1
|
Alexander PJ, Oyama LB, Olleik H, Godoy Santos F, O'Brien S, Cookson A, Cochrane SA, Gilmore BF, Maresca M, Huws SA. Microbiome-derived antimicrobial peptides show therapeutic activity against the critically important priority pathogen, Acinetobacter baumannii. NPJ Biofilms Microbiomes 2024; 10:92. [PMID: 39349945 PMCID: PMC11443000 DOI: 10.1038/s41522-024-00560-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 08/21/2024] [Indexed: 10/04/2024] Open
Abstract
Acinetobacter baumannii is designated by the World Health Organisation as a critical priority pathogen. Previously we discovered antimicrobial peptides (AMPs), namely Lynronne-1, -2 and -3, with efficacy against bacterial pathogens, such as Staphylococcus aureus and Pseudomonas aeruginosa. Here we assessed Lynronne-1, -2 and -3 structure by circular dichroism and efficacy against clinical strains of A. baumannii. All Lynronne AMPs demonstrated alpha-helical secondary structures and had antimicrobial activity towards all tested strains of A. baumannii (Minimum Inhibitory Concentrations 2-128 μg/ml), whilst also having anti-biofilm activity. Lynronne-2 and -3 demonstrated additive effects with amoxicillin and erythromycin, and synergy with gentamicin. The AMPs demonstrated little toxicity towards mammalian cell lines or Galleria mellonella. Fluorescence-based assay data demonstrated that Lynronne-1 and -3 had higher membrane-destabilising action against A. baumannii in comparison with Lynronne-2, which was corroborated by transcriptomic analysis. For the first time, we demonstrate the therapeutic activity of Lynronne AMPs against A. baumannii.
Collapse
Affiliation(s)
- P J Alexander
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - L B Oyama
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - H Olleik
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2 (UMR7313), Marseille, France
| | - F Godoy Santos
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - S O'Brien
- School of Pharmacy, QUB, Medical Biology Centre, Belfast, UK
| | - A Cookson
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - S A Cochrane
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast, UK
| | - B F Gilmore
- School of Pharmacy, QUB, Medical Biology Centre, Belfast, UK
| | - M Maresca
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2 (UMR7313), Marseille, France
| | - S A Huws
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, UK.
| |
Collapse
|
2
|
di Cologna NDM, Andresen S, Samaddar S, Archer-Hartmann S, Rogers AM, Kajfasz JK, Ganguly T, Garcia BA, Saengpet I, Peterson AM, Azadi P, Szymanski CM, Lemos JA, Abranches J. Post-translational modification by the Pgf glycosylation machinery modulates Streptococcus mutans OMZ175 physiology and virulence. Mol Microbiol 2024; 122:133-151. [PMID: 37972006 PMCID: PMC11096274 DOI: 10.1111/mmi.15190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/19/2023]
Abstract
Streptococcus mutans is commonly associated with dental caries and the ability to form biofilms is essential for its pathogenicity. We recently identified the Pgf glycosylation machinery of S. mutans, responsible for the post-translational modification of the surface-associated adhesins Cnm and WapA. Since the four-gene pgf operon (pgfS-pgfM1-pgfE-pgfM2) is part of the S. mutans core genome, we hypothesized that the scope of the Pgf system goes beyond Cnm and WapA glycosylation. In silico analyses and tunicamycin sensitivity assays suggested a functional overlap between the Pgf machinery and the rhamnose-glucose polysaccharide synthesis pathway. Phenotypic characterization of pgf mutants (ΔpgfS, ΔpgfE, ΔpgfM1, ΔpgfM2, and Δpgf) revealed that the Pgf system is important for biofilm formation, surface charge, membrane stability, and survival in human saliva. Moreover, deletion of the entire pgf operon (Δpgf strain) resulted in significantly impaired colonization in a rat oral colonization model. Using Cnm as a model, we showed that Cnm is heavily modified with N-acetyl hexosamines but it becomes heavily phosphorylated with the inactivation of the PgfS glycosyltransferase, suggesting a crosstalk between these two post-translational modification mechanisms. Our results revealed that the Pgf machinery contributes to multiple aspects of S. mutans pathobiology that may go beyond Cnm and WapA glycosylation.
Collapse
Affiliation(s)
| | - Silke Andresen
- Department of Microbiology, University of Georgia, Athens, GA, USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Sandip Samaddar
- Department of Oral Biology, University of Florida, College of Dentistry, Gainesville, FL, USA
| | | | - Ashley Marie Rogers
- Department of Microbiology, University of Georgia, Athens, GA, USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Jessica K. Kajfasz
- Department of Oral Biology, University of Florida, College of Dentistry, Gainesville, FL, USA
| | - Tridib Ganguly
- Department of Oral Biology, University of Florida, College of Dentistry, Gainesville, FL, USA
| | - Bruna A. Garcia
- Department of Oral Biology, University of Florida, College of Dentistry, Gainesville, FL, USA
| | - Irene Saengpet
- Department of Oral Biology, University of Florida, College of Dentistry, Gainesville, FL, USA
| | - Alexandra M. Peterson
- Department of Oral Biology, University of Florida, College of Dentistry, Gainesville, FL, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Christine M. Szymanski
- Department of Microbiology, University of Georgia, Athens, GA, USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - José A. Lemos
- Department of Oral Biology, University of Florida, College of Dentistry, Gainesville, FL, USA
| | - Jacqueline Abranches
- Department of Oral Biology, University of Florida, College of Dentistry, Gainesville, FL, USA
| |
Collapse
|
3
|
Lin T, Huang L, Cheng N, Wang Y, Ning Z, Huang S, Wu Y, Chen T, Su S, Lin Y. The in vitro and in vivo antibacterial activities of uniflorous honey from a medicinal plant, Scrophularia ningpoensis Hemsl., and characterization of its chemical profile with UPLC-MS/MS. JOURNAL OF ETHNOPHARMACOLOGY 2022; 296:115499. [PMID: 35752262 DOI: 10.1016/j.jep.2022.115499] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/10/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE According to the Compendium of Materia Medica, honey has been used as a traditional medicine in treatment against mucositis, tinea, hemorrhoids and psoriasis. In complementary medicine, due to its significant antimicrobial activity, honey has been widely used as a remedy for skin wounds and gastrohelcosis for thousands of years. AIM OF THE STUDY This study is aimed at exploring the antimicrobial activity and mechanisms of honey sourced from medicinal plants, and revealing the composition-activity relationship, to facilitate their complementary and alternative application in the therapy of bacterial infectious diseases. MATERIALS AND METHODS Eight kinds of medicinal plant-derived uniflorous honey, native to China, were gathered. Their antimicrobial activities were evaluated in vitro, and then in vivo with the systemically infected mouse model and the acute skin infection model. SYTOX uptake assay, scanning electron microscopy, DNA binding assay, and quantitative real-time PCR, were carried out to elucidate the antibacterial mechanisms. This was followed by an investigation of the componential profile with the UPLC-MS/MS technique. RESULTS It was found that Scrophularia ningpoensis Hemsl. (figwort) honey (S. ningpoensis honey) exhibited broad-spectrum and the strongest antibacterial potency (MICs of 7.81-125.00%, w/v), comparable to manuka honey. In the in vivo assays, S. ningpoensis honey significantly decreased the bacterial load of the muscles under the acute MRSA-infected skin wounds; the sera level of TNF-α in the S. aureus and P. aeruginosa-infected mice decreased by 45.38% and 51.75%, respectively, after the treatment of S. ningpoensis honey (125 mg/10 g). It was capable of killing bacteria through disrupting the cell membranes and the genomic DNA, as well as down-regulating the expression of genes associated with virulence, biofilm formation and invasion, including icaA, icaD, eno, sarA, agrA, sigB, fib and ebps in S. aureus, and lasI, lasR, rhlI, rhlR and algC in P. aeruginosa. Apart from H2O2, some other nonperoxide compounds such as adenosine, chavicol, 4-methylcatechol, trehalose, palmitoleic acid and salidroside, might play a vital role in the antibacterial properties of S. ningpoensis honey. CONCLUSIONS This is the first study to thoroughly investigate the antibacterial activity, mode of action, and componential profile of S. ningpoensis honey. It suggested that S. ningpoensis honey might be a potential supplement or substitute for manuka honey, for the prevention or treatment of bacterial infections. It will facilitate the precise application of medicinal plant-sourced honey, provide a new thread for the development of antibacterial drugs, and assist in the distinction of different kinds of honey.
Collapse
Affiliation(s)
- Tianxing Lin
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China; College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lei Huang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ningna Cheng
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuzhen Wang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhen Ning
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shaokang Huang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuanhua Wu
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Tianbao Chen
- Natural Drug Discovery Group, School of Pharmacy, Queen's University, Belfast BT9 7BL, Northern Ireland, UK
| | - Songkun Su
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Yan Lin
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China; College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
4
|
Andresen S, Fantone K, Chapla D, Rada B, Moremen KW, Pierce M, Szymanski CM. Human Intelectin-1 Promotes Cellular Attachment and Neutrophil Killing of Streptococcus pneumoniae in a Serotype-Dependent Manner. Infect Immun 2022; 90:e0068221. [PMID: 35499339 PMCID: PMC9119095 DOI: 10.1128/iai.00682-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 04/10/2022] [Indexed: 11/20/2022] Open
Abstract
Human intelectin-1 (hIntL-1) is a secreted glycoprotein capable of binding exocyclic 1,2-diols within surface glycans of human pathogens such as Streptococcus pneumoniae, Vibrio cholerae, and Helicobacter pylori. For the latter, lectin binding was shown to cause bacterial agglutination and increased phagocytosis, suggesting a role for hIntL-1 in pathogen surveillance. In this study, we investigated the interactions between hIntL-1 and S. pneumoniae, the leading cause of bacterial pneumonia. We show that hIntL-1 also agglutinates S. pneumoniae serotype 43, which displays an exocyclic 1,2-diol moiety in its capsular polysaccharide but is unable to kill in a complement-dependent manner or to promote bacterial killing by peripheral blood mononuclear cells. In contrast, hIntL-1 not only significantly increases serotype-specific S. pneumoniae killing by neutrophils but also enhances the attachment of these bacteria to A549 lung epithelial cells. Taken together, our results suggest that hIntL-1 participates in host surveillance through microbe sequestration and enhanced targeting to neutrophils.
Collapse
Affiliation(s)
- Silke Andresen
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Kayla Fantone
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA
| | - Digantkumar Chapla
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Balázs Rada
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA
| | - Kelley W. Moremen
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Michael Pierce
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Christine M. Szymanski
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| |
Collapse
|