1
|
Layunta E, Forcén R, Grasa L. TLR2 and TLR4 Modulate Mouse Ileal Motility by the Interaction with Muscarinic and Nicotinic Receptors. Cells 2022; 11:cells11111791. [PMID: 35681486 PMCID: PMC9180263 DOI: 10.3390/cells11111791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 11/16/2022] Open
Abstract
Irritable bowel syndrome (IBS) is a chronic functional bowel disorder characterized by intestinal dysmotility. Changes in intestinal microbiota (dysbiosis) can lead to alterations in neuro-muscular functions in the gut. Toll-like receptors (TLRs) 2 and 4 recognize intestinal bacteria and are involved in the motor response induced by gastrointestinal (GI) neurotransmitters. Acetylcholine (ACh) is a well-known neurotransmitter involved in the regulation of GI motility. This study aimed to evaluate the role of TLR2 and TLR4 in the intestinal motor-response induced by ACh in the mouse ileum, as well as the expression and function of the muscarinic and nicotinic ACh receptors. Muscle contractility studies showed that the contractions induced by ACh were significantly lower in TLR2−/− and TLR4−/− with respect to WT mice. In WT mice, the contractions induced by ACh were reduced in the presence of AF-DX AF-DX 116 (a muscarinic ACh receptor (mAChR) M2 antagonist), 4-DAMP (a mAChR M3 antagonist), mecamylamine (a nicotinic AChR receptor (nAChR) α3β4 antagonist) and α-bungarotoxin (a nAChR α7 antagonist). In TLR2−/− mice, the contractions induced by ACh were increased by AF-DX 116 and mecamylamine. In TLR4−/− mice, the contractions induced by ACh were reduced by α-bungarotoxin and 4-DAMP. The mRNA and protein expressions of M3 and α3 receptors were diminished in the ileum from TLR2−/− and TLR4−/− with respect to WT mice. However, the levels of mRNA and protein of β4 were diminished only in TLR4−/− but not in TLR2−/− mice. In conclusion, our results show that TLR2 and TLR4 modulates the motor responses to ACh in the mouse ileum. TLR2 acts on muscarinic M2 and M3 and nicotinic α3β4 ACh receptors, while TLR4 acts on muscarinic M3 and nicotinic α3β4 and α7 ACh receptors.
Collapse
Affiliation(s)
- Elena Layunta
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Medicinaregatan 9C, 41390 Gothenburg, Sweden;
| | - Raquel Forcén
- Departamento de Farmacología, Fisiología y Medicina Legal y Forense, Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain;
| | - Laura Grasa
- Departamento de Farmacología, Fisiología y Medicina Legal y Forense, Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain;
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), 50009 Zaragoza, Spain
- Instituto Agroalimentario de Aragón—IA2—(Universidad de Zaragoza-CITA), 50013 Zaragoza, Spain
- Correspondence:
| |
Collapse
|
2
|
Ando M, Matsumoto T, Taguchi K, Kobayashi T. Decreased contraction induced by endothelium-derived contracting factor in prolonged treatment of rat renal artery with endoplasmic reticulum stress inducer. Naunyn Schmiedebergs Arch Pharmacol 2018; 391:793-802. [PMID: 29728739 DOI: 10.1007/s00210-018-1508-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/24/2018] [Indexed: 11/24/2022]
Abstract
Recent evidence suggests that endoplasmic reticulum (ER) stress is involved in the regulation of various physiological functions, including those of the vascular system. However, the relationship between ER stress and vascular function is poorly understood. The endothelial cells control the vascular tone by releasing endothelium-derived relaxing factors and contracting factors (EDCFs). We hypothesized that tunicamycin, an inducer of ER stress, modifies endothelium-dependent contraction and prostaglandins (PGs), a major class of EDCFs, induced contractions in the rat renal artery in rats. An organ-culture technique was used to purely investigate the effects of ER stress on the vascular tissue. We observed that tunicamycin treatment (20 μg/mL for 23 ± 1 h) did not affect acetylcholine (ACh)-induced relaxation and decreased EDCF-mediated contractions under nitric oxide synthase (NOS) inhibition induced by ACh, ATP, or A23187 (a calcium ionophore) in the renal arteries. Under NOS inhibition, U46619 (a thromboxane A2 mimetic)- and beraprost (a prostacyclin analog)-induced contractions were also decreased in the renal arteries of the tunicamycin-treated group (vs. vehicle), while PGE2- and PGF2α-induced contractions were similar between the groups. Tunicamycin treatment slightly enhanced the contractions induced by phenylephrine, an α1 adrenoceptor ligand. Isotonic high-K+-induced contractions were similar between the vehicle- and tunicamycin-treated groups. Another ER stress inducer, thapsigargin (4 μmol/L for 23 ± 1 h), also caused substantial reduction of ACh-induced EDCF-mediated contraction (vs. vehicle-treated group). In the cultured renal arteries, tunicamycin and thapsigargin increased the expression of binding immunoglobulin protein (BiP), an ER stress marker. In conclusion, ER stress induction directly affects renal arterial function, especially in reducing EDCF-mediated contractions.
Collapse
Affiliation(s)
- Makoto Ando
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Takayuki Matsumoto
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan.
| | - Kumiko Taguchi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Tsuneo Kobayashi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan.
| |
Collapse
|
3
|
Xiao Y, Han J, Wang Q, Mao Y, Wei M, Jia W, Wei L. A Novel Interacting Protein SERP1 Regulates the N‐Linked Glycosylation and Function of GLP‐1 Receptor in the Liver. J Cell Biochem 2017; 118:3616-3626. [DOI: 10.1002/jcb.26207] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 06/08/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Yuanyuan Xiao
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes MellitusShanghai Key Clinical Center for Metabolic DiseaseShanghai 200233China
| | - Junfeng Han
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes MellitusShanghai Key Clinical Center for Metabolic DiseaseShanghai 200233China
| | - Qianqian Wang
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes MellitusShanghai Key Clinical Center for Metabolic DiseaseShanghai 200233China
| | - Yueqin Mao
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes MellitusShanghai Key Clinical Center for Metabolic DiseaseShanghai 200233China
| | - Meilin Wei
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes MellitusShanghai Key Clinical Center for Metabolic DiseaseShanghai 200233China
| | - Weiping Jia
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes MellitusShanghai Key Clinical Center for Metabolic DiseaseShanghai 200233China
| | - Li Wei
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes MellitusShanghai Key Clinical Center for Metabolic DiseaseShanghai 200233China
| |
Collapse
|
4
|
Ahmed T, Zahid S, Mahboob A, Farhat SM. Cholinergic System and Post-translational Modifications: An Insight on the Role in Alzheimer's Disease. Curr Neuropharmacol 2017; 15:480-494. [PMID: 27012953 PMCID: PMC5543671 DOI: 10.2174/1570159x14666160325121145] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/02/2015] [Accepted: 03/03/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common form of old age dementia. The formation of amyloid plaques (Aβ), neurofibrillary tangles and loss of basal forebrain cholinergic neurons are the hallmark events in the pathology of AD. LITERATURE REVIEW Cholinergic system is one of the most important neurotransmitter system involved in learning and memory which preferentially degenerates in the initial stages of AD. Activation of cholinergic receptors (muscarinic and nicotinic) activates multiple pathways which result in post translational modifications (PTMs) in multiple proteins which bring changes in nervous system. Cholinergic receptors-mediated PTMs "in-part" substantially affect the biosynthesis, proteolysis, degradation and expression of many proteins and in particular, amyloid precursor protein (APP). APP is subjected to several PTMs (proteolytic processing, glycosylation, sulfation, and phosphorylation) during its course of processing, resulting in Aβ deposition, leading to AD. Aβ also alters the PTMs of tau which is a microtubule associated protein. Therefore, post-translationally modified tau and Aβ collectively aggravate the neuronal loss that leads to cholinergic hypofunction. CONCLUSION Despite the accumulating evidences, the interaction between cholinergic neurotransmission and the physiological significance of PTM events remain speculative and still needs further exploration. This review focuses on the role of cholinergic system and discusses the significance of PTMs in pathological progression of AD and highlights some important future directions.
Collapse
Affiliation(s)
- Touqeer Ahmed
- Neurobiology Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Sector H-12, Islamabad, 44000, Pakistan
| | - Saadia Zahid
- Neurobiology Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Sector H-12, Islamabad, 44000, Pakistan
| | | | | |
Collapse
|
5
|
Gwak H, Kim S, Dhanasekaran DN, Song YS. Resveratrol triggers ER stress-mediated apoptosis by disrupting N -linked glycosylation of proteins in ovarian cancer cells. Cancer Lett 2016; 371:347-53. [DOI: 10.1016/j.canlet.2015.11.032] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Revised: 11/18/2015] [Accepted: 11/27/2015] [Indexed: 01/10/2023]
|
6
|
Matsumoto T, Ando M, Watanabe S, Iguchi M, Nagata M, Kobayashi S, Taguchi K, Kobayashi T. Tunicamycin-Induced Alterations in the Vasorelaxant Response in Organ-Cultured Superior Mesenteric Arteries of Rats. Biol Pharm Bull 2016; 39:1475-81. [DOI: 10.1248/bpb.b16-00254] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Takayuki Matsumoto
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University
| | - Makoto Ando
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University
| | - Shun Watanabe
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University
| | - Maika Iguchi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University
| | - Mako Nagata
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University
| | - Shota Kobayashi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University
| | - Kumiko Taguchi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University
| | - Tsuneo Kobayashi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University
| |
Collapse
|
7
|
Jördens MS, Keitel V, Karababa A, Zemtsova I, Bronger H, Häussinger D, Görg B. Multidrug resistance-associated protein 4 expression in ammonia-treated cultured rat astrocytes and cerebral cortex of cirrhotic patients with hepatic encephalopathy. Glia 2015; 63:2092-2105. [PMID: 26102310 DOI: 10.1002/glia.22879] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 06/08/2015] [Indexed: 12/30/2022]
Abstract
Hepatic encephalopathy (HE) is a neuropsychiatric syndrome frequently accompanying liver cirrhosis and reflects the clinical manifestation of a low grade cerebral edema associated with cerebral oxidative/nitrosative stress. The multidrug resistance-associated protein (Mrp) 4 is an export pump which transports metabolites that were recently suggested to play a major role in the pathogenesis of HE such as neurosteroids and cyclic nucleotides. We therefore studied Mrp4 expression changes in ammonia-exposed cultured astrocytes and postmortem human brain samples of cirrhotic patients with HE. NH4 Cl increased Mrp4 mRNA and protein levels in astrocytes in a dose- and time-dependent manner up to threefold after 72 h of exposure and concurrently inhibited N-glycosylation of Mrp4 protein. Upregulation of Mrp4 mRNA and protein as well as impaired N-glycosylation of Mrp4 protein by ammonia were sensitive towards the glutamine-synthetase inhibitor l-methionine-S-sulfoximine and were not induced by CH3 NH3 Cl (5 mmol/L). Upregulation of Mrp4 mRNA required ammonia-induced activation of nitric oxide synthases or NADPH oxidase and p38MAPK -dependent activation of PPARα. Inhibition of Mrp4 by ceefourin 1 synergistically enhanced both, inhibition of astrocyte proliferation as well as transcription of the oxidative stress surrogate marker heme oxygenase 1 by forskolin (10 µmol/L, 72 h) or NH4 Cl (5 mmol/L, 72 h) in cultured rat astrocytes. Increased Mrp4 mRNA and protein levels were also found in postmortem brain samples from patients with liver cirrhosis with HE but not in those without HE. The data show that Mrp4 is upregulated in HE, which may be relevant for the handling of neurosteroids and cyclic nucleotides in response to ammonia. GLIA 2015;63:2092-2105.
Collapse
Affiliation(s)
- Markus S Jördens
- Clinic for Gastroenterology, Hepatology, and Infectious Diseases, Heinrich-Heine University, Düsseldorf, Germany
| | - Verena Keitel
- Clinic for Gastroenterology, Hepatology, and Infectious Diseases, Heinrich-Heine University, Düsseldorf, Germany
| | - Ayse Karababa
- Clinic for Gastroenterology, Hepatology, and Infectious Diseases, Heinrich-Heine University, Düsseldorf, Germany
| | - Irina Zemtsova
- Clinic for Gastroenterology, Hepatology, and Infectious Diseases, Heinrich-Heine University, Düsseldorf, Germany
| | - Holger Bronger
- Clinic for Gastroenterology, Hepatology, and Infectious Diseases, Heinrich-Heine University, Düsseldorf, Germany
| | - Dieter Häussinger
- Clinic for Gastroenterology, Hepatology, and Infectious Diseases, Heinrich-Heine University, Düsseldorf, Germany
| | - Boris Görg
- Clinic for Gastroenterology, Hepatology, and Infectious Diseases, Heinrich-Heine University, Düsseldorf, Germany
| |
Collapse
|
8
|
Rymen D, Jaeken J. Skin manifestations in CDG. J Inherit Metab Dis 2014; 37:699-708. [PMID: 24554337 DOI: 10.1007/s10545-014-9678-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 12/01/2013] [Accepted: 01/20/2014] [Indexed: 10/25/2022]
Abstract
The group of congenital disorders of glycosylation (CDG) has expanded tremendously since its first description in 1980, with around 70 distinct disorders described to date. A great phenotypic variability exists, ranging from multisystem disease to single organ involvement. Skin manifestations, although inconsistently present, are part of this broad clinical spectrum. Indeed, the presence of inverted nipples, fat pads and orange peel skin in a patient with developmental delay are considered as a hallmark of CDG, particularly seen in PMM2 deficiency. However, over the years many more dermatological findings have been observed (e.g., ichthyosis, cutis laxa, tumoral calcinosis…). In this review we will discuss the variety of skin manifestations reported in CDG. Moreover, we will explore the possible mechanisms that link a certain glycosylation deficiency to its skin phenotype.
Collapse
Affiliation(s)
- D Rymen
- Center for Human Genetics, University of Leuven, Leuven, Belgium,
| | | |
Collapse
|
9
|
Pandey MS, Weigel PH. A hyaluronan receptor for endocytosis (HARE) link domain N-glycan is required for extracellular signal-regulated kinase (ERK) and nuclear factor-κB (NF-κB) signaling in response to the uptake of hyaluronan but not heparin, dermatan sulfate, or acetylated low density lipoprotein (LDL). J Biol Chem 2014; 289:21807-17. [PMID: 24942734 DOI: 10.1074/jbc.m114.565846] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human hyaluronan (HA) receptor for endocytosis (HARE; the 190-kDa C terminus of Stab2) is a major clearance receptor for multiple circulating ligands including HA, heparin (Hep), acetylated LDL (AcLDL), dermatan sulfate (DS), apoptotic debris, and chondroitin sulfate types A, C, D, and E. We previously found that HARE contains an N-glycan in the HA binding Link domain (at Asn(2280)), and cells expressing membrane-bound HARE(N2280A) bind and endocytose HA normally (Harris, E. N., Parry, S., Sutton-Smith, M., Pandey, M. S., Panico, M., Morris, H. R., Haslam, S. M., Dell, A., and Weigel, P. H. (2010) Glycobiology 20, 991-1001). Also, NF-κB-mediated signaling is activated by HARE-mediated endocytosis of HA, Hep, AcLDL, or DS but not by chondroitin sulfates (Pandey, M. S., and Weigel, P. H. (2014) J. Biol. Chem. 289, 1756-1767). Here we investigated the role of Link N-glycans in ligand uptake and NF-κB and ERK1/2 signaling. HA·HARE-mediated ERK1/2 activation was HA size- dependent, as found for NF-κB activation. HARE(N2280A) cells internalized HA, Hep, AcLDL, and DS normally. No ERK1/2 activation occurred during HA endocytosis by HARE(N2280A) cells, but activation did occur with Hep. Dual-luciferase recorder assays showed that NF-κB-mediated gene expression occurred normally in HARE(N2280A) cells endocytosing Hep, AcLDL, or DS but did not occur with HA. Activation of NF-κB by endogenous degradation of IκB-α was observed for HARE(N2280A) cells endocytosing Hep, AcLDL, or DS but not HA. We conclude that a Link domain complex N-glycan is required specifically for HARE·HA-mediated activation of ERK1/2 and NF-κB-mediated gene expression and that this initial activation mechanism is different from and independent of the initial mechanisms for HARE-mediated signaling in response to Hep, AcLDL, or DS uptake.
Collapse
Affiliation(s)
- Madhu S Pandey
- From the Department of Biochemistry and Molecular Biology, The University of Oklahoma Health Sciences Center and The Oklahoma Center for Medical Glycobiology, Oklahoma City, Oklahoma 73104
| | - Paul H Weigel
- From the Department of Biochemistry and Molecular Biology, The University of Oklahoma Health Sciences Center and The Oklahoma Center for Medical Glycobiology, Oklahoma City, Oklahoma 73104
| |
Collapse
|
10
|
Extrasynaptic muscarinic acetylcholine receptors on neuronal cell bodies regulate presynaptic function in Caenorhabditis elegans. J Neurosci 2013; 33:14146-59. [PMID: 23986249 DOI: 10.1523/jneurosci.1359-13.2013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Acetylcholine (ACh) is a potent neuromodulator in the brain, and its effects on cognition and memory formation are largely performed through muscarinic acetylcholine receptors (mAChRs). mAChRs are often preferentially distributed on specialized membrane regions in neurons, but the significance of mAChR localization in modulating neuronal function is not known. Here we show that the Caenorhabditis elegans homolog of the M1/M3/M5 family of mAChRs, gar-3, is expressed in cholinergic motor neurons, and GAR-3-GFP fusion proteins localize to cell bodies where they are enriched at extrasynaptic regions that are in contact with the basal lamina. The GAR-3 N-terminal extracellular domain is necessary and sufficient for this asymmetric distribution, and mutation of a predicted N-linked glycosylation site within the N-terminus disrupts GAR-3-GFP localization. In transgenic animals expressing GAR-3 variants that are no longer asymmetrically localized, synaptic transmission at neuromuscular junctions is impaired and there is a reduction in the abundance of the presynaptic protein sphingosine kinase at release sites. Finally, GAR-3 can be activated by endogenously produced ACh released from neurons that do not directly contact cholinergic motor neurons. Together, our results suggest that humoral activation of asymmetrically localized mAChRs by ACh is an evolutionarily conserved mechanism by which ACh modulates neuronal function.
Collapse
|
11
|
Palorini R, Cammarata FP, Cammarata F, Balestrieri C, Monestiroli A, Vasso M, Gelfi C, Alberghina L, Chiaradonna F. Glucose starvation induces cell death in K-ras-transformed cells by interfering with the hexosamine biosynthesis pathway and activating the unfolded protein response. Cell Death Dis 2013; 4:e732. [PMID: 23868065 PMCID: PMC3730427 DOI: 10.1038/cddis.2013.257] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 06/06/2013] [Accepted: 06/10/2013] [Indexed: 12/28/2022]
Abstract
Cancer cells, which use more glucose than normal cells and accumulate extracellular lactate even under normoxic conditions (Warburg effect), have been reported to undergo cell death under glucose deprivation, whereas normal cells remain viable. As it may be relevant to exploit the molecular mechanisms underlying this biological response to achieve new cancer therapies, in this paper we sought to identify them by using transcriptome and proteome analysis applied to an established glucose-addicted cellular model of transformation, namely, murine NIH-3T3 fibroblasts harboring an oncogenic K-RAS gene, compared with parental cells. Noteworthy is that the analyses performed in high- and low-glucose cultures indicate that reduction of glucose availability induces, especially in transformed cells, a significant increase in the expression of several unfolded protein response (UPR) hallmark genes. We show that this response is strictly associated with transformed cell death, given that its attenuation, by reducing protein translation or by increasing cell protein folding capacity, preserves the survival of transformed cells. Such an effect is also observed by inhibiting c-Jun NH2-terminal kinase, a pro-apoptotic signaling mediator set downstream of UPR. Strikingly, addition of N-acetyl-𝒟-glucosamine, a specific substrate for the hexosamine biosynthesis pathway (HBP), to glucose-depleted cells completely prevents transformed cell death, stressing the important role of glucose in HBP fuelling to ensure UPR attenuation and increased cell survival. Interestingly, these results have been fully recognized in a human model of breast cancer, MDA-MB-231 cells. In conclusion, we show that glucose deprivation, leading to harmful accumulation of unfolded proteins in consequence of a reduction of protein glycosylation, induces a UPR-dependent cell death mechanism. These findings may open the way for new therapeutic strategies to specifically kill glycolytic cancer cells.
Collapse
Affiliation(s)
- R Palorini
- SYSBIO, Centre of Systems Biology, Milano 20126, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|