1
|
Meech R, Miners JO, Lewis BC, Mackenzie PI. The glycosidation of xenobiotics and endogenous compounds: Versatility and redundancy in the UDP glycosyltransferase superfamily. Pharmacol Ther 2012; 134:200-18. [DOI: 10.1016/j.pharmthera.2012.01.009] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 01/17/2012] [Indexed: 11/24/2022]
|
2
|
Rajakannan V, Lee HS, Chong SH, Ryu HB, Bae JY, Whang EY, Huh JW, Cho SW, Kang LW, Choe H, Robinson RC. Structural basis of cooperativity in human UDP-glucose dehydrogenase. PLoS One 2011; 6:e25226. [PMID: 21984906 PMCID: PMC3184952 DOI: 10.1371/journal.pone.0025226] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 08/29/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND UDP-glucose dehydrogenase (UGDH) is the sole enzyme that catalyzes the conversion of UDP-glucose to UDP-glucuronic acid. The product is used in xenobiotic glucuronidation in hepatocytes and in the production of proteoglycans that are involved in promoting normal cellular growth and migration. Overproduction of proteoglycans has been implicated in the progression of certain epithelial cancers, while inhibition of UGDH diminished tumor angiogenesis in vivo. A better understanding of the conformational changes occurring during the UGDH reaction cycle will pave the way for inhibitor design and potential cancer therapeutics. METHODOLOGY Previously, the substrate-bound of UGDH was determined to be a symmetrical hexamer and this regular symmetry is disrupted on binding the inhibitor, UDP-α-D-xylose. Here, we have solved an alternate crystal structure of human UGDH (hUGDH) in complex with UDP-glucose at 2.8 Å resolution. Surprisingly, the quaternary structure of this substrate-bound protein complex consists of the open homohexamer that was previously observed for inhibitor-bound hUGDH, indicating that this conformation is relevant for deciphering elements of the normal reaction cycle. CONCLUSION In all subunits of the present open structure, Thr131 has translocated into the active site occupying the volume vacated by the absent active water and partially disordered NAD+ molecule. This conformation suggests a mechanism by which the enzyme may exchange NADH for NAD+ and repolarize the catalytic water bound to Asp280 while protecting the reaction intermediates. The structure also indicates how the subunits may communicate with each other through two reaction state sensors in this highly cooperative enzyme.
Collapse
Affiliation(s)
- Venkatachalam Rajakannan
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Hui-Sun Lee
- Department of Physiology, University of Ulsan College of Medicine, Seoul, Korea
- Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul, Korea
| | - Seon-Ha Chong
- Department of Physiology, University of Ulsan College of Medicine, Seoul, Korea
- Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul, Korea
| | - Han-Bong Ryu
- Department of Physiology, University of Ulsan College of Medicine, Seoul, Korea
- Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul, Korea
| | - Ji-Young Bae
- Department of Physiology, University of Ulsan College of Medicine, Seoul, Korea
- Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul, Korea
| | - Eun-Young Whang
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, Korea
| | - Jae-Wan Huh
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, Korea
| | - Sung-Woo Cho
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, Korea
| | - Lin-Woo Kang
- Department of Advanced Technology Fusion, Kunkuk University, Seoul, Korea
| | - Han Choe
- Department of Physiology, University of Ulsan College of Medicine, Seoul, Korea
- Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul, Korea
- * E-mail:
| | - Robert C. Robinson
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| |
Collapse
|
3
|
Tsui S, Fernando R, Chen B, Smith TJ. Divergent Sp1 protein levels may underlie differential expression of UDP-glucose dehydrogenase by fibroblasts: role in susceptibility to orbital Graves disease. J Biol Chem 2011; 286:24487-99. [PMID: 21576248 DOI: 10.1074/jbc.m111.241166] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
UDP-glucose dehydrogenase (UGDH) catalyzes the formation of UDP-glucuronate. Glucuronate represents an integral component of the glycosaminoglycan, hyaluronan, which accumulates in orbital Graves disease. Here we report that orbital fibroblasts express higher levels of UGDH than do those from skin. This is a consequence of greater UGDH gene promoter activity and more abundant steady-state UGDH mRNA. Six Sp1 sites located in the proximal 550 bp of the UGDH gene promoter appear to determine basal promoter activity, as does a previously unrecognized 49-bp sequence spanning -1436 nucleotides (nt) and -1388 nt that negatively affects activity. Nuclear Sp1 protein is more abundant in orbital fibroblasts, and its binding to specific sites on DNA is greater than that in dermal fibroblasts. Mutating each of these Sp1 sites in a UGDH gene promoter fragment, extending from -1387 to +71 nt and fused to a luciferase reporter, results in divergent activities when transfected in orbital and dermal fibroblasts. Reducing Sp1 attenuated UGDH gene promoter activity, lowered steady-state UGDH mRNA levels, and reduced UGDH enzyme activity. Targeting Sp1 and UGDH with specific siRNAs also lowered hyaluronan synthase-1 (HAS-1) and HAS-2 levels and reduced hyaluronan accumulation in orbital fibroblasts. These findings suggest that orbital fibroblasts express high levels of UGDH in an anatomic-specific manner, apparently the result of greater constitutive Sp1. These high UGDH levels may underlie susceptibility of the orbit to localized overproduction of hyaluronan in Graves disease.
Collapse
Affiliation(s)
- Shanli Tsui
- Division of Molecular Medicine, Department of Medicine, Harbor-UCLA Medical Center, Torrance, California 90502, USA
| | | | | | | |
Collapse
|
4
|
Banerjee N, Bhattacharyya D. UDP-glucose dehydrogenase from Capra hircus liver: Purification, partial characterization and evaluation as a coupling enzyme in UDP-galactose 4-epimerase assay. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.molcatb.2010.09.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
MacKenzie PI, Rogers A, Elliot DJ, Chau N, Hulin JA, Miners JO, Meech R. The novel UDP glycosyltransferase 3A2: cloning, catalytic properties, and tissue distribution. Mol Pharmacol 2010; 79:472-8. [PMID: 21088224 DOI: 10.1124/mol.110.069336] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The human UDP glycosyltransferase (UGT) 3A family is one of three families involved in the metabolism of small lipophilic compounds. Members of these families catalyze the addition of sugar residues to chemicals, which enhances their excretion from the body. The UGT1 and UGT2 family members primarily use UDP glucuronic acid to glucuronidate numerous compounds, such as steroids, bile acids, and therapeutic drugs. We showed recently that UGT3A1, the first member of the UGT3 family to be characterized, is unusual in using UDP N-acetylglucosamine as sugar donor, rather than UDP glucuronic acid or other UDP sugar nucleotides (J Biol Chem 283:36205-36210, 2008). Here, we report the cloning, expression, and characterization of UGT3A2, the second member of the UGT3 family. Like UGT3A1, UGT3A2 is inactive with UDP glucuronic acid as sugar donor. However, in contrast to UGT3A1, UGT3A2 uses both UDP glucose and UDP xylose but not UDP N-acetylglucosamine to glycosidate a broad range of substrates including 4-methylumbelliferone, 1-hydroxypyrene, bioflavones, and estrogens. It has low activity toward bile acids and androgens. UGT3A2 transcripts are found in the thymus, testis, and kidney but are barely detectable in the liver and gastrointestinal tract. The low expression of UGT3A2 in the latter, which are the main organs of drug metabolism, suggests that UGT3A2 has a more selective role in protecting the organs in which it is expressed against toxic insult rather than a more generalized role in drug metabolism. The broad substrate and novel UDP sugar specificity of UGT3A2 would be advantageous for such a function.
Collapse
Affiliation(s)
- Peter I MacKenzie
- Department of Clinical Pharmacology, Flinders Medical Centre, Bedford Park, SA, Australia.
| | | | | | | | | | | | | |
Collapse
|
6
|
Blanch M, Legaz ME, Vicente C. Purification and properties of an unusual UDP-glucose dehydrogenase, NADPH-dependent, from Xanthomonas albilineans. Microbiol Res 2006; 163:362-71. [PMID: 17010583 DOI: 10.1016/j.micres.2006.07.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2006] [Revised: 07/12/2006] [Accepted: 07/18/2006] [Indexed: 11/28/2022]
Abstract
Xanthomonas albilineans produces a UDP-glucose dehydrogenase growing on sucrose. The enzyme oxidizes UDP-glucose to UDP-glucuronic acid by using molecular oxygen and NADPH. Kinetics of enzymatic oxydation of NADPH is linearly dependent on the amount of oxygen supplied. The enzyme has been purified at homogeneity. The value of pI of the purified enzyme is 8.98 and its molecular mass has been estimated as about 14 kDa. The enzyme shows a michaelian kinetics for UDP-glucose concentrations. The value of K(m) for UDP-glucose is 0.87 mM and 0.26 mM for NADPH, although the enzyme has three different sites to interact with NADPH. The enzyme is inhibited by UDP-glucose concentrations higher than 1.3 mM. N-Terminal sequence has been determined as IQPYNH.
Collapse
Affiliation(s)
- María Blanch
- Laboratory of Plant Physiology, Faculty of Biology, Complutense University, Madrid, Spain
| | | | | |
Collapse
|
7
|
Oka T, Jigami Y. Reconstruction of de novo pathway for synthesis of UDP-glucuronic acid and UDP-xylose from intrinsic UDP-glucose in Saccharomyces cerevisiae. FEBS J 2006; 273:2645-57. [PMID: 16817893 DOI: 10.1111/j.1742-4658.2006.05281.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
UDP-D-glucuronic acid and UDP-D-xylose are required for the biosynthesis of glycosaminoglycan in mammals and of cell wall polysaccharides in plants. Given the importance of these glycans to some organisms, the development of a system for production of UDP-D-glucuronic acid and UDP-D-xylose from a common precursor could prove useful for a number of applications. The budding yeast Saccharomyces cerevisiae lacks an endogenous ability to synthesize or consume UDP-D-glucuronic acid and UDP-D-xylose. However, yeast have a large cytoplasmic pool of UDP-D-glucose that could be used to synthesize cell wall beta-glucan, as a precursor of UDP-D-glucuronic acid and UDP-D-xylose. Thus, if a mechanism for converting the precursors into the end-products can be identified, yeast may be harnessed as a system for production of glycans. Here we report a novel S. cerevisiae strain that coexpresses the Arabidopsis thaliana genes UGD1 and UXS3, which encode a UDP-glucose dehydrogenase (AtUGD1) and a UDP-glucuronic acid decarboxylase (AtUXS3), respectively, which are required for the conversion of UDP-D-glucose to UDP-D-xylose in plants. The recombinant yeast strain was capable of converting UDP-D-glucose to UDP-D-glucuronic acid, and UDP-D-glucuronic acid to UDP-D-xylose, in the cytoplasm, demonstrating the usefulness of this yeast system for the synthesis of glycans. Furthermore, we observed that overexpression of AtUGD1 caused a reduction in the UDP-D-glucose pool, whereas coexpression of AtUXS3 and AtUGD1 did not result in reduction of the UDP-D-glucose pool. Enzymatic analysis of the purified hexamer His-AtUGD1 revealed that AtUGD1 activity is strongly inhibited by UDP-D-xylose, suggesting that AtUGD1 maintains intracellular levels of UDP-D-glucose in cooperation with AtUXS3 via the inhibition of AtUGD1 by UDP-D-xylose.
Collapse
Affiliation(s)
- Takuji Oka
- Research Center for Glycoscience, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | | |
Collapse
|
8
|
Vigetti D, Ori M, Viola M, Genasetti A, Karousou E, Rizzi M, Pallotti F, Nardi I, Hascall VC, De Luca G, Passi A. Molecular cloning and characterization of UDP-glucose dehydrogenase from the amphibian Xenopus laevis and its involvement in hyaluronan synthesis. J Biol Chem 2006; 281:8254-63. [PMID: 16418163 DOI: 10.1074/jbc.m508516200] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
UDP-glucose dehydrogenase (UGDH) supplies the cell with UDP-glucuronic acid (UDP-GlcUA), a precursor of glycosaminoglycan and proteoglycan synthesis. Here we reported the cloning and the characterization of the UGDH from the amphibian Xenopus laevis that is one of the model organisms for developmental biology. We found that X. laevis UGDH (xUGDH) maintained a very high degree of similarity with other known UGDH sequences both at the genomic and the protein levels. Also its kinetic parameters are similar to those of UGDH from other species. During X. laevis development, UDGH is always expressed but clearly increases its mRNA levels at the tail bud stage (i.e. 30 h post-fertilization). This result fits well with our previous observation that hyaluronan, a glycosaminoglycan that is synthesized using UDP-GlcUA and UDP-N-acetylglucosamine, is abundantly detected at this developmental stage. The expression of UGDH was found to be related to hyaluronan synthesis. In human smooth muscle cells the overexpression of xUGDH or endogenous abrogation of UGDH modulated hyaluronan synthesis specifically. Our findings were confirmed by in vivo experiments where the silencing of xUGDH in X. laevis embryos decreased glycosaminoglycan synthesis causing severe embryonic malformations because of a defective gastrulation process.
Collapse
Affiliation(s)
- Davide Vigetti
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche, Università degli Studi dell'Insubria, via J. H. Dunant 5, 21100 Varese, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Huh JW, Yoon HY, Lee HJ, Choi WB, Yang SJ, Cho SW. Importance of Gly-13 for the coenzyme binding of human UDP-glucose dehydrogenase. J Biol Chem 2004; 279:37491-8. [PMID: 15247292 DOI: 10.1074/jbc.m404234200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
UDP-glucose dehydrogenase (UGDH) is the unique pathway enzyme furnishing in vertebrates UDP-glucuronate for numerous transferases. In this report, we have identified an NAD(+)-binding site within human UGDH by photoaffinity labeling with a specific probe, [(32)P]nicotinamide 2-azidoadenosine dinucleotide (2N(3) NAD(+)), and cassette mutagenesis. For this work, we have chemically synthesized a 1509-base pair gene encoding human UGDH and expressed it in Escherichia coli as a soluble protein. Photolabel-containing peptides were generated by photolysis followed by tryptic digestion and isolated using the phosphopeptide isolation kit. Photolabeling of these peptides was effectively prevented by the presence of NAD(+) during photolysis, demonstrating a selectivity of the photoprobe for the NAD(+)-binding site. Amino acid sequencing and compositional analysis identified the NAD(+)-binding site of UGDH as the region containing the sequence ICCIGAXYVGGPT, corresponding to Ile-7 through Thr-19 of the amino acid sequence of human UGDH. The unidentified residue, X, can be designated as a photolabeled Gly-13 because the sequences including the glycine residue in question have a complete identity with those of other UGDH species known. The importance of Gly-13 residue in the binding of NAD(+) was further examined with a G13E mutant by cassette mutagenesis. The mutagenesis at Gly-13 had no effects on the expression or stability of the mutant. Enzyme activity of the G13E point mutant was not measurable under normal assay conditions, suggesting an important role for the Gly-13 residue. No incorporation of [(32)P]2N(3)NAD(+) was observed for the G13E mutant. These results indicate that Gly-13 plays an important role for efficient binding of NAD(+) to human UGDH.
Collapse
Affiliation(s)
- Jae-Wan Huh
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 138-736, Korea
| | | | | | | | | | | |
Collapse
|
10
|
Roman E, Roberts I, Lidholt K, Kusche-Gullberg M. Overexpression of UDP-glucose dehydrogenase in Escherichia coli results in decreased biosynthesis of K5 polysaccharide. Biochem J 2003; 374:767-72. [PMID: 12775214 PMCID: PMC1223629 DOI: 10.1042/bj20030365] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2003] [Revised: 05/20/2003] [Accepted: 05/30/2003] [Indexed: 11/17/2022]
Abstract
The Escherichia coli K5 capsular polysaccharide (glycosaminoglycan) chains are composed of the repeated disaccharide structure: -GlcAbeta1,4-GlcNAcalpha1,4-(where GlcA is glucuronic acid and GlcNAc is N-acetyl-D-glucosamine). The GlcA, present in most glycosaminoglycans, is donated from UDP-GlcA, which, in turn, is generated from UDP-glucose by the enzyme UDP-glucose dehydrogenase (UDPGDH). The formation of UDP-GlcA is critical for the biosynthesis of glycosaminoglycans. To investigate the role of UDPGDH in glycosaminoglycan biosynthesis, we used K5 polysaccharide biosynthesis as a model. E. coli was transformed with the complete gene cluster for K5 polysaccharide production. Additional transformation with an extra copy of UDPGDH resulted in an approx. 15-fold increase in the in vitro UDPGDH enzyme activity compared with the strain lacking extra UDPGDH. UDP-GlcA levels were increased 3-fold in overexpressing strains. However, metabolic labelling with [14C]glucose showed, unexpectedly, that overexpression of UDPGDH lead to decreased formation of K5 polysaccharide. No significant difference in the K5 polysaccharide chain length was observed between control and overexpressing strains, indicating that the decrease in K5-polysaccharide production most probably was due to synthesis of fewer chains. Our results suggest that K5-polysaccharide biosynthesis is strictly regulated such that increasing the amount of available UDP-GlcA results in diminished K5-polysaccharide production.
Collapse
Affiliation(s)
- Elisabet Roman
- Department of Medical Biochemistry and Microbiology, University of Uppsala, BMC Box 582, SE-751 23 Uppsala, Sweden
| | | | | | | |
Collapse
|
11
|
Bontemps Y, Maquart FX, Wegrowski Y. Human UDP-glucose dehydrogenase gene: complete cloning and transcription start mapping. Biochem Biophys Res Commun 2000; 275:981-5. [PMID: 10973831 DOI: 10.1006/bbrc.2000.3389] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
UDP-glucose dehydrogenase (GDH) is an unique pathway enzyme, which furnishes in vertebrates the UDP-glucuronic acid for numerous transferases, including those of glycosaminoglycan synthesis and xenobiotics elimination. Using long and accurate PCR approach and searching the 5' cDNA-end sequences in public databases, we have cloned the human GDH gene. The gene contains 12 exons and spans over 26 kb. The first and eighth introns were not reported for mouse ortholog. Primer extension analysis identified the transcription start site 165 bases upstream from the translation initiation site. Most of the exons were interrupted on codon phase 0, confirming the conserved ancestral structure of the gene reported on the cDNA level.
Collapse
Affiliation(s)
- Y Bontemps
- Faculté de Médecine, Laboratoire de Biochimie, Reims cedex, 51095, France
| | | | | |
Collapse
|