1
|
Suzuki S, Mashiko T, Tsukamoto Y, Oya M, Kotani Y, Okawara S, Matsumoto T, Mizue Y, Takeuchi H, Okajima T, Itoh M. The N-acetylglucosaminyltransferase Radical fringe contributes to defects in JAG1-dependent turnover and signaling of NOTCH3 CADASIL mutants. J Biol Chem 2024; 300:107787. [PMID: 39303912 PMCID: PMC11525139 DOI: 10.1016/j.jbc.2024.107787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/30/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024] Open
Abstract
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a genetic vascular dementia characterized by age-related degeneration of vascular mural cells and accumulation of a NOTCH3 mutant protein. NOTCH3 functions as a signaling receptor, activating downstream gene expression in response to ligands like JAG1 and DLL4, which regulate the development and survival of mural cells. This signal transduction process is thought to be connected with NOTCH3 endocytic degradation. However, the specific cellular circumstances that modulate turnover and signaling efficacy of NOTCH3 mutant protein remain largely unknown. Here, we found elevated NOTCH3 and Radical fringe (RFNG) expression in senescent human pericyte cells. We then investigated impacts of RFNG on glycosylation, degradation, and signal activity of three NOTCH3 CADASIL mutants (R90C, R141C, and C185R) in EGF-like repeat-2, 3, and 4, respectively. Liquid chromatography with tandem mass spectrometry analysis showed that RFNG modified NOTCH3 WT and C185R to different degrees. Additionally, coculture experiments demonstrated that RFNG significantly promoted JAG1-dependent degradation of NOTCH3 WT but not that of R141C and C185R mutants. Furthermore, RFNG exhibited a greater inhibitory effect on JAG1-mediated activity of NOTCH3 R141C and C185R compared to that of NOTCH3 WT and R90C. In summary, our findings suggest that NOTCH3 R141C and C185R mutant proteins are relatively susceptible to accumulation and signaling impairment under cellular conditions of RFNG and JAG1 coexistence.
Collapse
Affiliation(s)
- Shodai Suzuki
- Department of Biochemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Chiba, Japan
| | - Taiki Mashiko
- Department of Biochemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Chiba, Japan
| | - Yohei Tsukamoto
- Department of Molecular Biochemistry, Graduate School of Medicine, Nagoya University, Nagoya, Aichi, Japan
| | - Miyu Oya
- Department of Biochemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Chiba, Japan
| | - Yuki Kotani
- Department of Biochemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Chiba, Japan
| | - Saki Okawara
- Department of Biochemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Chiba, Japan
| | - Takemi Matsumoto
- Department of Biochemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Chiba, Japan
| | - Yuki Mizue
- Department of Biochemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Chiba, Japan
| | - Hideyuki Takeuchi
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Shizuoka, Japan
| | - Tetsuya Okajima
- Department of Molecular Biochemistry, Graduate School of Medicine, Nagoya University, Nagoya, Aichi, Japan; Institute for Glyco-core Research (iGCORE), Graduate School of Medicine, Nagoya University, Nagoya, Aichi, Japan
| | - Motoyuki Itoh
- Department of Biochemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Chiba, Japan; Research Institute of Disaster Medicine, Chiba University, Chiba, Chiba, Japan; Health and Disease Omics Center, Chiba University, Chiba, Chiba, Japan.
| |
Collapse
|
2
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2021-2022. MASS SPECTROMETRY REVIEWS 2024. [PMID: 38925550 DOI: 10.1002/mas.21873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/05/2024] [Accepted: 02/12/2024] [Indexed: 06/28/2024]
Abstract
The use of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry for the analysis of carbohydrates and glycoconjugates is a well-established technique and this review is the 12th update of the original article published in 1999 and brings coverage of the literature to the end of 2022. As with previous review, this review also includes a few papers that describe methods appropriate to analysis by MALDI, such as sample preparation, even though the ionization method is not MALDI. The review follows the same format as previous reviews. It is divided into three sections: (1) general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, quantification and the use of computer software for structural identification. (2) Applications to various structural types such as oligo- and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals, and (3) other general areas such as medicine, industrial processes, natural products and glycan synthesis where MALDI is extensively used. Much of the material relating to applications is presented in tabular form. MALDI is still an ideal technique for carbohydrate analysis, particularly in its ability to produce single ions from each analyte and advancements in the technique and range of applications show little sign of diminishing.
Collapse
|
3
|
Tsukamoto Y, Tsukamoto N, Saiki W, Tashima Y, Furukawa JI, Kizuka Y, Narimatsu Y, Clausen H, Takeuchi H, Okajima T. Characterization of galactosyltransferase and sialyltransferase genes mediating the elongation of the extracellular O-GlcNAc glycans. Biochem Biophys Res Commun 2024; 703:149610. [PMID: 38359610 DOI: 10.1016/j.bbrc.2024.149610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 01/17/2024] [Accepted: 01/29/2024] [Indexed: 02/17/2024]
Abstract
O-GlcNAc is a unique post-translational modification found in cytoplasmic, nuclear, and mitochondrial proteins. In a limited number of extracellular proteins, O-GlcNAc modifications occur through the action of EOGT, which specifically modifies subsets of epidermal growth factor-like (EGF) domain-containing proteins such as Notch receptors. The abnormalities due to EOGT mutations in mice and humans and the increased EOGT expression in several cancers signify the importance of EOGT pathophysiology and extracellular O-GlcNAc. Unlike intracellular O-GlcNAc monosaccharides, extracellular O-GlcNAc extends to form elongated glycan structures. However, the enzymes involved in the O-GlcNAc glycan extension have not yet been reported. In our study, we comprehensively screened potential galactosyltransferase and sialyltransferase genes related to the canonical O-GlcNAc glycan pathway and revealed the essential roles of B4GALT1 and ST3GAL4 in O-GlcNAc glycan elongation in human HEK293 cells. These findings were confirmed by sequential glycosylation of Drosophila EGF20 in vitro by EOGT, β4GalT-1, and ST3Gal-IV. Thus, the findings from our study throw light on the specific glycosyltransferases that mediate O-GlcNAc glycan elongation in human HEK293 cells.
Collapse
Affiliation(s)
- Yohei Tsukamoto
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Natsumi Tsukamoto
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Wataru Saiki
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuko Tashima
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan; Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Japan
| | - Jun-Ichi Furukawa
- Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Japan
| | - Yasuhiko Kizuka
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan
| | - Yoshiki Narimatsu
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Clausen
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark
| | - Hideyuki Takeuchi
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan; Department of Biochemistry, University of Shizuoka School of Pharmaceutical Sciences, Shizuoka, Japan.
| | - Tetsuya Okajima
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan; Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Japan.
| |
Collapse
|
4
|
Kondo Y, Li Y, Okajima T. Efficient Escorting Strategy for Aggregation-Prone Notch EGF Repeats with Sparcl1. Molecules 2024; 29:1031. [PMID: 38474544 DOI: 10.3390/molecules29051031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Epidermal growth factor (EGF) repeats are present in various proteins and form well-defined structures with three disulfide bonds. One representative protein is the Notch receptor. Each EGF repeat contains unique atypical O-linked glycans, such as O-linked N-acetylglucosamine (O-GlcNAc). To generate a monoclonal antibody against the O-GlcNAc moiety in mouse Notch1, we expressed the recombinant C-terminal His6-tagged Notch1 EGF14-15 protein in HEK293T cells to prepare the immunogen. Most of the proteins were not secreted and showed higher molecular weight ladders in the cell lysate, suggesting protein aggregation. To overcome this issue, we fused Sparcl1 as an extracellular escorting tag to the N-terminus of Notch1 EGF14-15. The fusion protein was efficiently secreted extracellularly without protein aggregates in the lysates. Following PreScission protease treatment, Notch1 EGF14-15 was efficiently released from the escorting tag. Notch1 EGF14-15 prepared using this method was indeed O-GlcNAcylated. The optimal length of the escorting tag was determined by generating deletion mutants to improve the extracellular secretion of EGF14-15. Hence, a large amount of EGF14-15 was successfully prepared from the culture supernatant of HEK293T cells, which were otherwise prone to aggregation.
Collapse
Affiliation(s)
- Yuji Kondo
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
- Institute for Glyco-core Research (iGCORE), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Yuxin Li
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Tetsuya Okajima
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
- Institute for Glyco-core Research (iGCORE), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| |
Collapse
|
5
|
Chen J, Zeng X, Zhang W, Li G, Zhong H, Xu C, Li X, Lin T. Fucosyltransferase 9 promotes neuronal differentiation and functional recovery after spinal cord injury by suppressing the activation of Notch signaling. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1571-1581. [PMID: 37674364 PMCID: PMC10577474 DOI: 10.3724/abbs.2023138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/14/2023] [Indexed: 09/08/2023] Open
Abstract
Individuals with spinal cord injury (SCI) suffer from permanent disabilities such as severe motor, sensory and autonomic dysfunction. Neural stem cell transplantation has proven to be a potential strategy to promote regeneration of the spinal cord, since NSCs can produce neurotrophic growth factors and differentiate into mature neurons to reconstruct the injured site. However, it is necessary to optimize the differentiation of NSCs before transplantation to achieve a better regenerative outcome. Inhibition of Notch signaling leads to a transition from NSCs to neurons, while the underlying mechanism remains inadequately understood. Our results demonstrate that overexpression of fucosyltransferase 9 (Fut9), which is upregulated by Wnt4, promotes neuronal differentiation by suppressing the activation of Notch signaling through disruption of furin-like enzyme activity during S1 cleavage. In an in vivo study, Fut9-modified NSCs efficiently differentiates into neurons to promote functional and histological recovery after SCI. Our research provides insight into the mechanisms of Notch signaling and a potential treatment strategy for SCI.
Collapse
Affiliation(s)
- Jiewen Chen
- Department of Spine SurgeryThe First Affiliated HospitalSun Yat-sen UniversityGuangzhou510080China
| | - Xiaolin Zeng
- Department of Spine SurgeryThe First Affiliated HospitalSun Yat-sen UniversityGuangzhou510080China
| | - Wenwu Zhang
- Department of Spine SurgeryThe First Affiliated HospitalSun Yat-sen UniversityGuangzhou510080China
| | - Gang Li
- Department of Spine SurgeryThe First Affiliated HospitalSun Yat-sen UniversityGuangzhou510080China
| | - Haoming Zhong
- Department of Orthopedics and TraumatologyZhujiang HospitalSouthern Medical UniversityGuangzhou510280China
| | - Chengzhong Xu
- Department of Orthopedics and TraumatologyZhujiang HospitalSouthern Medical UniversityGuangzhou510280China
| | - Xiang Li
- Department of Spine SurgeryThe First Affiliated HospitalSun Yat-sen UniversityGuangzhou510080China
| | - Tao Lin
- Department of Orthopedics and TraumatologyZhujiang HospitalSouthern Medical UniversityGuangzhou510280China
| |
Collapse
|
6
|
Nauman M, Varshney S, Choi J, Augenlicht LH, Stanley P. EOGT enables residual Notch signaling in mouse intestinal cells lacking POFUT1. Sci Rep 2023; 13:17473. [PMID: 37838775 PMCID: PMC10576774 DOI: 10.1038/s41598-023-44509-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 10/09/2023] [Indexed: 10/16/2023] Open
Abstract
Notch signaling determines cell fates in mouse intestine. Notch receptors contain multiple epidermal growth factor-like (EGF) repeats modified by O-glycans that regulate Notch signaling. Conditional deletion of protein O-fucosyltransferase 1 (Pofut1) substantially reduces Notch signaling and markedly perturbs lineage development in mouse intestine. However, mice with inactivated Pofut1 are viable, whereas complete elimination of Notch signaling in intestine is lethal. Here we investigate whether residual Notch signaling enabled by EGF-domain-specific O-linked N-acetylglucosamine transferase (Eogt) permits mice conditionally lacking Pofut1 in intestine to survive. Mice globally lacking Eogt alone were grossly unaffected in intestinal development. In contrast, mice lacking both Eogt and Pofut1 died at ~ 28 days after birth with greater loss of body weight, a greater increase in the number of goblet and Paneth cells, and greater downregulation of the Notch target gene Hes1, compared to Pofut1 deletion alone. These data reveal that both O-fucose and O-GlcNAc glycans are fundamental to Notch signaling in the intestine and provide new insights into roles for O-glycans in regulating Notch ligand binding. Finally, EOGT and O-GlcNAc glycans provide residual Notch signaling and support viability in mice lacking Pofut1 in the intestine.
Collapse
Affiliation(s)
- Mohd Nauman
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave., New York, NY, 10641, USA
| | - Shweta Varshney
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave., New York, NY, 10641, USA
- Dudnyk, 5 Walnut Grove Drive, Suite 300, Horsham, PA, 19044, USA
| | - Jiahn Choi
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave., New York, NY, 10641, USA
| | - Leonard H Augenlicht
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave., New York, NY, 10641, USA
| | - Pamela Stanley
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave., New York, NY, 10641, USA.
| |
Collapse
|
7
|
Stanley P, Tanwar A. Regulation of myeloid and lymphoid cell development by O-glycans on Notch. Front Mol Biosci 2022; 9:979724. [PMID: 36406268 PMCID: PMC9672378 DOI: 10.3389/fmolb.2022.979724] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/13/2022] [Indexed: 10/06/2023] Open
Abstract
Notch signaling via NOTCH1 stimulated by Delta-like ligand 4 (DLL4) is required for the development of T cells in thymus, and NOTCH2 stimulated by Notch ligand DLL1 is required for the development of marginal zone (MZ) B cells in spleen. Notch signaling also regulates myeloid cell production in bone marrow and is an essential contributor to the generation of early hematopoietic stem cells (HSC). The differentiation program in each of these cellular contexts is optimized by the regulation of Notch signaling strength by O-glycans attached to epidermal growth factor-like (EGF) repeats in the extracellular domain of Notch receptors. There are three major types of O-glycan on NOTCH1 and NOTCH2 - O-fucose, O-glucose and O-GlcNAc. The initiating sugar of each O-glycan is added in the endoplasmic reticulum (ER) by glycosyltransferases POFUT1 (fucose), POGLUT1/2/3 (glucose) or EOGT (GlcNAc), respectively. Additional sugars are added in the Golgi compartment during passage through the secretory pathway to the plasma membrane. Of particular significance for Notch signaling is the addition of GlcNAc to O-fucose on an EGF repeat by the Fringe GlcNAc-transferases LFNG, MFNG or RFNG. Canonical Notch ligands (DLL1, DLL4, JAG1, JAG2) expressed in stromal cells bind to the extracellular domain of Notch receptors expressed in hematopoietic stem cells and myeloid and lymphoid progenitors to activate Notch signaling. Ligand-receptor binding is differentially regulated by the O-glycans on Notch. This review will summarize our understanding of the regulation of Notch signaling in myeloid and lymphoid cell development by specific O-glycans in mice with dysregulated expression of a particular glycosyltransferase and discuss how this may impact immune system development and malignancy in general, and in individuals with a congenital defect in the synthesis of the O-glycans attached to EGF repeats.
Collapse
Affiliation(s)
- Pamela Stanley
- Department of Cell Biology, Albert Einstein College Medicine, New York, NY, United States
| | | |
Collapse
|
8
|
Zhang A, Tsukamoto Y, Takeuchi H, Nishiwaki K, Tashima Y, Okajima T. Secretory expression of mammalian NOTCH tandem epidermal growth factor-like repeats based on increased O-glycosylation. Anal Biochem 2022; 656:114881. [PMID: 36067866 DOI: 10.1016/j.ab.2022.114881] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/17/2022] [Accepted: 08/24/2022] [Indexed: 11/01/2022]
Abstract
The Notch pathway represents evolutionarily conserved intercellular signaling essential for cell-to-cell communication during development. Dysregulation of Notch signaling has been implicated in various diseases, and its control represents a potential cancer treatment strategy. Notch signaling is initiated by the interaction of NOTCH receptors with their ligands on neighboring cells. Therefore, the truncated NOTCH ectodomain, composed mainly of tandem repeats of epidermal growth factor-like (EGF) domains, serves as a decoy molecule that competes for ligand binding and thus inhibits ligand-dependent Notch signaling. Although full-length NOTCH EGF repeats exhibited potent Notch inhibitory activity, they were poorly produced in the transfected cells. This study evaluated the effect of EGF domain-modifying glycosyltransferases on the secretion of NOTCH EGF repeats. Our results in HEK293T cells revealed that, unlike the effect on endogenous NOTCH receptors, overexpressed EGF domain-specific O-GlcNAc transferase (EOGT) markedly enhanced the secretion of NOTCH1 EGF repeats in an enzyme activity-dependent manner. The co-expression of protein O-glucosyltransferase 1 further manifested the effect of EOGT. The resultant changes in O-glycosylation of NOTCH3 were evaluated by label-free glycopeptide quantification. This study provides an experimental strategy to efficiently generate NOTCH EGF repeats by manipulating the expression of glycosyltransferases that alter the O-glycosylation of EGF domains.
Collapse
Affiliation(s)
- Ailing Zhang
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan; Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Japan; Department of Anesthesiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yohei Tsukamoto
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hideyuki Takeuchi
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan; Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Japan; Department of Biochemistry, University of Shizuoka School of Pharmaceutical Sciences, Shizuoka, Japan
| | - Kimitoshi Nishiwaki
- Department of Anesthesiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuko Tashima
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan; Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Japan
| | - Tetsuya Okajima
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan; Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Japan.
| |
Collapse
|