1
|
Cid E, Yamamoto M, Barrero L, Yamamoto F. The stem region of group A transferase is crucial for its specificity, and its alteration promotes heterologous Forssman synthase activity. Sci Rep 2023; 13:13996. [PMID: 37634031 PMCID: PMC10460411 DOI: 10.1038/s41598-023-40900-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 08/17/2023] [Indexed: 08/28/2023] Open
Abstract
Some stem region mutants of human blood group A transferase (hAT) possess Forssman synthase (FS) activity, but very little is known about the mechanisms responsible for this enzymatic crosstalk. We performed confocal microscopy and image analysis to determine whether different intra-Golgi localization was accountable for this acquired activity. We also performed structural modeling and mutational and normal mode analyses. We introduced new mutations in the stem region and tested its FS and AT activities. No differences in subcellular localization were found between hAT and FS-positive mutants. AlphaFold models of hAT and mFS (mouse Forssman synthase) showed that the hAT stem region has a tether-like stem region, while in mFS, it encircles its catalytic domain. In silico analysis of FS-positive mutants indicated that stem region mutations induced structural changes, decreasing interatomic interactions and mobility of hAT that correlated with FS activity. Several additional mutations introduced in that region also bestowed FS activity without altering the AT activity: hAT 37-55 aa substitution by mFS 34-52, 37-55 aa deletion, and missense mutations: S46P, Q278Y, and Q286M. Stem region structure, mobility, and interactions are crucial for hAT specificity. Moreover, stem region mutations can lead to heterologous Forssman activity without changes in the catalytic machinery.
Collapse
Affiliation(s)
- Emili Cid
- Laboratory of Immunohematology and Glycobiology, Josep Carreras Leukaemia Research Institute, Ctra. de Can Ruti, Cami de Les Escoles S/N, 08916, Badalona, Spain.
| | - Miyako Yamamoto
- Laboratory of Immunohematology and Glycobiology, Josep Carreras Leukaemia Research Institute, Ctra. de Can Ruti, Cami de Les Escoles S/N, 08916, Badalona, Spain
| | - Laura Barrero
- Laboratory of Immunohematology and Glycobiology, Josep Carreras Leukaemia Research Institute, Ctra. de Can Ruti, Cami de Les Escoles S/N, 08916, Badalona, Spain
| | - Fumiichiro Yamamoto
- Laboratory of Immunohematology and Glycobiology, Josep Carreras Leukaemia Research Institute, Ctra. de Can Ruti, Cami de Les Escoles S/N, 08916, Badalona, Spain
| |
Collapse
|
2
|
Jan K, Ahmed I, Dar NA, Farah MA, Khan FR, Shah BA, Fazio F. LC-MS/MS based characterisation and differential expression of proteins in Himalayan snow trout, Schizothorax labiatus using LFQ technique. Sci Rep 2023; 13:10134. [PMID: 37349327 PMCID: PMC10287682 DOI: 10.1038/s41598-023-35646-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/22/2023] [Indexed: 06/24/2023] Open
Abstract
Molecular characterization of fish muscle proteins are nowadays considered as a key component to understand the role of specific proteins involved in various physiological and metabolic processes including their up and down regulation in the organisms. Coldwater fish specimens including snow trouts hold different types of proteins which help them to survive in highly diversified temperatures fluctuating from 0 to 20 °C. So, in current study, the liquid chromatography mass spectrometry using label free quantification technique has been used to investigate the muscle proteome profile of Schizothorax labiatus. For proteomic study, two weight groups of S. labiatus were taken from river Sindh. The proteomic analysis of group 1 revealed that a total of 235 proteins in male and 238 in female fish were recorded. However, when male and female S. labiatus were compared with each other on the basis of spectral count and abundance of peptides by ProteinLynx Global Server software, a total of 14 down-regulated and 22 up-regulated proteins were noted in this group. The highly down-regulated ones included homeodomain protein HoxA2b, retinol-binding protein 4, MHC class II beta chain and proopiomelanocortin while as the highly expressed up-regulated proteins comprised of gonadotropin I beta subunit, NADH dehydrogenase subunit 4, manganese superoxide dismutase, recombinase-activating protein 2, glycosyltransferase, chymotrypsin and cytochrome b. On the other hand, the proteomic characterisation of group 2 of S. labiatus revealed that a total of 227 proteins in male and 194 in female fish were recorded. When male and female S. labiatus were compared with each other by label free quantification, a total of 20 down-regulated and 18 up-regulated proteins were recorded. The down-regulated protein expression of group 2 comprised hepatic lipase, allograft inflammatory factor-1, NADH dehydrogenase subunit 4 and myostatin 1 while the highly expressed up-regulated proteins included glycogen synthase kinase-3 beta variant 2, glycogen synthase kinase-3 beta variant 5, cholecystokinin, glycogen synthase kinase-3 beta variant 3 and cytochrome b. Significant (P < 0.05) difference in the expression of down-regulated and up-regulated proteins was also noted between the two sexes of S. labiatus in each group. According to MS analysis, the proteins primarily concerned with the growth, skeletal muscle development and metabolism were down-regulated in river Sindh, which indicates that growth of fish during the season of collection i.e., winter was slow owing to less food availability, gonad development and low metabolic activity. While, the proteins related to immune response of fish were also noted to be down-regulated thereby signifying that the ecosystem has less pollution loads, microbial, pathogenic and anthropogenic activities. It was also found that the proteins involved in glycogen metabolism, reproductive and metabolic processes, particularly lipid metabolism were up-regulated in S. labiatus. The significant expression of these proteins may be connected to pre-spawning, gonad development and use of stored food as source of energy. The information generated in this study can be applied to future research aimed at enhancing food traceability, food safety, risk management and authenticity analysis.
Collapse
Affiliation(s)
- Kousar Jan
- Fish Nutrition Research Laboratory, Department of Zoology, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir, 190 006, India
| | - Imtiaz Ahmed
- Fish Nutrition Research Laboratory, Department of Zoology, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir, 190 006, India.
| | - Nazir Ahmad Dar
- Department of Biochemistry, University of Kashmir, Hazratbal, Srinagar, 190006, India
| | - Mohammad Abul Farah
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Fatin Raza Khan
- Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, India
| | - Basit Amin Shah
- Department of Biotechnology, University of Kashmir, Hazratbal, Srinagar, 190006, India
| | - Francesco Fazio
- Department of Veterinary Sciences, Polo Universitario Annunziata, University of Messina, 98168, Messina, Italy
| |
Collapse
|
3
|
Do Blood Group Antigens and the Red Cell Membrane Influence Human Immunodeficiency Virus Infection? Cells 2020; 9:cells9040845. [PMID: 32244465 PMCID: PMC7226767 DOI: 10.3390/cells9040845] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 03/15/2020] [Accepted: 03/26/2020] [Indexed: 12/18/2022] Open
Abstract
The expression of blood group antigens varies across human populations and geographical regions due to natural selection and the influence of environment factors and disease. The red cell membrane is host to numerous surface antigens which are able to influence susceptibility to disease, by acting as receptors for pathogens, or by influencing the immune response. Investigations have shown that Human Immunodeficiency Virus (HIV) can bind and gain entry into erythrocytes, and therefore it is hypothesized that blood groups could play a role in this process. The ABO blood group has been well studied. However, its role in HIV susceptibility remains controversial, while other blood group antigens, and the secretor status of individuals, have been implicated. The Duffy antigen is a chemokine receptor that is important in the inflammatory response. Those who lack this antigen, and type as Duffy null, could therefore be susceptible to HIV infection, especially if associated with neutropenia. Other antigens including those in the Rh, Lutheran and OK blood group systems have all been shown to interact with HIV. More recently, experiments show that cells which overexpress the Pk antigen appear to be protected against infection. These reports all demonstrate that red cell antigens interact and influence HIV infection. However, as the red cell membrane is complex and the pathogenesis of HIV multi-factorial, the role of blood group antigens cannot be studied in isolation.
Collapse
|
4
|
Suzuki N. Glycan diversity in the course of vertebrate evolution. Glycobiology 2020; 29:625-644. [PMID: 31287538 DOI: 10.1093/glycob/cwz038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/29/2019] [Accepted: 05/15/2019] [Indexed: 11/12/2022] Open
Abstract
Vertebrates are estimated to have arisen over 500 million years ago in the Cambrian Period. Species that survived the Big Five extinction events at a global scale underwent repeated adaptive radiations along with habitat expansions from the sea to the land and sky. The development of the endoskeleton and neural tube enabled more complex body shapes. At the same time, vertebrates became suitable for the invasion and proliferation of foreign organisms. Adaptive immune systems were acquired for responses to a wide variety of pathogens, and more sophisticated systems developed during the evolution of mammals and birds. Vertebrate glycans consist of common core structures and various elongated structures, such as Neu5Gc, Galα1-3Gal, Galα1-4Gal, and Galβ1-4Gal epitopes, depending on the species. During species diversification, complex glycan structures were generated, maintained or lost. Whole-genome sequencing has revealed that vertebrates harbor numerous and even redundant glycosyltransferase genes. The production of various glycan structures is controlled at the genetic level in a species-specific manner. Because cell surface glycans are often targets of bacterial and viral infections, glycan structural diversity is presumed to be protective against infections. However, the maintenance of apparently redundant glycosyltransferase genes and investment in species-specific glycan structures, even in higher vertebrates with highly developed immune systems, are not well explained. This fact suggests that glycans play important roles in unknown biological processes.
Collapse
Affiliation(s)
- Noriko Suzuki
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
| |
Collapse
|
5
|
Le Pendu J, Ruvoën-Clouet N. Fondness for sugars of enteric viruses confronts them with human glycans genetic diversity. Hum Genet 2019; 139:903-910. [PMID: 31760489 DOI: 10.1007/s00439-019-02090-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/18/2019] [Indexed: 02/08/2023]
|
6
|
Hult AK, McSherry E, Möller M, Olsson ML. GBGT1 is allelically diverse but dispensable in humans and naturally occurring anti-FORS1 shows an ABO-restricted pattern. Transfusion 2019; 58:2036-2045. [PMID: 30277576 DOI: 10.1111/trf.14813] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 04/17/2018] [Accepted: 05/01/2018] [Indexed: 12/27/2022]
Abstract
BACKGROUND The FORS histo-blood group system was described in 2013 and much remains to be investigated regarding its genetic and immunohematologic characteristics, as well as its clinical importance. While presence of the c.887G>A-mutated GBGT1 gene, which results in FORS1 glycosphingolipid expression on human red blood cells (RBCs), is rare in the populations tested so far, naturally occurring anti-FORS1 in plasma appears common. STUDY DESIGN AND METHODS The Erythrogene database was utilized to probe genetic variation in GBGT1 among 2504 individuals in the 1000 Genomes Project. We screened 1108 Swedish blood donors for three principally important single-nucleotide polymorphisms (c.363C>A, c.886C>T, and c.887G>A) and selected samples were analyzed further. Screening for naturally occurring anti-FORS1 in plasma from 100 donors was performed using antigen-positive RBCs. RESULTS We identified 68 GBGT1 alleles, of which three were previously listed blood group alleles. Eight potential null alleles were observed, based on three different nonsense mutations. Four healthy donors were found homozygous for c.363C>A, which truncates the GBGT1-encoded Fs synthase prematurely. This is the first description of human knock-outs for GBGT1. The c.886C>T mutation that alters the same codon (p.Arg296Trp) changed by c.887G>A (p.Arg296Gln) was overexpressed to investigate if it induces the FORS1+ phenotype. However, c.886C>T did not result in synthesis of FORS1. We detected anti-FORS1 in 10% of all donors tested but none in the A1 or A1B groups. CONCLUSION We have extended the knowledge of GBGT1 variants, allele frequencies, and the characteristics of naturally occurring antibodies in our newest carbohydrate blood group system, FORS. The finding of c.363C>A-homozygous donors indicates that GBGT1 is dispensable.
Collapse
Affiliation(s)
- Annika K Hult
- Clinical Immunology and Transfusion Medicine, Division of Laboratory Medicine, Office of Medical Services.,Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Eoin McSherry
- Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Mattias Möller
- Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Martin L Olsson
- Clinical Immunology and Transfusion Medicine, Division of Laboratory Medicine, Office of Medical Services.,Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| |
Collapse
|
7
|
Cid E, Yamamoto M, Yamamoto F. Amino acid substitutions at sugar-recognizing codons confer ABO blood group system-related α1,3 Gal(NAc) transferases with differential enzymatic activity. Sci Rep 2019; 9:846. [PMID: 30696937 PMCID: PMC6351642 DOI: 10.1038/s41598-018-37515-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/30/2018] [Indexed: 11/13/2022] Open
Abstract
Functional paralogous ABO, GBGT1, A3GALT2, and GGTA1 genes encode blood group A and B transferases (AT and BT), Forssman glycolipid synthase (FS), isoglobotriaosylceramide synthase (iGb3S), and α1,3-galactosyltransferase (GT), respectively. These glycosyltransferases transfer N-acetyl-d-galactosamine (GalNAc) or d-galactose forming an α1,3-glycosidic linkage. However, their acceptor substrates are diverse. Previously, we demonstrated that the amino acids at codons 266 and 268 of human AT/BT are crucial to their distinct sugar specificities, elucidating the molecular genetic basis of the ABO glycosylation polymorphism of clinical importance in transfusion and transplantation medicine. We also prepared in vitro mutagenized ATs/BTs having any of 20 possible amino acids at those codons, and showed that those codons determine the transferase activity and sugar specificity. We have expanded structural analysis to include evolutionarily related α1,3-Gal(NAc) transferases. Eukaryotic expression constructs were prepared of AT, FS, iGb3S, and GT, possessing selected tripeptides of AT-specific AlaGlyGly or LeuGlyGly, BT-specific MetGlyAla, FS-specific GlyGlyAla, or iGb3S and GT-specific HisAlaAla, at the codons corresponding to 266–268 of human AT/BT. DNA transfection was performed using appropriate recipient cells existing and newly created, and the appearance of cell surface oligosaccharide antigens was immunologically examined. The results have shown that several tripeptides other than the originals also bestowed transferase activity. However, the repertoire of functional amino acids varied among those transferases, suggesting that structures around those codons differentially affected the interactions between donor nucleotide-sugar and acceptor substrates. It was concluded that different tripeptide sequences at the substrate-binding pocket have contributed to the generation of α1,3-Gal(NAc) transferases with diversified specificities.
Collapse
Affiliation(s)
- Emili Cid
- Laboratory of Immunohematology and Glycobiology, Josep Carreras Leukaemia Research Institute (IJC), Campus Can Ruti, Camí de les Escoles, Badalona, Barcelona, 08916, Spain.,Program of Predictive and Personalized Medicine of Cancer (PMPPC), Institut d'Investigació Germans Trias i Pujol (IGTP), Campus Can Ruti, Camí de les Escoles, Badalona, Barcelona, 08916, Spain
| | - Miyako Yamamoto
- Laboratory of Immunohematology and Glycobiology, Josep Carreras Leukaemia Research Institute (IJC), Campus Can Ruti, Camí de les Escoles, Badalona, Barcelona, 08916, Spain
| | - Fumiichiro Yamamoto
- Laboratory of Immunohematology and Glycobiology, Josep Carreras Leukaemia Research Institute (IJC), Campus Can Ruti, Camí de les Escoles, Badalona, Barcelona, 08916, Spain. .,Program of Predictive and Personalized Medicine of Cancer (PMPPC), Institut d'Investigació Germans Trias i Pujol (IGTP), Campus Can Ruti, Camí de les Escoles, Badalona, Barcelona, 08916, Spain.
| |
Collapse
|
8
|
Blood group ABO gene-encoded A transferase catalyzes the biosynthesis of FORS1 antigen of FORS system upon Met69Thr/Ser substitution. Blood Adv 2018; 2:1371-1381. [PMID: 29898878 DOI: 10.1182/bloodadvances.2018017293] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 05/21/2018] [Indexed: 01/28/2023] Open
Abstract
Blood group A/B glycosyltransferases (AT/BTs) and Forssman glycolipid synthase (FS) are encoded by the evolutionarily related ABO (A/B alleles) and GBGT1 genes, respectively. AT/BT and FS catalyze the biosynthesis of A/B and Forssman (FORS1) oligosaccharide antigens that are responsible for the distinct blood group systems of ABO and FORS. Using genetic engineering, DNA transfection, and immunocytochemistry and immunocytometry, we have previously shown that the eukaryotic expression construct encoding human AT, whose LeuGlyGly tripeptide at codons 266 to 268 was replaced with FS-specific GlyGlyAla tripeptide, induced weak appearance of FORS1 antigen. Recently, we have shown that the human AT complementary DNA constructs deleting exons 3 or 4, but not exons 2 or 5, induced moderate expression of FORS1 antigen. The constructs containing both the GlyGlyAla substitution and the exon 3 or 4 deletion exhibited an increased FS activity. Here, we report another molecular mechanism in which an amino acid substitution at codon 69 from methionine to threonine or serine (Met69Thr/Ser) also modified enzymatic specificity and permitted FORS1 biosynthesis. Considering that codon 69 is the first amino acid of exon 5 and that the cointroduction of Met69Thr and GlyGlyAla substitutions also enhanced FS activity, the methionine substitutions may affect enzyme structure in a mode similar to the exon 3 or 4 deletion but distinct from the GlyGlyAla substitution.
Collapse
|
9
|
ABO blood group A transferases catalyze the biosynthesis of FORS blood group FORS1 antigen upon deletion of exon 3 or 4. Blood Adv 2017; 1:2756-2766. [PMID: 29296927 DOI: 10.1182/bloodadvances.2017009795] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 11/30/2017] [Indexed: 12/18/2022] Open
Abstract
Evolutionarily related ABO and GBGT1 genes encode, respectively, A and B glycosyltransferases (AT and BT) and Forssman glycolipid synthase (FS), which catalyze the biosynthesis of A and B, and Forssman (FORS1) oligosaccharide antigens responsible for the ABO and FORS blood group systems. Humans are a Forssman antigen-negative species; however, rare individuals with Apae phenotype express FORS1 on their red blood cells. We previously demonstrated that the replacement of the LeuGlyGly tripeptide sequence at codons 266 to 268 of human AT with GBGT1-encoded FS-specific GlyGlyAla enabled the enzyme to produce FORS1 antigen, although the FS activity was weak. We searched for additional molecular mechanisms that might allow human AT to express FORS1. A variety of derivative expression constructs of human AT were prepared. DNA was transfected into COS1 (B3GALNT1) cells, and cell-surface expression of FORS1 was immunologically monitored. To our surprise, the deletion of exon 3 or 4, but not of exon 2 or 5, of human AT transcripts bestowed moderate FS activity, indicating that the A allele is inherently capable of producing a protein with FS activity. Because RNA splicing is frequently altered in cancer, this mechanism may explain, at least partially, the appearance of FORS1 in human cancer. Furthermore, strong FS activity was attained, in addition to AT and BT activities, by cointroducing 1 of those deletions and the GlyGlyAla substitution, possibly by the synergistic effects of altered intra-Golgi localization/conformation by the former and modified enzyme specificity by the latter.
Collapse
|
10
|
Davison GM, Hendrickse HL, Matsha TE. The relationship between immunogenic red blood cell antigens and Human Immunodeficiency Virus infection. Transfus Apher Sci 2017; 57:58-62. [PMID: 29269123 DOI: 10.1016/j.transci.2017.11.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/21/2017] [Accepted: 11/28/2017] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Evidence suggests that red cell antigens may act as receptors for viruses and bacteria and therefore could be associated with HIV infection. Previous studies have been controversial and therefore the aim of this exploratory study was to analyse the expression of immunogenic red cell antigens in HIV-seropositive individuals and to compare the results to negative donors from South Africa. METHODS The expression of ABO, Rh, Kell and Duffy antigens from 119 HIV-seropositive patients was compared to 317 HIV-seronegative blood donors. Nucleic acid amplification testing and PCR were used to determine the HIV status and the ID-Gel Card Technology was used to determine the blood group antigen profile. RESULTS There was no significant difference in the expression of A, B, AB, Duffy or Kel antigens between the two groups but significantly lower numbers of HIV+ individuals were O Rh Negative (p = ,0.0001). Analysis of those with a Duffy null phenotype revealed a significantly higher incidence of blood type A RH1-Positive, Dce/R0r and B RH1-Positive, DcEe/R2r within the HIV-seropositive group (p = < 0.05). None of the HIV-seropositive individuals were O RH1-Negative, dce/rr. CONCLUSION In conclusion these initial findings have demonstrated a decreased incidence of blood type O Rh1-negative in HIV + individuals which suggests that red blood cell antigens may play an important role in susceptibility to HIV infection. The relationship between red cell antigens and HIV infection however remains complex and therefore larger studies are required to confirm these results.
Collapse
Affiliation(s)
- Glenda M Davison
- Department of Biomedical sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville, South Africa.
| | - Heather L Hendrickse
- Department of Biomedical sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville, South Africa
| | - Tandi E Matsha
- Department of Biomedical sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville, South Africa
| |
Collapse
|
11
|
Yang L, Xu L, Zhu B, Niu H, Zhang W, Miao J, Shi X, Zhang M, Chen Y, Zhang L, Gao X, Gao H, Li L, Liu GE, Li J. Genome-wide analysis reveals differential selection involved with copy number variation in diverse Chinese Cattle. Sci Rep 2017; 7:14299. [PMID: 29085051 PMCID: PMC5662686 DOI: 10.1038/s41598-017-14768-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 10/12/2017] [Indexed: 12/20/2022] Open
Abstract
Copy number variations (CNVs) are defined as deletions, insertions, and duplications between two individuals of a species. To investigate the diversity and population-genetic properties of CNVs and their diverse selection patterns, we performed a genome-wide CNV analysis using high density SNP array in Chinese native cattle. In this study, we detected a total of 13,225 CNV events and 3,356 CNV regions (CNVRs), overlapping with 1,522 annotated genes. Among them, approximately 71.43 Mb of novel CNVRs were detected in the Chinese cattle population for the first time, representing the unique genomic resources in cattle. A new V i statistic was proposed to estimate the region-specific divergence in CNVR for each group based on unbiased estimates of pairwise V ST . We obtained 12 and 62 candidate CNVRs at the top 1% and top 5% of genome-wide V i value thresholds for each of four groups (North, Northwest, Southwest and South). Moreover, we identified many lineage-differentiated CNV genes across four groups, which were associated with several important molecular functions and biological processes, including metabolic process, response to stimulus, immune system, and others. Our findings provide some insights into understanding lineage-differentiated CNVs under divergent selection in the Chinese native cattle.
Collapse
Affiliation(s)
- Liu Yang
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Lingyang Xu
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Bo Zhu
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Hong Niu
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Wengang Zhang
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jian Miao
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Xinping Shi
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,College of Animal Science and Technology, Agricultural University of Hebei, Baoding, Hebei, 071001, China
| | - Ming Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yan Chen
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Lupei Zhang
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xue Gao
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Huijiang Gao
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Li Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - George E Liu
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, Maryland, 20705, USA
| | - Junya Li
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
12
|
Sano R, Fukuda H, Takahashi Y, Takahashi K, Kubo R, Kobayashi M, Fujihara J, Takeshita H, Kominato Y. Sequence analysis of ABO and its homologues is valid for species identification. Transfus Med 2017; 27:428-436. [PMID: 28850748 DOI: 10.1111/tme.12455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 07/25/2017] [Accepted: 07/28/2017] [Indexed: 11/29/2022]
Abstract
BACKGROUND ABO and its paralogues, such as A3GALT2 and GGTA1, encoding α1,3-Gal(NAc) transferases, belong to the glycosyltransferase 6 (GT6) gene family. We have developed an alternative method for the identification of species based on sequence variations within the GT6 gene family, which is applicable to degraded DNA. METHODS/MATERIALS DNA samples prepared from control mammalian species, together with an unknown sample, were polymerase chain reaction (PCR)-amplified using one universal primer pair targeting the sequences in the last coding exons of the GT6 gene family, yielding 141-bp products derived from those multiple loci. After cloning, sequence determination and Basic Local Alignment Search Tool analysis, phylogenetic trees were constructed. RESULTS Comparison of the sequences obtained with those references showed good concordance with each of the starting species of mammals. This system was able to identify 'mouse' or 'rodent' as the origin of the unknown sample. CONCLUSION For the identification of species, genotyping of ABO and its homologues would be applicable for the analysis of degraded DNA samples. Although the method employed in this study is likely valid for mammals, it would not be suitable for birds, fish and reptiles. It may be possible to improve the present method for use with other species by employing an alternative universal primer set.
Collapse
Affiliation(s)
- R Sano
- Department of Legal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - H Fukuda
- Department of Legal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Y Takahashi
- Department of Legal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - K Takahashi
- Department of Legal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - R Kubo
- Department of Legal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - M Kobayashi
- Department of Legal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - J Fujihara
- Department of Legal Medicine, Shimane University School of Medicine, Izumo, Japan
| | - H Takeshita
- Department of Legal Medicine, Shimane University School of Medicine, Izumo, Japan
| | - Y Kominato
- Department of Legal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| |
Collapse
|
13
|
Yamamoto F. Evolutionary divergence of the ABO and GBGT1 genes specifying the ABO and FORS blood group systems through chromosomal rearrangements. Sci Rep 2017; 7:9375. [PMID: 28839219 PMCID: PMC5571153 DOI: 10.1038/s41598-017-09765-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 07/31/2017] [Indexed: 11/12/2022] Open
Abstract
Human alleles at the ABO and GBGT1 genetic loci specify glycosylation polymorphism of ABO and FORS blood group systems, respectively, and their allelic basis has been elucidated. These genes are also present in other species, but presence/absence, as well as functionality/non-functionality are species-dependent. Molecular mechanisms and forces that created this species divergence were unknown. Utilizing genomic information available from GenBank and Ensembl databases, gene order maps were constructed of a chromosomal region surrounding the ABO and GBGT1 genes from a variety of vertebrate species. Both similarities and differences were observed in their chromosomal organization. Interestingly, the ABO and GBGT1 genes were found located at the boundaries of chromosomal fragments that seem to have been inverted/translocated during species evolution. Genetic alterations, such as deletions and duplications, are prevalent at the ends of rearranged chromosomal fragments, which may partially explain the species-dependent divergence of those clinically important glycosyltransferase genes.
Collapse
Affiliation(s)
- Fumiichiro Yamamoto
- Laboratory of Immunohematology and Glycobiology, Josep Carreras Leukaemia Research Institute (IJC), Campus Can Ruti, Badalona, Barcelona, Spain. .,Programa de Medicina Predictiva i Personalitzada del Càncer (PMPPC), Institut d'Investigació Germans Trias i Pujol (IGTP), Campus Can Ruti, Badalona, Barcelona, Spain.
| |
Collapse
|
14
|
Hanzawa K, Suzuki N, Natsuka S. Structures and developmental alterations of N-glycans of zebrafish embryos. Glycobiology 2017; 27:228-245. [PMID: 27932382 DOI: 10.1093/glycob/cww124] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 12/02/2016] [Indexed: 12/16/2022] Open
Abstract
Zebrafish is a model organism suitable for studying vertebrate development. We analyzed the N-glycan structures of zebrafish embryos and their alterations during zebrafish embryogenesis to obtain basic data for studying the roles of N-glycosylation. Multiple modes of high-performance liquid chromatography and multistage mass spectrometry were used for structural analysis of N-glycans. The N-glycans from deyolked embryos at 36 hours postfertilization, a mid-pharyngula stage, contained relatively higher amounts of complex- and hybrid-type glycans with LacNAc (Galβ1-4GlcNAc) and/or sialyl LacNAc without additional β1,4-Gal, which are commonly found in mammalian tissues, as well as abundant oligomannose-type glycans. Some of the complex- and hybrid-type glycans possessed various extended LacNAc structures, such as Galβ1-4LacNAc, LacNAc-repeat or unique (+/- dHex)-GalNAcα1-GlcNAcβ1-LacNAc. In contrast, the yolk of the embryo contains predominant oligomannose-type glycans and complex-type glycans with Galβ1-4(Siaα2-3)Galβ1-4(Fucα1-3)GlcNAc antennae. N-Glycan profiles obtained from deyolked embryos at different stages showed stage-dependent variation of complex- and hybrid-type glycans. At gastrula and early segmentation stages, complex- and hybrid-type glycans were minor components, and their antenna structures were mainly sialyl LacdiNAc (Siaα2-6GalNAcβ1-4GlcNAc). From the mid-segmentation to pharyngula stages, those with LacNAc and/or α2,6-sialyl LacNAc antenna structures increased remarkably, and those with α2,3-sialyl LacNAc antenna, core α1,6-Fuc and bisecting GlcNAc modifications increased gradually. These results suggest the presence of mechanisms for regulating the antenna structures of complex/hybrid N-glycan biosynthesis in the phylotypic stage of vertebrate development.
Collapse
Affiliation(s)
- Ken Hanzawa
- Department of Food and Life Sciences, Graduate School of Science and Technology, Niigata University, 8050 Ikarashi-nino-cho, Nishi-ku, Niigata 950-2181, Japan
| | - Noriko Suzuki
- Department of Food and Life Sciences, Graduate School of Science and Technology, Niigata University, 8050 Ikarashi-nino-cho, Nishi-ku, Niigata 950-2181, Japan.,Department of Biology, Niigata University, 8050 Ikarashi-nino-cho, Nishi-ku, Niigata 950-2181, Japan
| | - Shunji Natsuka
- Department of Food and Life Sciences, Graduate School of Science and Technology, Niigata University, 8050 Ikarashi-nino-cho, Nishi-ku, Niigata 950-2181, Japan.,Department of Biology, Niigata University, 8050 Ikarashi-nino-cho, Nishi-ku, Niigata 950-2181, Japan
| |
Collapse
|
15
|
Molecular Evolution of the Glycosyltransferase 6 Gene Family in Primates. Biochem Res Int 2017; 2016:9051727. [PMID: 28044107 PMCID: PMC5164903 DOI: 10.1155/2016/9051727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 10/20/2016] [Indexed: 12/05/2022] Open
Abstract
Glycosyltransferase 6 gene family includes ABO, Ggta1, iGb3S, and GBGT1 genes and by three putative genes restricted to mammals, GT6m6, GTm6, and GT6m7, only the latter is found in primates. GT6 genes may encode functional and nonfunctional proteins. Ggta1 and GBGT1 genes, for instance, are pseudogenes in catarrhine primates, while iGb3S gene is only inactive in human, bonobo, and chimpanzee. Even inactivated, these genes tend to be conversed in primates. As some of the GT6 genes are related to the susceptibility or resistance to parasites, we investigated (i) the selective pressure on the GT6 paralogs genes in primates; (ii) the basis of the conservation of iGb3S in human, chimpanzee, and bonobo; and (iii) the functional potential of the GBGT1 and GT6m7 in catarrhines. We observed that the purifying selection is prevalent and these genes have a low diversity, though ABO and Ggta1 genes have some sites under positive selection. GT6m7, a putative gene associated with aggressive periodontitis, may have regulatory function, but experimental studies are needed to assess its function. The evolutionary conservation of iGb3S in humans, chimpanzee, and bonobo seems to be the result of proximity to genes with important biological functions.
Collapse
|
16
|
Arend P. ABO (histo) blood group phenotype development and human reproduction as they relate to ancestral IgM formation: A hypothesis. Immunobiology 2016; 221:116-27. [DOI: 10.1016/j.imbio.2015.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Revised: 03/18/2015] [Accepted: 07/07/2015] [Indexed: 10/23/2022]
|
17
|
Multiple nucleophilic elbows leading to multiple active sites in a single module esterase from Sorangium cellulosum. J Struct Biol 2015; 190:314-27. [DOI: 10.1016/j.jsb.2015.04.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 03/25/2015] [Accepted: 04/10/2015] [Indexed: 11/17/2022]
|
18
|
Yamamoto F, Cid E, Yamamoto M, Saitou N, Bertranpetit J, Blancher A. An integrative evolution theory of histo-blood group ABO and related genes. Sci Rep 2014; 4:6601. [PMID: 25307962 PMCID: PMC5377540 DOI: 10.1038/srep06601] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 09/19/2014] [Indexed: 11/09/2022] Open
Abstract
The ABO system is one of the most important blood group systems in transfusion/transplantation medicine. However, the evolutionary significance of the ABO gene and its polymorphism remained unknown. We took an integrative approach to gain insights into the significance of the evolutionary process of ABO genes, including those related not only phylogenetically but also functionally. We experimentally created a code table correlating amino acid sequence motifs of the ABO gene-encoded glycosyltransferases with GalNAc (A)/galactose (B) specificity, and assigned A/B specificity to individual ABO genes from various species thus going beyond the simple sequence comparison. Together with genome information and phylogenetic analyses, this assignment revealed early appearance of A and B gene sequences in evolution and potentially non-allelic presence of both gene sequences in some animal species. We argue: Evolution may have suppressed the establishment of two independent, functional A and B genes in most vertebrates and promoted A/B conversion through amino acid substitutions and/or recombination; A/B allelism should have existed in common ancestors of primates; and bacterial ABO genes evolved through horizontal and vertical gene transmission into 2 separate groups encoding glycosyltransferases with distinct sugar specificities.
Collapse
Affiliation(s)
- Fumiichiro Yamamoto
- ABO Histo-blood Groups and Cancer Laboratory, Cancer Genetics and Epigenetics Program, Institut de Medicina Predictiva i Personalitzada del Càncer (IMPPC), Campus Can Ruti, Badalona, Catalonia, Spain
| | - Emili Cid
- ABO Histo-blood Groups and Cancer Laboratory, Cancer Genetics and Epigenetics Program, Institut de Medicina Predictiva i Personalitzada del Càncer (IMPPC), Campus Can Ruti, Badalona, Catalonia, Spain
| | - Miyako Yamamoto
- ABO Histo-blood Groups and Cancer Laboratory, Cancer Genetics and Epigenetics Program, Institut de Medicina Predictiva i Personalitzada del Càncer (IMPPC), Campus Can Ruti, Badalona, Catalonia, Spain
| | - Naruya Saitou
- Division of Population Genetics, National Institute of Genetics, Mishima, Japan
| | - Jaume Bertranpetit
- IBE - Institute of Evolutionary Biology (UPF-CSIC), Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Antoine Blancher
- Laboratoire d'Immunogénétique Moléculaire (LIMT, EA3034), Faculté de Médecine Purpan, Université Paul Sabatier, (Université de Toulouse III), Toulouse, France
| |
Collapse
|
19
|
Host–pathogen co-evolution and glycan interactions. Curr Opin Virol 2014; 7:88-94. [PMID: 25000207 DOI: 10.1016/j.coviro.2014.06.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 06/02/2014] [Indexed: 01/22/2023]
|
20
|
Arend P. Complementary innate (anti-A-specific) IgM emerging from ontogenic O-GalNAc-transferase depletion: (Innate IgM complementarity residing in ancestral antigen completeness). Immunobiology 2014; 219:285-91. [PMID: 24290972 DOI: 10.1016/j.imbio.2013.10.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 10/27/2013] [Accepted: 10/31/2013] [Indexed: 10/26/2022]
Abstract
The murine and the human genome have global properties in common. So the murine anti-A-specific complementary IgM and related human innate isoagglutinin represent developmental, 2-mercaptoethanol-sensitive, complement-binding glycoproteins, which do not arise from any measurable environmentally-induced or auto- immune response. The murine anti-A certainly originates from a cell surface- or cell adhesion molecule, which in the course of germ cell development becomes devoid of O-GalNAc-transferase and is released into the circulation. In human sera the enzyme occurs exclusively in those of blood group A- and AB subjects, while in group O(H) an identically encoded protein lets expect an opposite function and appears in conjunction with a complementary anti-A reactive glycoprotein. Since O-glycosylations rule the carbohydrate metabolism in growth and reproduction processes, we propose that the ancestral histo-(blood)-group A molecule arises in the course of O-GalNAc-glycosylations of glycolipids and protein envelops at progenitor cell surfaces. Germ cell development postulates embryonic stem cell fidelity, which is characterised by persistent production of α-linked O-GalNAc-glycans. They are determined by the A-allele within the human, "complete" histo (blood) group AB(O) structure that in early ontogeny is hypothesised to be synthesised independently from the final phenotype. The structure either passes "completely" through the germline, in transferase-secreting mature tissues becoming the "complete" phenotype AB, or disappears in exhaustive glycotransferase depletion from the differentiating cell surfaces and leaves behind the "incomplete" blood group O-phenotype, which has released a transferase- and O-glycan-depleted, complementary glycoprotein (IgM) into the circulation. The process implies, that in humans the different blood phenotypes evolve from a "complete" AB(O) molecular complex in a distinct enzymatic and/or complement cascade suggesting O-glycanase involvements. While the murine and human oocyte zona pellucida express identical O-glycans, the human phenotype O might be explainable by the kinetics of the murine ovarian O-GalNAc glycan synthesis and the complementary anti-A released in parallel. The maturing murine ovary may provide insight into encoding of the physiologically superior α-linked GalNAc ancestral epitope that becomes essential in reproduction as well as in tissue renewal events. According to recent reports, O-GalNAc-transferase-determined blood group A suggests superiority in human female fertility and was called even "protective". So the minor fertility of blood-group-O females may reside in a critical timing in developmental shifting of enzyme functions affecting the formation of GalNAc-determined hormone receptors on the way to maturation. Experiments that had inserted an oocyte genome into a somatic one to generate pluripotent stem cells, might elucidate a developmental dilemma by testing oocytes from different blood group AB donors donors. Perhaps they will unmask the molecular basis of an evolutionary trend, while stem cell generation itself capitalises on the enzymatically-advantaged, lineage-maintaining (histo) blood group A-allele, which guaranties ancestral functional completeness.
Collapse
Affiliation(s)
- Peter Arend
- Gastroenterology Research Laboratory, Department of Medicine, University of Iowa College of Medicine, Iowa City, IA, USA(1); Research Laboratories, Chemie Grünenthal GmbH, 52062 Aachen, Germany.
| |
Collapse
|
21
|
Pham TTK, Stinson B, Thiyagarajan N, Lizotte-Waniewski M, Brew K, Acharya KR. Structures of complexes of a metal-independent glycosyltransferase GT6 from Bacteroides ovatus with UDP-N-acetylgalactosamine (UDP-GalNAc) and its hydrolysis products. J Biol Chem 2014; 289:8041-50. [PMID: 24459149 PMCID: PMC3961637 DOI: 10.1074/jbc.m113.545384] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 01/22/2014] [Indexed: 11/20/2022] Open
Abstract
Mammalian members of glycosyltransferase family 6 (GT6) of the CAZy database have a GT-A fold containing a conserved Asp-X-Asp (DXD) sequence that binds an essential metal cofactor. Bacteroides ovatus GT6a represents a GT6 clade found in more than 30 Gram-negative bacteria that is similar in sequence to the catalytic domains of mammalian GT6, but has an Asn(95)-Ala-Asn(97) (NXN) sequence substituted for the DXD motif and metal-independent catalytic activity. Co-crystals of a low activity mutant of BoGT6a (E192Q) with UDP-GalNAc contained protein complexes with intact UDP-GalNAc and two forms with hydrolysis products (UDP plus GalNAc) representing an initial closed complex and later open form primed for product release. Two cationic residues near the C terminus of BoGT6a, Lys(231) and Arg(243), interact with the diphosphate moiety of UDP-GalNAc, but only Lys(231) interacts with the UDP product and may function in leaving group stabilization. The amide group of Asn(95), the first Asn of the NXN motif, interacts with the ribose moiety of the substrate. This metal-independent GT6 resembles its metal-dependent homologs in undergoing conformational changes on binding UDP-GalNAc that arise from structuring the C terminus to cover this substrate. It appears that in the GT6 family, the metal cofactor functions specifically in binding the UDP moiety in the donor substrate and transition state, actions that can be efficiently performed by components of the polypeptide chain.
Collapse
Affiliation(s)
- Tram T. K. Pham
- From the Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom and
| | - Brittany Stinson
- the Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida 33431
| | - Nethaji Thiyagarajan
- From the Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom and
| | - Michelle Lizotte-Waniewski
- the Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida 33431
| | - Keith Brew
- the Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida 33431
| | - K. Ravi Acharya
- From the Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom and
| |
Collapse
|
22
|
Onsten TGH, Callegari-Jacques SM, Goldani LZ. The Higher Frequency of Blood Group B in a Brazilian Population with HIV Infection. Open AIDS J 2013; 7:47-50. [PMID: 24222813 PMCID: PMC3821096 DOI: 10.2174/1874613601307010047] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 09/16/2013] [Accepted: 09/16/2013] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE To analyze the frequency of and odds for and against HIV infection based on ABO blood type in a large sample of blood donors. BACKGROUND Coevolution between pathogens and hosts may explain the ABO system of polymorphisms. HIV-infected cells add ABO(H) blood group antigens to the viral envelope. Naturally occurring antibodies against ABO(H) antigens that are present in normal human sera are able to neutralize ABO-expressing HIV in vitro. Blood donors are ideal for studying blood groups and HIV infection in vivo because all donors are routinely typed and tested. METHODS All blood donors who donated blood between 1994 and 2010 were tested for HIV (ELISA antibody tests and Western blot test or immunofluorescence testing) and were ABO typed (direct and reverse grouping tests). HIV infection based on the ABO blood group was analyzed using the chi-square test and game theory. RESULTS The total number of examined blood donors during this period was 271,410, of whom 389 were infected with HIV. B-group donors were more infected than non-B donors (p= 0.006). CONCLUSIONS A more restricted antigen recognition capacity of anti-Galα1-3Gal in blood groups AB and B and a weaker antigen-binding capacity of anti-A antibodies may contribute to a higher frequency of HIV infection in blood group B.
Collapse
Affiliation(s)
- Tor Gunnar Hugo Onsten
- Hospital de Clínicas de Porto Alegre, Department of Internal Medicine, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | |
Collapse
|
23
|
Ancestral gene and “complementary” antibody dominate early ontogeny. Immunobiology 2013; 218:755-61. [DOI: 10.1016/j.imbio.2012.08.277] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Accepted: 08/24/2012] [Indexed: 12/12/2022]
|
24
|
Forssman expression on human erythrocytes: biochemical and genetic evidence of a new histo-blood group system. Blood 2012; 121:1459-68. [PMID: 23255552 DOI: 10.1182/blood-2012-10-455055] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In analogy with histo-blood group A antigen, Forssman (Fs) antigen terminates with α3-N-acetylgalactosamine and can be used by pathogens as a host receptor in many mammals. However, primates including humans lack Fs synthase activity and have naturally occurring Fs antibodies in plasma. We investigated individuals with the enigmatic ABO subgroup A(pae) and found them to be homozygous for common O alleles. Their erythrocytes had no A antigens but instead expressed Fs glycolipids. The unexpected Fs antigen was confirmed in structural, serologic, and flow-cytometric studies. The Fs synthase gene, GBGT1, in A(pae) individuals encoded an arginine to glutamine change at residue 296. Gln296 is present in lower mammals, whereas Arg296 was found in 6 other primates, > 250 blood donors and A(pae) family relatives without the A(pae) phenotype. Transfection experiments and molecular modeling showed that Agr296Gln reactivates the human Fs synthase. Uropathogenic E coli containing prsG-adhesin-encoding plasmids agglutinated A(pae) but not group O cells, suggesting biologic implications. Predictive tests for intravascular hemolysis with crossmatch-incompatible sera indicated complement-mediated destruction of Fs-positive erythrocytes. Taken together, we provide the first conclusive description of Fs expression in normal human hematopoietic tissue and the basis of a new histo-blood group system in man, FORS.
Collapse
|
25
|
Molecular genetic basis of the human Forssman glycolipid antigen negativity. Sci Rep 2012; 2:975. [PMID: 23240079 PMCID: PMC3521167 DOI: 10.1038/srep00975] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 11/29/2012] [Indexed: 11/21/2022] Open
Abstract
Forssman heterophilic glycolipid antigen has structural similarity to the histo-blood group A antigen, and the GBGT1 gene encoding the Forssman glycolipid synthetase (FS) is evolutionarily related to the ABO gene. The antigen is present in various species, but not in others including humans. We have elucidated the molecular genetic basis of the Forssman antigen negativity in humans. In the human GBGT1 gene, we identified two common inactivating missense mutations (c.688G>A [p.Gly230Ser] and c.887A>G [p.Gln296Arg]). The reversion of the two mutations fully restored the glycosyltransferase activity to synthesize the Forssman antigen in vitro. These glycine and glutamine residues are conserved among functional GBGT1 genes in Forssman-positive species. Furthermore, the glycine and serine residues represent those at the corresponding position of the human blood group A and B transferases with GalNAc and galactose specificity, respectively, implicating the crucial role the glycine residue may play in the FS α1,3-GalNAc transferase activity.
Collapse
|
26
|
Suzuki N, Nawa D, Tateno H, Yasuda T, Oda S, Mitani H, Nishimaki T, Katsumura T, Oota H, Hanihara T, Oga A, Hirabayashi J, Yamamoto K. Generation of monoclonal antibodies against the Gal 1-4Gal epitope: A key tool in studies of species-specific glycans expressed in fish, amphibians and birds. Glycobiology 2012; 23:91-105. [DOI: 10.1093/glycob/cws129] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
27
|
Yamamoto F, Cid E, Yamamoto M, Blancher A. ABO research in the modern era of genomics. Transfus Med Rev 2011; 26:103-18. [PMID: 21945157 DOI: 10.1016/j.tmrv.2011.08.002] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Research on ABO has advanced significantly in recent years. A database was established to manage the sequence information of an increasing number of novel alleles. Genome sequencings have identified ABO orthologues and paralogues in various organisms and enhanced the knowledge on the evolution of the ABO and related genes. The most prominent advancements include clarification of the association between ABO and different disease processes. For instance, ABO status affects the infectivity of certain strains of Helicobacter pylori and Noroviruses as well as the sequestration and rosetting of red blood cells infected with Plasmodium falciparum. Genome-wide association studies have conclusively linked the ABO locus to pancreatic cancer, venous thromboembolism, and myocardial infarction in the presence of coronary atherosclerosis. These findings suggest ABO's important role in determining an individual's susceptibility to such diseases. Furthermore, our understanding of the structures of A and B transferases and their enzymology has been dramatically improved. ABO has also become a research subject in neurobiology and the preparation of artificial/universal blood and became a topic in the pseudoscience of "blood type diets." With such new progress, it has become evident that ABO is a critical player in the modern era of genomic medicine. This article provides the most up-to-date information regarding ABO genomics.
Collapse
Affiliation(s)
- Fumiichiro Yamamoto
- Institut de Medicina Predictiva i Personalitzada delCàncer (IMPPC), Badalona, Spain.
| | | | | | | |
Collapse
|
28
|
Nyström K, Le Gall-Reculé G, Grassi P, Abrantes J, Ruvoën-Clouet N, Le Moullac-Vaidye B, Lopes AM, Esteves PJ, Strive T, Marchandeau S, Dell A, Haslam SM, Le Pendu J. Histo-blood group antigens act as attachment factors of rabbit hemorrhagic disease virus infection in a virus strain-dependent manner. PLoS Pathog 2011; 7:e1002188. [PMID: 21901093 PMCID: PMC3161982 DOI: 10.1371/journal.ppat.1002188] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 06/13/2011] [Indexed: 12/20/2022] Open
Abstract
Rabbit Hemorrhagic disease virus (RHDV), a calicivirus of the Lagovirus genus, and responsible for rabbit hemorrhagic disease (RHD), kills rabbits between 48 to 72 hours post infection with mortality rates as high as 50–90%. Caliciviruses, including noroviruses and RHDV, have been shown to bind histo-blood group antigens (HBGA) and human non-secretor individuals lacking ABH antigens in epithelia have been found to be resistant to norovirus infection. RHDV virus-like particles have previously been shown to bind the H type 2 and A antigens. In this study we present a comprehensive assessment of the strain-specific binding patterns of different RHDV isolates to HBGAs. We characterized the HBGA expression in the duodenum of wild and domestic rabbits by mass spectrometry and relative quantification of A, B and H type 2 expression. A detailed binding analysis of a range of RHDV strains, to synthetic sugars and human red blood cells, as well as to rabbit duodenum, a likely gastrointestinal site for viral entrance was performed. Enzymatic cleavage of HBGA epitopes confirmed binding specificity. Binding was observed to blood group B, A and H type 2 epitopes in a strain-dependent manner with slight differences in specificity for A, B or H epitopes allowing RHDV strains to preferentially recognize different subgroups of animals. Strains related to the earliest described RHDV outbreak were not able to bind A, whereas all other genotypes have acquired A binding. In an experimental infection study, rabbits lacking the correct HBGA ligands were resistant to lethal RHDV infection at low challenge doses. Similarly, survivors of outbreaks in wild populations showed increased frequency of weak binding phenotypes, indicating selection for host resistance depending on the strain circulating in the population. HBGAs thus act as attachment factors facilitating infection, while their polymorphism of expression could contribute to generate genetic resistance to RHDV at the population level. Rabbit hemorrhagic disease virus (RHDV), detected as late as 1984, has spread to large parts of the world, threatening rabbit populations and other species dependent on rabbits in many European countries. Mortality has been shown to be as high as 90% and rabbits are killed 48 to 72 hours after infection. Related viruses called noroviruses, infect humans in a manner dependent on the expression of histo-blood group antigens (HBGAs), which are not only expressed on red blood cells, but also on epithelial cells, in saliva and on mucins of the intestinal tract. RHDV also binds to HBGA and in this report we characterize binding of strains of all genetic groups of RHDV to different HBGAs. We also demonstrate HBGAs to function as attachment factors in a challenge experiment. As polymorphisms of genes involved in HBGA synthesis divide the rabbit population into different subgroups, we find selection of low-binding subgroups of wild rabbits in populations recovering from devastating outbreaks of RHDV. This is the first demonstration of differential HBGA specificities of RHDV strains, description of function in infection and demonstration of host selection due to RHDV infection based on HBGA phenotype.
Collapse
Affiliation(s)
| | - Ghislaine Le Gall-Reculé
- Anses, Laboratoire de Ploufragan/Plouzané, Unité de Virologie, Immunologie, Parasitologie Aviaires et Cunicoles, Ploufragan, France
| | - Paola Grassi
- Division of Molecular Biosciences, Faculty of Natural Sciences, Imperial College London, London, United Kingdom
| | - Joana Abrantes
- INSERM, U892, Université de Nantes, Nantes, France
- CIBIO, Centro de Investigacao em Biodiversidade e Recursos Geneticos, Campus Agrario de Vairao, Vairao, Portugal
| | | | | | - Ana M. Lopes
- CIBIO, Centro de Investigacao em Biodiversidade e Recursos Geneticos, Campus Agrario de Vairao, Vairao, Portugal
| | - Pedro J. Esteves
- CIBIO, Centro de Investigacao em Biodiversidade e Recursos Geneticos, Campus Agrario de Vairao, Vairao, Portugal
- CITS, Centro de Investigacao em Tecnologias de Saude, CESPU, Gandra, Portugal
| | - Tanja Strive
- Commonwealth Scientific and Industrial Research Organisation, Canberra, Australian Capital Territory, Australia
- Invasive Animals Cooperative Research Centre, Canberra, Australia
| | - Stéphane Marchandeau
- Office National de la Chasse et de la Faune Sauvage, Direction des Etudes et de la Recherche, Nantes, France
| | - Anne Dell
- Division of Molecular Biosciences, Faculty of Natural Sciences, Imperial College London, London, United Kingdom
| | - Stuart M. Haslam
- Division of Molecular Biosciences, Faculty of Natural Sciences, Imperial College London, London, United Kingdom
| | | |
Collapse
|
29
|
"Natural" antibodies and histo-blood groups in biological development with respect to histo-blood group A. A perspective review. Immunobiology 2011; 216:1318-21. [PMID: 21798618 DOI: 10.1016/j.imbio.2011.04.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2010] [Accepted: 04/24/2011] [Indexed: 11/21/2022]
Abstract
The "inappropriate" A-specific ovarian glycosphingolipids discovered in unfertilized C57BL/10J female mice reflect growth processes, which suggest the activity of embryonic stem cells undergoing genetic polymorphism. And the responding anti-GalNAc antibody represents the first classical "natural" antibody, which was unmasked as a highly specific autoantibody. This murine anti-A is subspecifically distinct from the human antibody, discovering by a broader reactivity growth-dependent, xenoreactive A-specific structures also in non-reproductive murine tissues, where an equivalent of the human AB gene family as a cis AB-gene encodes A-and B glycotransferases. Expression of antigen is known to need always more than its encoded enzyme, and the special mechanism which in the C57BL/10J murine ovarian glycospingolipids blocks the expression of "B" still remains still unknown. A herewith arising postulation of a growth-predominating common biological activity may be supported by findings in rats. The number of A-genes here significantly exceeds those of B and in the Wistar rat the A-antigen is only expressed in the wild type, while B-expression requires the transfer of human B. Nevertheless in transgenic rats, the appearance of "A" still remains more pronounced. The observations lead to reports on animals, which do not show AB transferase production or a respective antigen expression in their normal tissues, but inconcistently display A activity in malignant tumors. And respective examples are delivered by phenotype independent neo expressions of "inappropriate" A-specific structures in human cancer. Although in comparison with epitope deletions they are rare, the ubiquitous "natural" (IgM and IgG) anti-A and anti-B levels, against self and not self, irrespective of the blood group in any normal human sera, may reflect invisible "inappropriate" A-specific growth. The role of the associated (auto) anti-B might be different, because B-neo expressions obviously not occur in cancer, and anti-gal-antibodies are supposed to originate primarily from environmental, cross-reactive stimulation, and beyond their functions in defense are otherwise engaged in physiology. In general natural antibody specificities undergo significant phylogenetical changes within the species. However, the in nature wide-spread "natural" anti-A agglutinin specificities survived or even predominated the long-term evolution from the brown trout up to man and still respond to the biological power, i.e. the products of a CAZY glycosyltransferase 6 (ABO) gene family. It is so hypothesized that both, the murine and human "natural" anti-A antibodies represent examples of a still to be analyzed polyclonal response to a provocative, species-independent evolutionary epitope, which arises or escapes by some enzymatic predominance from the genetical polymorphism in a consistent developmental process.
Collapse
|
30
|
Ramakrishnan B, Qasba PK. Structure-based evolutionary relationship of glycosyltransferases: a case study of vertebrate β1,4-galactosyltransferase, invertebrate β1,4-N-acetylgalactosaminyltransferase and α-polypeptidyl-N-acetylgalactosaminyltransferase. Curr Opin Struct Biol 2010; 20:536-42. [PMID: 20705453 PMCID: PMC2974045 DOI: 10.1016/j.sbi.2010.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 07/02/2010] [Accepted: 07/19/2010] [Indexed: 02/07/2023]
Abstract
Cell surface glycans play important cellular functions and are synthesized by glycosyltransferases. Structure and function studies show that the donor sugar specificity of the invertebrate β1,4-N-acetyl-glactosaminyltransferase (β4GalNAc-T) and the vertebrate β1,4-galactosyltransferase I (β4Gal-T1) are related by a single amino acid residue change. Comparison of the catalytic domain crystal structures of the β4Gal-T1 and the α-polypeptidyl-GalNAc-T (αppGalNAc-T) shows that their protein structure and sequences are similar. Therefore, it seems that the invertebrate β4GalNAc-T and the catalytic domain of αppGalNAc-T might have emerged from a common primordial gene. When vertebrates emerged from invertebrates, the amino acid that determines the donor sugar specificity of the invertebrate β4GalNAc-T might have mutated, thus converting the enzyme to a β4Gal-T1 in vertebrates.
Collapse
Affiliation(s)
- Boopathy Ramakrishnan
- Structural Glycobiology Section, Center for Cancer Research Nanobiology Program, Center for Cancer Research, NCI-Frederick, Frederick, MD 21702
- Basic Research Program, SAIC-Frederick, Inc., Center for Cancer Research Nanobiology Program, Center for Cancer Research, NCI-Frederick, Frederick, MD 21702
| | - Pradman K. Qasba
- Structural Glycobiology Section, Center for Cancer Research Nanobiology Program, Center for Cancer Research, NCI-Frederick, Frederick, MD 21702
| |
Collapse
|
31
|
Brew K, Tumbale P, Acharya KR. Family 6 glycosyltransferases in vertebrates and bacteria: inactivation and horizontal gene transfer may enhance mutualism between vertebrates and bacteria. J Biol Chem 2010; 285:37121-7. [PMID: 20870714 DOI: 10.1074/jbc.r110.176248] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Glycosyltransferases (GTs) control the synthesis and structures of glycans. Inactivation and intense allelic variation in members of the GT6 family generate species-specific and individual variations in carbohydrate structures, including histo-blood group oligosaccharides, resulting in anti-glycan antibodies that target glycan-decorated pathogens. GT6 genes are ubiquitous in vertebrates but are otherwise rare, existing in a few bacteria, one protozoan, and cyanophages, suggesting lateral gene transfer. Prokaryotic GT6 genes correspond to one exon of vertebrate genes, yet their translated protein sequences are strikingly similar. Bacterial and phage GT6 genes influence the surface chemistry of bacteria, affecting their interactions, including those with vertebrate hosts.
Collapse
Affiliation(s)
- Keith Brew
- Department of Basic Science, College of Medicine, Florida Atlantic University, Boca Raton, Florida 33431, USA.
| | | | | |
Collapse
|
32
|
Bovine norovirus: carbohydrate ligand, environmental contamination, and potential cross-species transmission via oysters. Appl Environ Microbiol 2010; 76:6404-11. [PMID: 20709837 DOI: 10.1128/aem.00671-10] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Noroviruses (NoV) are major agents of acute gastroenteritis in humans and the primary pathogens of shellfish-related outbreaks. Previous studies showed that some human strains bind to oyster tissues through carbohydrate ligands that are similar to their human receptors. Thus, based on presentation of shared norovirus carbohydrate ligands, oysters could selectively concentrate animal strains with increased ability to overcome species barriers. In comparison with human GI and GII strains, bovine GIII NoV strains, although frequently detected in bovine feces and waters of two estuaries of Brittany, were seldom detected in oysters grown in these estuaries. Characterization of the carbohydrate ligand from a new GIII strain indicated recognition of the alpha-galactosidase (α-Gal) epitope not expressed by humans, similar to the GIII.2 Newbury2 strain. This ligand was not detectable on oyster tissues, suggesting that oysters may not be able to accumulate substantial amounts of GIII strains due to the lack of shared carbohydrate ligand and that they should be unable to contribute to select GIII strains with an increased ability to recognize humans.
Collapse
|
33
|
Teupser D, Baber R, Ceglarek U, Scholz M, Illig T, Gieger C, Holdt LM, Leichtle A, Greiser KH, Huster D, Linsel-Nitschke P, Schäfer A, Braund PS, Tiret L, Stark K, Raaz-Schrauder D, Fiedler GM, Wilfert W, Beutner F, Gielen S, Grosshennig A, König IR, Lichtner P, Heid IM, Kluttig A, El Mokhtari NE, Rubin D, Ekici AB, Reis A, Garlichs CD, Hall AS, Matthes G, Wittekind C, Hengstenberg C, Cambien F, Schreiber S, Werdan K, Meitinger T, Loeffler M, Samani NJ, Erdmann J, Wichmann HE, Schunkert H, Thiery J. Genetic regulation of serum phytosterol levels and risk of coronary artery disease. ACTA ACUST UNITED AC 2010; 3:331-9. [PMID: 20529992 DOI: 10.1161/circgenetics.109.907873] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Phytosterols are plant-derived sterols that are taken up from food and can serve as biomarkers of cholesterol uptake. Serum levels are under tight genetic control. We used a genomic approach to study the molecular regulation of serum phytosterol levels and potential links to coronary artery disease (CAD). METHODS AND RESULTS A genome-wide association study for serum phytosterols (campesterol, sitosterol, brassicasterol) was conducted in a population-based sample from KORA (Cooperative Research in the Region of Augsburg) (n=1495) with subsequent replication in 2 additional samples (n=1157 and n=1760). Replicated single-nucleotide polymorphisms (SNPs) were tested for association with premature CAD in a metaanalysis of 11 different samples comprising 13 764 CAD cases and 13 630 healthy controls. Genetic variants in the ATP-binding hemitransporter ABCG8 and at the blood group ABO locus were significantly associated with serum phytosterols. Effects in ABCG8 were independently related to SNPs rs4245791 and rs41360247 (combined P=1.6 x 10(-50) and 6.2 x 10(-25), respectively; n=4412). Serum campesterol was elevated 12% for each rs4245791 T-allele. The same allele was associated with 40% decreased hepatic ABCG8 mRNA expression (P=0.009). Effects at the ABO locus were related to SNP rs657152 (combined P=9.4x10(-13)). Alleles of ABCG8 and ABO associated with elevated phytosterol levels displayed significant associations with increased CAD risk (rs4245791 odds ratio, 1.10; 95% CI, 1.06 to 1.14; P=2.2 x 10(-6); rs657152 odds ratio, 1.13; 95% CI, 1.07 to 1.19; P=9.4 x 10(-6)), whereas alleles at ABCG8 associated with reduced phytosterol levels were associated with reduced CAD risk (rs41360247 odds ratio, 0.84; 95% CI, 0.78 to 0.91; P=1.3 x 10(-5)). CONCLUSION Common variants in ABCG8 and ABO are strongly associated with serum phytosterol levels and show concordant and previously unknown associations with CAD.
Collapse
Affiliation(s)
- Daniel Teupser
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Leipzig, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Yamamoto F, Yamamoto M, Blancher A. Generation of histo-blood group B transferase by replacing the N-acetyl-D-galactosamine recognition domain of human A transferase with the galactose-recognition domain of evolutionarily related murine alpha1,3-galactosyltransferase. Transfusion 2009; 50:622-30. [PMID: 20042032 DOI: 10.1111/j.1537-2995.2009.02463.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND The alpha1,3-galactosyl epitope (alpha1-3Gal epitope), a major xenotransplant antigen, is synthesized by alpha1,3-galactosyltransferase (alpha1-3Gal transferase), which is evolutionarily related to the histo-blood group A/B transferases. STUDY DESIGN AND METHODS We constructed structural chimeras between the human type A and murine alpha1-3Gal transferases and examined their activity and specificity. RESULTS In many instances, a total loss of transferase activity was observed. Certain areas could be exchanged, with a potential diminishing of activity. With a few constructs, changes in acceptor substrate specificity were suspected. Unexpectedly, a functional conversion from A to B transferase activity was observed after replacing the short sequence of human A transferase with the corresponding sequence from murine alpha1-3Gal transferase. CONCLUSION Because these two paralogous enzymes differ in 16 positions of the 38 amino acid residues in the replaced region, our finding may suggest that despite separate evolution and diversified acceptors, these glycosyltransferases still share the three-dimensional domain structure that is responsible for their sugar specificity, arguing against the functional requirement of a strong purifying selection playing a role in the evolution of the ABO family of genes.
Collapse
Affiliation(s)
- Fumiichiro Yamamoto
- Department of Tumor Development, Burnham Institute for Medical Research, La Jolla, California, USA.
| | | | | |
Collapse
|
35
|
Schaefer AS, Richter GM, Nothnagel M, Manke T, Dommisch H, Jacobs G, Arlt A, Rosenstiel P, Noack B, Groessner-Schreiber B, Jepsen S, Loos BG, Schreiber S. A genome-wide association study identifies GLT6D1 as a susceptibility locus for periodontitis. Hum Mol Genet 2009; 19:553-62. [PMID: 19897590 DOI: 10.1093/hmg/ddp508] [Citation(s) in RCA: 152] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Periodontitis is a widespread, complex inflammatory disease of the mouth, which results in a loss of gingival tissue and alveolar bone, with aggressive periodontitis (AgP) as its most severe form. To identify genetic risk factors for periodontitis, we conducted a genome-wide association study in German AgP patients. We found AgP to be strongly associated with the intronic SNP rs1537415, which is located in the glycosyltransferase gene GLT6D1. We replicated the association in a panel of Dutch generalized and localized AgP patients. In the combined analysis including 1758 subjects, rs1537415 reached a genome-wide significance level of P= 5.51 x 10(-9), OR = 1.59 (95% CI 1.36-1.86). The associated rare G allele of rs1537415 showed an enrichment of 10% in periodontitis cases (48.4% in comparison with 38.8% in controls). Fine-mapping and a haplotype analysis indicated that rs1537415 showed the strongest association signal. Sequencing identified no further associated variant. Tissue-specific expression analysis of GLT6D1 indicated high transcript levels in the leukocytes, the gingiva and testis. Analysis of potential transcription factor binding sites at this locus predicted a significant reduction of GATA-3 binding affinity, and an electrophoretic mobility assay indicated a T cell specific reduction of protein binding for the G allele. Overexpression of GATA-3 in HEK293 cells resulted in allele-specific binding of GATA-3, indicating the identity of GATA-3 as the binding protein. The identified association of GLT6D1 with AgP implicates this locus as an important susceptibility factor, and GATA-3 as a potential signaling component in the pathophysiology of periodontitis.
Collapse
Affiliation(s)
- Arne S Schaefer
- Institute for Clinical Molecular Biology, Christian-Albrechts-University Kiel, Schittenhelmstrasse 12, Kiel, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Tumbale P, Brew K. Characterization of a metal-independent CAZy family 6 glycosyltransferase from Bacteroides ovatus. J Biol Chem 2009; 284:25126-34. [PMID: 19622749 DOI: 10.1074/jbc.m109.033878] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The myriad functions of complex carbohydrates include modulating interactions between bacteria and their eukaryotic hosts. In humans and other vertebrates, variations in the activity of glycosyltransferases of CAZy family 6 generate antigenic variation between individuals and species that facilitates resistance to pathogens. The well characterized vertebrate glycosyltransferases of this family are multidomain membrane proteins with C-terminal catalytic domains. Genes for proteins homologous with their catalytic domains are found in at least nine species of anaerobic commensal bacteria and a cyanophage. Although the bacterial proteins are strikingly similar in sequence to the catalytic domains of their eukaryotic relatives, a metal-binding Asp-X-Asp sequence, present in a wide array of metal ion-dependent glycosyltransferases, is replaced by Asn-X-Asn. We have cloned and expressed one of these proteins from Bacteroides ovatus, a bacterium that is linked to inflammatory bowel disease. Functional characterization shows it to be a metal-independent glycosyltransferase with a 200-fold preference for UDP-GalNAc as substrate relative to UDP-Gal. It efficiently catalyzes the synthesis of oligosaccharides similar to human blood group A and may participate in the synthesis of the bacterial O-antigen. The kinetics for GalNAc transfer to 2'-fucosyl lactose are characteristic of a sequential mechanism, as observed previously for this family. Mutational studies indicate that despite the lack of a metal cofactor, there are pronounced similarities in structure-function relationships between the bacterial and vertebrate family 6 glycosyltransferases. These two groups appear to provide an example of horizontal gene transfer involving vertebrates and prokaryotes.
Collapse
Affiliation(s)
- Percy Tumbale
- Department of Basic Science, Charles E. Schmidt College of Biomedical Science, Florida Atlantic University, Boca Raton, Florida 33431, USA
| | | |
Collapse
|
37
|
Zakhour M, Ruvoën-Clouet N, Charpilienne A, Langpap B, Poncet D, Peters T, Bovin N, Le Pendu J. The alphaGal epitope of the histo-blood group antigen family is a ligand for bovine norovirus Newbury2 expected to prevent cross-species transmission. PLoS Pathog 2009; 5:e1000504. [PMID: 19578439 PMCID: PMC2699481 DOI: 10.1371/journal.ppat.1000504] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Accepted: 06/05/2009] [Indexed: 11/18/2022] Open
Abstract
Among Caliciviridae, the norovirus genus encompasses enteric viruses that infect humans as well as several animal species, causing gastroenteritis. Porcine strains are classified together with human strains within genogroup II, whilst bovine norovirus strains represent genogroup III. Various GI and GII human strains bind to carbohydrates of the histo-blood group family which may be shared among mammalian species. Genetic relatedness of human and animal strains as well as the presence of potentially shared ligands raises the possibility of norovirus cross-species transmission. In the present study, we identified a carbohydrate ligand for the prototype bovine norovirus strain Bo/Newbury2/76/UK (NB2). Attachment of virus-like particles (VLPs) of the NB2 strain to bovine gut tissue sections showed a complete match with the staining by reagents recognizing the Galalpha1,3 motif. Alpha-galactosidase treatment confirmed involvement of a terminal alpha-linked galactose. Specific binding of VLPs to the alphaGal epitope (Galalpha3Galbeta4GlcNAcbeta-R) was observed. The binding of Galalpha3GalalphaOMe to rNB2 VLPs was characterized at atomic resolution employing saturation transfer difference (STD) NMR experiments. Transfection of human cells with an alpha1,3galactosyltransferase cDNA allowed binding of NB2 VLPs, whilst inversely, attachment to porcine vascular endothelial cells was lost when the cells originated from an alpha1,3galactosyltransferase KO animal. The alphaGal epitope is expressed in all mammalian species with the exception of the Hominidaea family due to the inactivation of the alpha1,3galactosyltransferase gene (GGTA1). Accordingly, the NB2 carbohydrate ligand is absent from human tissues. Although expressed on porcine vascular endothelial cells, we observed that unlike in cows, it is not present on gut epithelial cells, suggesting that neither man nor pig could be infected by the NB2 bovine strain.
Collapse
Affiliation(s)
- Maha Zakhour
- INSERM, U892, Université de Nantes, Institut de Biologie, Nantes, France
| | - Nathalie Ruvoën-Clouet
- INSERM, U892, Université de Nantes, Institut de Biologie, Nantes, France
- Ecole Nationale Vétérinaire de Nantes, Nantes, France
| | | | | | - Didier Poncet
- INRA UMR 1157, CNRS UMR 2472, IFR 115, Gif sur Yvette, France
| | - Thomas Peters
- University of Luebeck, Institute of Chemistry, Luebeck, Germany
| | - Nicolai Bovin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Jacques Le Pendu
- INSERM, U892, Université de Nantes, Institut de Biologie, Nantes, France
- * E-mail:
| |
Collapse
|
38
|
Hashimoto K, Tokimatsu T, Kawano S, Yoshizawa AC, Okuda S, Goto S, Kanehisa M. Comprehensive analysis of glycosyltransferases in eukaryotic genomes for structural and functional characterization of glycans. Carbohydr Res 2009; 344:881-7. [DOI: 10.1016/j.carres.2009.03.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Revised: 02/24/2009] [Accepted: 03/03/2009] [Indexed: 11/25/2022]
|
39
|
Casals F, Ferrer-Admetlla A, Sikora M, Ramírez-Soriano A, Marquès-Bonet T, Despiau S, Roubinet F, Calafell F, Bertranpetit J, Blancher A. Human pseudogenes of the ABO family show a complex evolutionary dynamics and loss of function. Glycobiology 2009; 19:583-91. [PMID: 19218399 DOI: 10.1093/glycob/cwp017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The GT6 glycosyltransferases gene family, that includes the ABO blood group, shows a complex evolution pattern, with multiple events of gain and loss in different mammal species. In humans the ABO gene is considered the sole functional member although the O allele is null and is fixed in certain populations. Here, we analyze the human GT6 pseudogene sequences (Forssman, IGB3, GGTA1, GT6m5, GT6m6, and GT6m7) from an evolutionary perspective, by the study of (i) their diversity levels in populations through the resequencing analysis of European and African individuals; (ii) the interpopulation differentiation, with genotyping data from a survey of populations covering most of human genetic diversity; and (iii) the interespecific divergence, by the comparison of the human and some other primate species sequences. Since pseudogenes are expected to evolve under neutrality, they should show an evolutionary pattern different to that of functional sequences, with higher levels of diversity as well as a ratio of nonsynonymous to synonymous changes close to 1. We describe some departures from these expectations, including selection for inactivation in IGB3, GGTA1, and the interesting case of FS (Forssman) with a probable shift of its initial function in the primate lineage, which put it apart from a pure neutral pseudogene. These results suggest that some of these GT6 human pseudogenes may still be functional and retain some valuable unknown function in humans, in some case even at the protein level. The evolutionary analysis of all members of the GT6 family in humans allows an insight into their functional history, a process likely due to the interaction of the host glycans that they synthesize with pathogens; the past process that can be unraveled through the footprints left by natural selection in the extant genome variation.
Collapse
Affiliation(s)
- Ferran Casals
- Institut de Biologia Evolutiva (CSIC-UPF), CEXS-UPF-PRBB, Barcelona, Catalonia, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Christiansen D, Milland J, Mouhtouris E, Vaughan H, Pellicci DG, McConville MJ, Godfrey DI, Sandrin MS. Humans lack iGb3 due to the absence of functional iGb3-synthase: implications for NKT cell development and transplantation. PLoS Biol 2008; 6:e172. [PMID: 18630988 PMCID: PMC2459210 DOI: 10.1371/journal.pbio.0060172] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Accepted: 06/06/2008] [Indexed: 11/18/2022] Open
Abstract
The glycosphingolipid isoglobotrihexosylceramide, or isogloboside 3 (iGb3), is believed to be critical for natural killer T (NKT) cell development and self-recognition in mice and humans. Furthermore, iGb3 may represent an important obstacle in xenotransplantation, in which this lipid represents the only other form of the major xenoepitope Galα(1,3)Gal. The role of iGb3 in NKT cell development is controversial, particularly with one study that suggested that NKT cell development is normal in mice that were rendered deficient for the enzyme iGb3 synthase (iGb3S). We demonstrate that spliced iGb3S mRNA was not detected after extensive analysis of human tissues, and furthermore, the iGb3S gene contains several mutations that render this product nonfunctional. We directly tested the potential functional activity of human iGb3S by expressing chimeric molecules containing the catalytic domain of human iGb3S. These hybrid molecules were unable to synthesize iGb3, due to at least one amino acid substitution. We also demonstrate that purified normal human anti-Gal immunoglobulin G can bind iGb3 lipid and mediate complement lysis of transfected human cells expressing iGb3. Collectively, our data suggest that iGb3S is not expressed in humans, and even if it were expressed, this enzyme would be inactive. Consequently, iGb3 is unlikely to represent a primary natural ligand for NKT cells in humans. Furthermore, the absence of iGb3 in humans implies that it is another source of foreign Galα(1,3)Gal xenoantigen, with obvious significance in the field of xenotransplantation. Identification of endogenous antigens that regulate natural killer T (NKT) cell development and function is a major goal in immunology. Originally the glycosphingolipid, iGb3, was suggested to be the main endogenous ligand in both mice and humans. However, recent studies have challenged this hypothesis. From a xenotransplantation (animal to human transplants) perspective, iGb3 expression is also important as it represents another form of the major xenoantigen Galα(1,3)Gal. In this study, we assessed whether humans expressed a functional iGb3 synthase (iGb3S), the enzyme responsible for lipid synthesis. We showed that spliced iGb3S mRNA was not detected in any human tissue analysed. Furthermore, chimeric molecules composed of the catalytic domain of human iGb3S were unable to synthesize iGb3 lipid, due to at least one amino acid substitution. We also demonstrated that purified human anti-Gal antibodies bound iGb3 lipid and mediated destruction of cells transfected to express iGb3. A nonfunctional iGb3S in humans has two major consequences: (1) iGb3 is unlikely to be a natural human NKT ligand and (2) natural human anti-Gal antibodies in human serum could react with iGb3 on the surface of organs from pigs, marking these tissues for immunological destruction. Controversy surrounds the glycolipid iGb3. Our data show that humans do not express this lipid. This has important implications in natural killer T cell development, self-recognition, and transplantation.
Collapse
Affiliation(s)
- Dale Christiansen
- Department of Surgery, The University of Melbourne, Austin Health/Northern Health, Heidelberg, Victoria, Australia
| | - Julie Milland
- Department of Surgery, The University of Melbourne, Austin Health/Northern Health, Heidelberg, Victoria, Australia
| | - Effie Mouhtouris
- Department of Surgery, The University of Melbourne, Austin Health/Northern Health, Heidelberg, Victoria, Australia
| | - Hilary Vaughan
- Department of Surgery, The University of Melbourne, Austin Health/Northern Health, Heidelberg, Victoria, Australia
| | - Daniel G Pellicci
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria, Australia
| | - Malcolm J McConville
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, Melbourne, Victoria, Australia
| | - Dale I Godfrey
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria, Australia
| | - Mauro S Sandrin
- Department of Surgery, The University of Melbourne, Austin Health/Northern Health, Heidelberg, Victoria, Australia
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
41
|
Tumbale P, Jamaluddin H, Thiyagarajan N, Acharya KR, Brew K. Screening a limited structure-based library identifies UDP-GalNAc-specific mutants of alpha-1,3-galactosyltransferase. Glycobiology 2008; 18:1036-43. [PMID: 18782853 DOI: 10.1093/glycob/cwn083] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Complex glycans have important roles in biological recognition processes and considerable pharmaceutical potential. The synthesis of novel glycans can be facilitated by engineering glycosyltransferases to modify their substrate specificities. The choice of sites to modify requires the knowledge of the structures of enzyme-substrate complexes while the complexity of protein structures necessitates the exploration of a large array of multisite mutations. The retaining glycosyltransferase, alpha-1,3-galactosyltransferase (alpha3GT), which catalyzes the synthesis of the alpha-Gal epitope, has strict specificity for UDP-galactose as a donor substrate. Based on the structure of a complex of UDP-galactose with alpha3GT, the specificity for the galactose moiety can be partly attributed to residues that interact with the galactose 2-OH group, particularly His280 and Ala282. With the goal of engineering a variant of bovine alpha3GT with GalNAc transferase activity, we constructed a limited library of 456 alpha3GT mutants containing 19 alternative amino acids at position 280, two each at 281 and 282 and six at position 283. Clones (1500) were screened by assaying partially purified bacterially expressed variants for GalNAc transferase activity. Mutants with the highest levels of GalNAc transferase activity, AGGL or GGGL, had substitutions at all four sites. The AGGL mutant had slightly superior GalNAc transferase activity amounting to about 3% of the activity of the wild-type enzyme with UDP-Gal. This mutant had a low activity with UDP-Gal; its crystallographic structure suggests that the smaller side chains at residues 280-282 form a pocket to accommodate the larger acetamido group of GalNAc. Mutational studies indicate that Leu283 is important for stability in this mutant.
Collapse
Affiliation(s)
- Percy Tumbale
- Department of Biomedical Science, College of Biomedical Science, Florida Atlantic University, Glades Road, Boca Raton, FL 33431, USA
| | | | | | | | | |
Collapse
|
42
|
Recent Papers on Zebrafish and Other Aquarium Fish Models. Zebrafish 2007. [DOI: 10.1089/zeb.2007.9987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|