ducreyi 35000 wild-type strain and immunochemical and molecular weight data of the isolated LOS suggested the presence of poly-N-acetyllactosamine (LacNAc) (Filiatrault et al., Infect. Immun. 2000, 68, 3352-3361). In this present study, the structures of these novel LOS-glycoforms were characterized by matrix-assisted laser desorption/ionization (MALDI) and electrospray ionization (ESI) mass spectrometry in combination with exoglycosidase digestion. Detailed structural information was obtained for the oligosaccharide (OS) portions of these LOS showing between one to five linear LacNAc repeats on the non-reducing terminus of the main oligosaccharide branch. When grown on solid media, the organism produced LacNAc repeats that were further modified by the addition of sialic acid. Enzymatic digestion with beta-galactosidase, beta-N-acetylhexosaminidase, and neuraminidase type VI-A yielded truncated glycoforms consistent with a polyLacNAc structure capped at various end points with sialic acid. ESI-MS/MS mass spectrometry on a quadrupole time-of-flight instrument was particularly effective in obtaining detailed structural information on the least abundant, high-mass glycoforms. Although LOS containing terminal di-LacNAc have been reported, this is the first time to our knowledge that a linear polyLacNAc structure has been characterized in bacteria.
Collapse
|
9
|
Dall'Olio F, Chiricolo M, Mariani E, Facchini A. Biosynthesis of the cancer-related sialyl-alpha 2,6-lactosaminyl epitope in colon cancer cell lines expressing beta-galactoside alpha 2,6-sialyltransferase under a constitutive promoter. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:5876-84. [PMID: 11722575 DOI: 10.1046/j.0014-2956.2001.02536.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
An elevation of beta-galactoside alpha 2,6-sialyltransferase (ST6Gal.I) enzyme activity and an increased alpha 2,6-sialylation of cell membranes are among the most prominent glycosylation changes associated with colon cancer; both modifications correlate with a worse prognosis. In our previous studies, we have frequently observed a discrepancy between the ST6Gal.I level within a colon cancer sample or cell line and the respective level of reactivity with the alpha 2,6-sialyl-specific lectin from Sambucus nigra (SNA). In this study, we have investigated quantitatively the biosynthesis of the sialyl-alpha 2,6-lactosaminyl epitope in two colon cancer cell types expressing the ST6Gal.I cDNA under the control of a constitutive promoter. By measuring the amount of ST6Gal.I mRNA using competitive RT-PCR, the expression of alpha 2,6-sialylated lactosaminic structures with SNA and anti-CDw75 Ig, and the presence of unsubstituted lactosaminic termini by Erythrina cristagalli lectin, we reached the following conclusions: (a) a high proportion of the cell surface lactosaminic termini remains unsubstituted, even in the presence of a very high ST6Gal.I activity. This proportion is strongly dependent on the cell type; (b) ST6Gal.I-transfected colon cancer cells do not express the CDw75 epitope; (c) the level of ST6Gal.I enzyme activity only partially correlates with the mRNA level; (d) despite the control by a constitutive promoter, the ST6Gal.I mRNA is not constantly expressed over time; and (e) a very large portion of the enzyme molecules is secreted in the extracellular milieu. These results indicate that post-transcriptional and post-translational mechanisms play a pivotal role in the control of alpha 2,6-sialylation in colon cancer cells.
Collapse
Affiliation(s)
- F Dall'Olio
- Dipartimento di Patologia Sperimentale, Università di Bologna, Italy.
| | | | | | | |
Collapse
|
10
|
Abstract
Sialylation represents one of the most frequently occurring terminations of the oligosaccharide chains of glycoproteins and glycolipids. Sialic acid is commonly found alpha2,3- or alpha2,6-linked to galactose (Gal), alpha2,6-linked to N-acetylgalactosamine (GalNAc) or alpha2,8-linked to another sialic acid. The biosynthesis of the various linkages is mediated by the different members of the sialyltransferase family. The addition of sialic acid in alpha2,6-linkage to the galactose residue of lactosamine (type 2 chains) is catalyzed by beta-galactoside alpha2,6-sialyltransferase (ST6Gal.I). Although expressed by a single gene, this enzyme shows a complex pattern of regulation which allows its tissue- and stage-specific modulation. The cognate oligosaccharide structure, NeuAcalpha2,6Galbeta1,4GlcNAc, is widely distributed among tissues and is involved in biological processes such as the regulation of the immune response and the progression of colon cancer. This review summarizes the current knowledge on the biochemistry of ST6Gal.I and on the functional role of the sialyl-alpha2,6-lactosaminyl structure.
Collapse
Affiliation(s)
- F Dall'Olio
- Dipartimento di Patologia Sperimentale, Università di Bologna, Italy
| |
Collapse
|