1
|
Paschinger K, Wöls F, Yan S, Jin C, Vanbeselaere J, Dutkiewicz Z, Arcalis E, Malzl D, Wilson IBH. N-glycan antennal modifications are altered in Caenorhabditis elegans lacking the HEX-4 N-acetylgalactosamine-specific hexosaminidase. J Biol Chem 2023; 299:103053. [PMID: 36813232 PMCID: PMC10060765 DOI: 10.1016/j.jbc.2023.103053] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
Simple organisms are often considered to have simple glycomes, but plentiful paucimannosidic and oligomannosidic glycans overshadow the less abundant N-glycans with highly variable core and antennal modifications; Caenorhabditis elegans is no exception. By use of optimized fractionation and assessing wildtype in comparison to mutant strains lacking either the HEX-4 or HEX-5 β-N-acetylgalactosaminidases, we conclude that the model nematode has a total N-glycomic potential of 300 verified isomers. Three pools of glycans were analyzed for each strain: either PNGase F released and eluted from a reversed-phase C18 resin with either water or 15% methanol or PNGase Ar released. While the water-eluted fractions were dominated by typical paucimannosidic and oligomannosidic glycans and the PNGase Ar-released pools by glycans with various core modifications, the methanol-eluted fractions contained a huge range of phosphorylcholine-modified structures with up to three antennae, sometimes with four N-acetylhexosamine residues in series. There were no major differences between the C. elegans wildtype and hex-5 mutant strains, but the hex-4 mutant strains displayed altered sets of methanol-eluted and PNGase Ar-released pools. In keeping with the specificity of HEX-4, there were more glycans capped with N-acetylgalactosamine in the hex-4 mutants, as compared with isomeric chito-oligomer motifs in the wildtype. Considering that fluorescence microscopy showed that a HEX-4::enhanced GFP fusion protein colocalizes with a Golgi tracker, we conclude that HEX-4 plays a significant role in late-stage Golgi processing of N-glycans in C. elegans. Furthermore, finding more "parasite-like" structures in the model worm may facilitate discovery of glycan-processing enzymes occurring in other nematodes.
Collapse
Affiliation(s)
| | - Florian Wöls
- Department für Chemie, Universität für Bodenkultur, Wien, Austria
| | - Shi Yan
- Department für Chemie, Universität für Bodenkultur, Wien, Austria; Institut für Parasitologie, Veterinärmedizinische Universität, Wien, Austria
| | - Chunsheng Jin
- Institutionen för Biomedicin, Göteborgs universitet, Göteborg, Sweden
| | | | | | - Elsa Arcalis
- Department für angewandte Genetik und Zellbiologie, Universität für Bodenkultur, Wien, Austria
| | - Daniel Malzl
- Department für Chemie, Universität für Bodenkultur, Wien, Austria
| | - Iain B H Wilson
- Department für Chemie, Universität für Bodenkultur, Wien, Austria.
| |
Collapse
|
2
|
Wilson IBH, Yan S, Jin C, Dutkiewicz Z, Rendić D, Palmberger D, Schnabel R, Paschinger K. Increasing Complexity of the N-Glycome During Caenorhabditis Development. Mol Cell Proteomics 2023; 22:100505. [PMID: 36717059 PMCID: PMC7614267 DOI: 10.1016/j.mcpro.2023.100505] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/06/2023] [Accepted: 01/24/2023] [Indexed: 01/30/2023] Open
Abstract
Caenorhabditis elegans is a frequently employed genetic model organism and has been the object of a wide range of developmental, genetic, proteomic, and glycomic studies. Here, using an off-line MALDI-TOF-MS approach, we have analyzed the N-glycans of mixed embryos and liquid- or plate-grown L4 larvae. Of the over 200 different annotatable N-glycan structures, variations between the stages as well as the mode of cultivation were observed. While the embryonal N-glycome appears less complicated overall, the liquid- and plate-grown larvae differ especially in terms of methylation of bisecting fucose, α-galactosylation of mannose, and di-β-galactosylation of core α1,6-fucose. Furthermore, we analyzed the O-glycans by LC-electrospray ionization-MS following β-elimination; especially the embryonal O-glycomes included a set of phosphorylcholine-modified structures, previously not shown to exist in nematodes. However, the set of glycan structures cannot be clearly correlated with levels of glycosyltransferase transcripts in developmental RNA-Seq datasets, but there is an indication for coordinated expression of clusters of potential glycosylation-relevant genes. Thus, there are still questions to be answered in terms of how and why a simple nematode synthesizes such a diverse glycome.
Collapse
Affiliation(s)
- Iain B H Wilson
- Department für Chemie, Universität für Bodenkultur, Wien, Austria.
| | - Shi Yan
- Department für Chemie, Universität für Bodenkultur, Wien, Austria; Institut für Parasitologie, Veterinärmedizinische Universität Wien, Wien, Austria
| | - Chunsheng Jin
- Institutionen för Biomedicin, Göteborgs universitet, Göteborg, Sweden
| | | | - Dubravko Rendić
- Department für Chemie, Universität für Bodenkultur, Wien, Austria
| | | | - Ralf Schnabel
- Institut für Genetik, Technische Universität Braunschweig, Braunschweig, Germany
| | | |
Collapse
|
3
|
Hykollari A, Paschinger K, Wilson IBH. Negative-mode mass spectrometry in the analysis of invertebrate, fungal, and protist N-glycans. MASS SPECTROMETRY REVIEWS 2022; 41:945-963. [PMID: 33955035 PMCID: PMC7616688 DOI: 10.1002/mas.21693] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 03/11/2021] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
The approaches for analysis of N-glycans have radically altered in the last 20 years or so. Due to increased sensitivity, mass spectrometry has become the predominant method in modern glycomics. Here, we summarize recent studies showing that the improved resolution and detection by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has contributed greatly to the discovery of a large range of anionic and zwitterionic N-glycan structures across the different kingdoms of life, whereby MALDI-TOF MS in negative mode is less widely performed than in positive mode. However, its use enables the detection of key fragments indicative of certain sugar modifications such as sulfate, (methyl) phosphate, phosphoethanolamine, (methyl)aminoethylphosphonate, glucuronic, and sialic acid, thereby enabling certain isobaric glycan variations to be distinguished. As we also discuss in this review, complementary approaches such as negative-mode electrospray ionization-MS/MS, Fourier-transform ion cyclotron resonance MS, and ion mobility MS yield, respectively, cross-linkage fragments, high accuracy masses, and isomeric information, thus adding other components to complete the jigsaw puzzle when defining unusual glycan modifications from lower organisms.
Collapse
Affiliation(s)
- Alba Hykollari
- Department für Chemie, Universität für Bodenkultur Wien, Wien, Austria
- VetCore Facility for Research, Veterinärmedizinische Universität Wien, Wien, Austria
| | | | - Iain B. H. Wilson
- Department für Chemie, Universität für Bodenkultur Wien, Wien, Austria
| |
Collapse
|
4
|
Toustou C, Walet-Balieu ML, Kiefer-Meyer MC, Houdou M, Lerouge P, Foulquier F, Bardor M. Towards understanding the extensive diversity of protein N-glycan structures in eukaryotes. Biol Rev Camb Philos Soc 2021; 97:732-748. [PMID: 34873817 PMCID: PMC9300197 DOI: 10.1111/brv.12820] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 11/04/2021] [Accepted: 11/24/2021] [Indexed: 12/12/2022]
Abstract
N‐glycosylation is an important post‐translational modification of proteins that has been highly conserved during evolution and is found in Eukaryota, Bacteria and Archaea. In eukaryotes, N‐glycan processing is sequential, involving multiple specific steps within the secretory pathway as proteins travel through the endoplasmic reticulum and the Golgi apparatus. In this review, we first summarize the different steps of the N‐glycan processing and further describe recent findings regarding the diversity of N‐glycan structures in eukaryotic clades. This comparison allows us to explore the different regulation mechanisms of N‐glycan processing among eukaryotic clades. Recent findings regarding the regulation of protein N‐glycosylation are highlighted, especially the regulation of the biosynthesis of complex‐type N‐glycans through manganese and calcium homeostasis and the specific role of transmembrane protein 165 (TMEM165) for which homologous sequences have been identified in several eukaryotic clades. Further research will be required to characterize the function of TMEM165 homologous sequences in different eukaryotic clades.
Collapse
Affiliation(s)
- Charlotte Toustou
- Normandie Univ, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire végétale (Glyco-MEV) EA4358, Mont-Saint-Aignan, 76821, France
| | - Marie-Laure Walet-Balieu
- Normandie Univ, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire végétale (Glyco-MEV) EA4358, Mont-Saint-Aignan, 76821, France
| | - Marie-Christine Kiefer-Meyer
- Normandie Univ, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire végétale (Glyco-MEV) EA4358, Mont-Saint-Aignan, 76821, France
| | - Marine Houdou
- Univ Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, F-59000, France.,Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, Box 802, Leuven, 3000, Belgium
| | - Patrice Lerouge
- Normandie Univ, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire végétale (Glyco-MEV) EA4358, Mont-Saint-Aignan, 76821, France
| | - François Foulquier
- Univ Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, F-59000, France
| | - Muriel Bardor
- Normandie Univ, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire végétale (Glyco-MEV) EA4358, Mont-Saint-Aignan, 76821, France.,Univ Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, F-59000, France
| |
Collapse
|
5
|
West CM, Malzl D, Hykollari A, Wilson IBH. Glycomics, Glycoproteomics, and Glycogenomics: An Inter-Taxa Evolutionary Perspective. Mol Cell Proteomics 2021; 20:100024. [PMID: 32994314 PMCID: PMC8724618 DOI: 10.1074/mcp.r120.002263] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/21/2020] [Accepted: 09/28/2020] [Indexed: 12/23/2022] Open
Abstract
Glycosylation is a highly diverse set of co- and posttranslational modifications of proteins. For mammalian glycoproteins, glycosylation is often site-, tissue-, and species-specific and diversified by microheterogeneity. Multitudinous biochemical, cellular, physiological, and organismic effects of their glycans have been revealed, either intrinsic to the carrier proteins or mediated by endogenous reader proteins with carbohydrate recognition domains. Furthermore, glycans frequently form the first line of access by or defense from foreign invaders, and new roles for nucleocytoplasmic glycosylation are blossoming. We now know enough to conclude that the same general principles apply in invertebrate animals and unicellular eukaryotes-different branches of which spawned the plants or fungi and animals. The two major driving forces for exploring the glycomes of invertebrates and protists are (i) to understand the biochemical basis of glycan-driven biology in these organisms, especially of pathogens, and (ii) to uncover the evolutionary relationships between glycans, their biosynthetic enzyme genes, and biological functions for new glycobiological insights. With an emphasis on emerging areas of protist glycobiology, here we offer an overview of glycan diversity and evolution, to promote future access to this treasure trove of glycobiological processes.
Collapse
Affiliation(s)
- Christopher M West
- Department of Biochemistry & Molecular Biology, Center for Tropical and Emerging Global Diseases, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA.
| | - Daniel Malzl
- Department für Chemie, Universität für Bodenkultur, Wien, Austria
| | - Alba Hykollari
- Department für Chemie, Universität für Bodenkultur, Wien, Austria; VetCore Facility for Research/Proteomics Unit, Veterinärmedizinische Universität, Vienna, Austria
| | - Iain B H Wilson
- Department für Chemie, Universität für Bodenkultur, Wien, Austria
| |
Collapse
|
6
|
Harvey DJ. NEGATIVE ION MASS SPECTROMETRY FOR THE ANALYSIS OF N-LINKED GLYCANS. MASS SPECTROMETRY REVIEWS 2020; 39:586-679. [PMID: 32329121 DOI: 10.1002/mas.21622] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/13/2019] [Accepted: 12/22/2019] [Indexed: 05/03/2023]
Abstract
N-glycans from glycoproteins are complex, branched structures whose structural determination presents many analytical problems. Mass spectrometry, usually conducted in positive ion mode, often requires extensive sample manipulation, usually by derivatization such as permethylation, to provide the necessary structure-revealing fragment ions. The newer but, so far, lesser used negative ion techniques, on the contrary, provide a wealth of structural information not present in positive ion spectra that greatly simplify the analysis of these compounds and can usually be conducted without the need for derivatization. This review describes the use of negative ion mass spectrometry for the structural analysis of N-linked glycans and emphasises the many advantages that can be gained by this mode of operation. Biosynthesis and structures of the compounds are described followed by methods for release of the glycans from the protein. Methods for ionization are discussed with emphasis on matrix-assisted laser desorption/ionization (MALDI) and methods for producing negative ions from neutral compounds. Acidic glycans naturally give deprotonated species under most ionization conditions. Fragmentation of negative ions is discussed next with particular reference to those ions that are diagnostic for specific features such as the branching topology of the glycans and substitution positions of moieties such as fucose and sulfate, features that are often difficult to identify easily by conventional techniques such as positive ion fragmentation and exoglycosidase digestions. The advantages of negative over positive ions for this structural work are emphasised with an example of a series of glycans where all other methods failed to produce a structure. Fragmentation of derivatized glycans is discussed next, both with respect to derivatives at the reducing terminus of the molecules, and to methods for neutralization of the acidic groups on sialic acids to both stabilize them for MALDI analysis and to produce the diagnostic fragments seen with the neutral glycans. The use of ion mobility, combined with conventional mass spectrometry is described with emphasis on its use to extract clean glycan spectra both before and after fragmentation, to separate isomers and its use to extract additional information from separated fragment ions. A section on applications follows with examples of the identification of novel structures from lower organisms and tables listing the use of negative ions for structural identification of specific glycoproteins, glycans from viruses and uses in the biopharmaceutical industry and in medicine. The review concludes with a summary of the advantages and disadvantages of the technique. © 2020 John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
- Centre for Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Life Sciences Building 85, Highfield Campus, Southampton, SO17 1BJ, United Kingdom
| |
Collapse
|
7
|
Mondragon-Shem K, Wongtrakul-Kish K, Kozak RP, Yan S, Wilson IBH, Paschinger K, Rogers ME, Spencer DIR, Acosta-Serrano A. Insights into the salivary N-glycome of Lutzomyia longipalpis, vector of visceral leishmaniasis. Sci Rep 2020; 10:12903. [PMID: 32737362 PMCID: PMC7395719 DOI: 10.1038/s41598-020-69753-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 07/14/2020] [Indexed: 01/08/2023] Open
Abstract
During Leishmania transmission sand flies inoculate parasites and saliva into the skin of vertebrates. Saliva has anti-haemostatic and anti-inflammatory activities that evolved to facilitate bloodfeeding, but also modulate the host's immune responses. Sand fly salivary proteins have been extensively studied, but the nature and biological roles of protein-linked glycans remain overlooked. Here, we characterised the profile of N-glycans from the salivary glycoproteins of Lutzomyia longipalpis, vector of visceral leishmaniasis in the Americas. In silico predictions suggest half of Lu. longipalpis salivary proteins may be N-glycosylated. SDS-PAGE coupled to LC-MS analysis of sand fly saliva, before and after enzymatic deglycosylation, revealed several candidate glycoproteins. To determine the diversity of N-glycan structures in sand fly saliva, enzymatically released sugars were fluorescently tagged and analysed by HPLC, combined with highly sensitive LC-MS/MS, MALDI-TOF-MS, and exoglycosidase treatments. We found that the N-glycan composition of Lu. longipalpis saliva mostly consists of oligomannose sugars, with Man5GlcNAc2 being the most abundant, and a few hybrid-type species. Interestingly, some glycans appear modified with a group of 144 Da, whose identity has yet to be confirmed. Our work presents the first detailed structural analysis of sand fly salivary glycans.
Collapse
Affiliation(s)
- Karina Mondragon-Shem
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Katherine Wongtrakul-Kish
- Ludger Ltd., Culham Science Centre, Oxfordshire, OX14 3EB, UK
- Australian Research Council Centre of Excellence for Nanoscale Biophotonics, Macquarie University, Sydney, Australia
| | | | - Shi Yan
- Department of Chemistry, University of Natural Resources and Life Sciences, 1190, Vienna, Austria
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine, A-1210, Vienna, Austria
| | - Iain B H Wilson
- Department of Chemistry, University of Natural Resources and Life Sciences, 1190, Vienna, Austria
| | - Katharina Paschinger
- Department of Chemistry, University of Natural Resources and Life Sciences, 1190, Vienna, Austria
| | - Matthew E Rogers
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | | | - Alvaro Acosta-Serrano
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK.
| |
Collapse
|
8
|
Labrada KP, Strobl S, Eckmair B, Blaukopf M, Dutkiewicz Z, Hykollari A, Malzl D, Paschinger K, Yan S, Wilson IBH, Kosma P. Zwitterionic Phosphodiester-Substituted Neoglycoconjugates as Ligands for Antibodies and Acute Phase Proteins. ACS Chem Biol 2020; 15:369-377. [PMID: 31935056 PMCID: PMC7046318 DOI: 10.1021/acschembio.9b00794] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Zwitterionic modifications of glycans, such as phosphorylcholine and phosphoethanolamine, are known from a range of prokaryotic and eukaryotic species and are recognized by mammalian antibodies and pentraxins; however, defined saccharide ligands modified with these zwitterionic moieties for high-throughput studies are lacking. In this study, we prepared and tested example mono- and disaccharides 6-substituted with either phosphorylcholine or phosphoethanolamine as bovine serum albumin neoglycoconjugates or printed in a microarray format for subsequent assessment of their binding to lectins, pentraxins, and antibodies. C-Reactive protein and anti-phosphorylcholine antibodies bound specifically to ligands with phosphorylcholine, but recognition by concanavalin A was abolished or decreased as compared with that to the corresponding nonzwitterionic compounds. Furthermore, in array format, the phosphorylcholine-modified ligands were recognized by IgG and IgM in sera of either non-infected or nematode-infected dogs and pigs. Thereby, these new compounds are defined ligands which allow the assessment of glycan-bound phosphorylcholine as a target of both the innate and adaptive immune systems in mammals.
Collapse
Affiliation(s)
- Karell Pérez Labrada
- Department of Chemistry, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Sebastian Strobl
- Department of Chemistry, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Barbara Eckmair
- Department of Chemistry, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Markus Blaukopf
- Department of Chemistry, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Zuzanna Dutkiewicz
- Department of Chemistry, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Alba Hykollari
- Department of Chemistry, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Daniel Malzl
- Department of Chemistry, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Katharina Paschinger
- Department of Chemistry, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | | | - Iain B. H. Wilson
- Department of Chemistry, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Paul Kosma
- Department of Chemistry, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| |
Collapse
|
9
|
Paschinger K, Wilson IBH. Anionic and zwitterionic moieties as widespread glycan modifications in non-vertebrates. Glycoconj J 2020; 37:27-40. [PMID: 31278613 PMCID: PMC6994554 DOI: 10.1007/s10719-019-09874-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/20/2019] [Accepted: 05/24/2019] [Indexed: 02/07/2023]
Abstract
Glycan structures in non-vertebrates are highly variable; it can be assumed that this is a product of evolution and speciation, not that it is just a random event. However, in animals and protists, there is a relatively limited repertoire of around ten monosaccharide building blocks, most of which are neutral in terms of charge. While two monosaccharide types in eukaryotes (hexuronic and sialic acids) are anionic, there are a number of organic or inorganic modifications of glycans such as sulphate, pyruvate, phosphate, phosphorylcholine, phosphoethanolamine and aminoethylphosphonate that also confer a 'charged' nature (either anionic or zwitterionic) to glycoconjugate structures. These alter the physicochemical properties of the glycans to which they are attached, change their ionisation when analysing them by mass spectrometry and result in different interactions with protein receptors. Here, we focus on N-glycans carrying anionic and zwitterionic modifications in protists and invertebrates, but make some reference to O-glycans, glycolipids and glycosaminoglycans which also contain such moieties. The conclusion is that 'charged' glycoconjugates are a widespread, but easily overlooked, feature of 'lower' organisms.
Collapse
Affiliation(s)
| | - Iain B H Wilson
- Department für Chemie, Universität für Bodenkultur, 1190, Wien, Austria.
| |
Collapse
|
10
|
Tjondro HC, Loke I, Chatterjee S, Thaysen-Andersen M. Human protein paucimannosylation: cues from the eukaryotic kingdoms. Biol Rev Camb Philos Soc 2019; 94:2068-2100. [PMID: 31410980 DOI: 10.1111/brv.12548] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 07/10/2019] [Accepted: 07/17/2019] [Indexed: 12/11/2022]
Abstract
Paucimannosidic proteins (PMPs) are bioactive glycoproteins carrying truncated α- or β-mannosyl-terminating asparagine (N)-linked glycans widely reported across the eukaryotic domain. Our understanding of human PMPs remains limited, despite findings documenting their existence and association with human disease glycobiology. This review comprehensively surveys the structures, biosynthetic routes and functions of PMPs across the eukaryotic kingdoms with the aim of synthesising an improved understanding on the role of protein paucimannosylation in human health and diseases. Convincing biochemical, glycoanalytical and biological data detail a vast structural heterogeneity and fascinating tissue- and subcellular-specific expression of PMPs within invertebrates and plants, often comprising multi-α1,3/6-fucosylation and β1,2-xylosylation amongst other glycan modifications and non-glycan substitutions e.g. O-methylation. Vertebrates and protists express less-heterogeneous PMPs typically only comprising variable core fucosylation of bi- and trimannosylchitobiose core glycans. In particular, the Manα1,6Manβ1,4GlcNAc(α1,6Fuc)β1,4GlcNAcβAsn glycan (M2F) decorates various human neutrophil proteins reportedly displaying bioactivity and structural integrity demonstrating that they are not degradation products. Less-truncated paucimannosidic glycans (e.g. M3F) are characteristic glycosylation features of proteins expressed by human cancer and stem cells. Concertedly, these observations suggest the involvement of human PMPs in processes related to innate immunity, tumorigenesis and cellular differentiation. The absence of human PMPs in diverse bodily fluids studied under many (patho)physiological conditions suggests extravascular residence and points to localised functions of PMPs in peripheral tissues. Absence of PMPs in Fungi indicates that paucimannosylation is common, but not universally conserved, in eukaryotes. Relative to human PMPs, the expression of PMPs in plants, invertebrates and protists is more tissue-wide and constitutive yet, similar to their human counterparts, PMP expression remains regulated by the physiology of the producing organism and PMPs evidently serve essential functions in development, cell-cell communication and host-pathogen/symbiont interactions. In most PMP-producing organisms, including humans, the N-acetyl-β-hexosaminidase isoenzymes and linkage-specific α-mannosidases are glycoside hydrolases critical for generating PMPs via N-acetylglucosaminyltransferase I (GnT-I)-dependent and GnT-I-independent truncation pathways. However, the identity and structure of many species-specific PMPs in eukaryotes, their biosynthetic routes, strong tissue- and development-specific expression, and diverse functions are still elusive. Deep exploration of these PMP features involving, for example, the characterisation of endogenous PMP-recognising lectins across a variety of healthy and N-acetyl-β-hexosaminidase-deficient human tissue types and identification of microbial adhesins reactive to human PMPs, are amongst the many tasks required for enhanced insight into the glycobiology of human PMPs. In conclusion, the literature supports the notion that PMPs are significant, yet still heavily under-studied biomolecules in human glycobiology that serve essential functions and create structural heterogeneity not dissimilar to other human N-glycoprotein types. Human PMPs should therefore be recognised as bioactive glycoproteins that are distinctly different from the canonical N-glycoprotein classes and which warrant a more dedicated focus in glycobiological research.
Collapse
Affiliation(s)
- Harry C Tjondro
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Ian Loke
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales, 2109, Australia.,Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Sayantani Chatterjee
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Morten Thaysen-Andersen
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales, 2109, Australia
| |
Collapse
|
11
|
Abstract
Many invertebrates are either parasites themselves or vectors involved in parasite transmission; thereby, the interactions of parasites with final or intermediate hosts are often mediated by glycans. Therefore, it is of interest to compare the glycan structures or motifs present across invertebrate species. While a typical vertebrate modification such as sialic acid is rare in lower animals, antennal and core modifications of N-glycans are highly varied and range from core fucose, galactosylated fucose, fucosylated galactose, methyl groups, glucuronic acid and sulphate through to addition of zwitterionic moieties (phosphorylcholine, phosphoethanolamine and aminoethylphosphonate). Only in some cases are the enzymatic bases and the biological function of these modifications known. We are indeed still in the phase of discovering invertebrate glycomes primarily using mass spectrometry, but molecular biology and microarraying techniques are complementary to the determination of novel glycan structures and their functions.
Collapse
|
12
|
Du T, Ouyang H, Voglmeir J, Wilson IBH, Jin C. Aspergillus fumigatus Mnn9 is responsible for mannan synthesis and required for covalent linkage of mannoprotein to the cell wall. Fungal Genet Biol 2019; 128:20-28. [PMID: 30904668 DOI: 10.1016/j.fgb.2019.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/17/2019] [Accepted: 03/19/2019] [Indexed: 12/25/2022]
Abstract
Owing to the essential role in protection of the Aspergillus fumigatus cell against human defense reactions, its cell wall has long been taken as a promising antifungal target. The cell wall of A. fumigatus composed of chitin, glucan and galactomannan and mannoproteins. Although galactomannan has been used as a diagnostic target for a long time, its biosynthesis remains unknown in A. fumigatus. In this study, a putative α1,6-mannosyltransferase gene mnn9 was identified in A. fumigatus. Deletion of the mnn9 gene resulted in an increased sensitivity to calcofluor white, Congo red, or hygromycin B as well as in reduced cell wall components and abnormal polarity. Although there was no major effect on N-glycan synthesis, covalently-linked cell wall mannoprotein Mp1 was significantly reduced in the mutant. Based on our results, we propose that Mnn9p is a mannosyltransferase responsible for the formation of the α-mannan in cell wall mannoproteins, potentially via elongation of O-linked mannose chains.
Collapse
Affiliation(s)
- Ting Du
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing, China
| | - Haomiao Ouyang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Josef Voglmeir
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna A-1190, Austria
| | - Iain B H Wilson
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna A-1190, Austria
| | - Cheng Jin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Guangxi Academy of Sciences, Nanning 530007, Guangxi, China.
| |
Collapse
|
13
|
Obregón A, Flores MS, Rangel R, Arévalo K, Maldonado G, Quintero I, Galán L. Characterization of N-glycosylations in Entamoeba histolytica ubiquitin. Exp Parasitol 2019; 196:38-47. [DOI: 10.1016/j.exppara.2018.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 11/10/2018] [Accepted: 11/13/2018] [Indexed: 12/30/2022]
|
14
|
Yan S, Wang H, Schachter H, Jin C, Wilson IBH, Paschinger K. Ablation of N-acetylglucosaminyltransferases in Caenorhabditis induces expression of unusual intersected and bisected N-glycans. Biochim Biophys Acta Gen Subj 2018; 1862:2191-2203. [PMID: 29981898 PMCID: PMC6173287 DOI: 10.1016/j.bbagen.2018.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/30/2018] [Accepted: 07/04/2018] [Indexed: 12/17/2022]
Abstract
The modification in the Golgi of N-glycans by N-acetylglucosaminyltransferase I (GlcNAc-TI, MGAT1) can be considered to be a hallmark of multicellular eukaryotes as it is found in all metazoans and plants, but rarely in unicellular organisms. The enzyme is key for the normal processing of N-glycans to either complex or paucimannosidic forms, both of which are found in the model nematode Caenorhabditis elegans. Unusually, this organism has three different GlcNAc-TI genes (gly-12, gly-13 and gly-14); therefore, a complete abolition of GlcNAc-TI activity required the generation of a triple knock-out strain. Previously, the compositions of N-glycans from this mutant were described, but no detailed structures. Using an off-line HPLC-MALDI-TOF-MS approach combined with exoglycosidase digestions and MS/MS, we reveal that the multiple hexose residues of the N-glycans of the gly-12;gly-13;gly-14 triple mutant are not just mannose, but include galactoses in three different positions (β-intersecting, β-bisecting and α-terminal) on isomeric forms of Hex4-8HexNAc2 structures; some of these structures are fucosylated and/or methylated. Thus, the N-glycomic repertoire of Caenorhabditis is even wider than expected and exhibits a large degree of plasticity even in the absence of key glycan processing enzymes from the Golgi apparatus.
Collapse
Affiliation(s)
- Shi Yan
- Department für Chemie, Universität für Bodenkultur, 1190 Wien, Austria,Institut für Parasitologie, Veterinärmedizinische Universität Wien, 1210 Wien, Austria
| | - Huijie Wang
- Department für Chemie, Universität für Bodenkultur, 1190 Wien, Austria
| | - Harry Schachter
- Hospital for Sick Children and University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Chunsheng Jin
- Institutionen för Biomedicin, Göteborgs universitet, 405 30 Göteborg, Sweden
| | - Iain B. H. Wilson
- Department für Chemie, Universität für Bodenkultur, 1190 Wien, Austria,To whom correspondence should be addressed:
| | | |
Collapse
|
15
|
Hykollari A, Malzl D, Eckmair B, Vanbeselaere J, Scheidl P, Jin C, Karlsson NG, Wilson IBH, Paschinger K. Isomeric Separation and Recognition of Anionic and Zwitterionic N-glycans from Royal Jelly Glycoproteins. Mol Cell Proteomics 2018; 17:2177-2196. [PMID: 30104209 DOI: 10.1074/mcp.ra117.000462] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 08/13/2018] [Indexed: 01/03/2023] Open
Abstract
Royal jelly has received attention because of its necessity for the development of queen honeybees as well as claims of benefits on human health; this product of the hypopharyngeal glands of worker bees contains a large number of proteins, some of which have been claimed to have various biological effects only in their glycosylated state. However, although there have been glycomic and glycoproteomic analyses in the past, none of the glycan structures previously defined would appear to have potential to trigger specific biological functions. In the current study, whole royal jelly as well as single protein bands were subject to off-line LC-MALDI-TOF MS glycomic analyses, complemented by permethylation, Western blotting and arraying data. Similarly to recent in-depth studies on other insect species, previously overlooked glucuronic acid termini, sulfation of mannose residues and core β-mannosylation of the N-glycans were found; additionally, a relatively rare zwitterionic modification with phosphoethanolamine is present, in contrast to the phosphorylcholine occurring in lepidopteran species. Indicative of tissue-specific remodelling of glycans in the Golgi apparatus of hypopharyngeal gland cells, only a low amount of fucosylated or paucimannosidic glycans were detected as compared with other insect samples or even bee venom. The unusual modifications of hybrid and multiantennary structures defined here may not only have a physiological role in honeybee development, but represent epitopes recognized by pentraxins with roles in animal innate immunity.
Collapse
Affiliation(s)
- Alba Hykollari
- From the ‡Department für Chemie, Universität für Bodenkultur, 1190 Wien, Austria
| | - Daniel Malzl
- From the ‡Department für Chemie, Universität für Bodenkultur, 1190 Wien, Austria
| | - Barbara Eckmair
- From the ‡Department für Chemie, Universität für Bodenkultur, 1190 Wien, Austria
| | - Jorick Vanbeselaere
- From the ‡Department für Chemie, Universität für Bodenkultur, 1190 Wien, Austria
| | - Patrick Scheidl
- From the ‡Department für Chemie, Universität für Bodenkultur, 1190 Wien, Austria
| | - Chunsheng Jin
- §Institutionen för Biomedicin, Göteborgs universitet, 405 30 Göteborg, Sweden
| | - Niclas G Karlsson
- §Institutionen för Biomedicin, Göteborgs universitet, 405 30 Göteborg, Sweden
| | - Iain B H Wilson
- From the ‡Department für Chemie, Universität für Bodenkultur, 1190 Wien, Austria
| | - Katharina Paschinger
- From the ‡Department für Chemie, Universität für Bodenkultur, 1190 Wien, Austria;
| |
Collapse
|
16
|
Mazalovska M, Kouokam JC. Lectins as Promising Therapeutics for the Prevention and Treatment of HIV and Other Potential Coinfections. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3750646. [PMID: 29854749 PMCID: PMC5964492 DOI: 10.1155/2018/3750646] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/20/2018] [Accepted: 04/01/2018] [Indexed: 12/20/2022]
Abstract
Human immunodeficiency virus-acquired immunodeficiency syndrome (HIV/AIDS) remains a global health problem. Current therapeutics specifically target the viral pathogen at various stages of its life cycle, although complex interactions between HIV and other pathogenic organisms are evident. Targeting HIV and concomitant infectious pathogens simultaneously, both by therapeutic regimens and in prevention strategies, would help contain the AIDS pandemic. Lectins, a ubiquitous group of proteins that specifically bind glycosylated molecules, are interesting compounds that could be used for this purpose, with demonstrated anti-HIV properties. In addition, potential coinfecting pathogens, including other enveloped viruses, bacteria, yeasts and fungi, and protozoa, display sugar-coated macromolecules on their surfaces, making them potential targets of lectins. This review summarizes the currently available findings suggesting that lectins should be further developed to simultaneously fight the AIDS pandemic and concomitant infections in HIV infected individuals.
Collapse
Affiliation(s)
- Milena Mazalovska
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Center for Predictive Medicine, University of Louisville, Louisville, KY 40202, USA
| | - J. Calvin Kouokam
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Center for Predictive Medicine, University of Louisville, Louisville, KY 40202, USA
- James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
17
|
Šesták S, Bella M, Klunda T, Gurská S, Džubák P, Wöls F, Wilson IBH, Sladek V, Hajdúch M, Poláková M, Kóňa J. N-Benzyl Substitution of Polyhydroxypyrrolidines: The Way to Selective Inhibitors of Golgi α-Mannosidase II. ChemMedChem 2018; 13:373-383. [PMID: 29323461 DOI: 10.1002/cmdc.201700607] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 01/04/2018] [Indexed: 12/24/2022]
Abstract
Inhibition of the biosynthesis of complex N-glycans in the Golgi apparatus influences progress of tumor growth and metastasis. Golgi α-mannosidase II (GMII) has become a therapeutic target for drugs with anticancer activities. One critical task for successful application of GMII drugs in medical treatments is to decrease their unwanted co-inhibition of lysosomal α-mannosidase (LMan), a weakness of all known potent GMII inhibitors. A series of novel N-substituted polyhydroxypyrrolidines was synthesized and tested with modeled GH38 α-mannosidases from Drosophila melanogaster (GMIIb and LManII). The most potent structures inhibited GMIIb (Ki =50-76 μm, as determined by enzyme assays) with a significant selectivity index of IC50 (LManII)/IC50 (GMIIb) >100. These compounds also showed inhibitory activities in in vitro assays with cancer cell lines (leukemia, IC50 =92-200 μm) and low cytotoxic activities in normal fibroblast cell lines (IC50 >200 μm). In addition, they did not show any significant inhibitory activity toward GH47 Aspergillus saitoiα1,2-mannosidase. An appropriate stereo configuration of hydroxymethyl and benzyl functional groups on the pyrrolidine ring of the inhibitor may lead to an inhibitor with the required selectivity for the active site of a target α-mannosidase.
Collapse
Affiliation(s)
- Sergej Šesták
- Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovakia
| | - Maroš Bella
- Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovakia
| | - Tomáš Klunda
- Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovakia
| | - Soňa Gurská
- Laboratory of Experimental Medicine, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University and University Hospital in Olomouc, Puškinova 6, 775 20, Olomouc, Czech Republic
| | - Petr Džubák
- Laboratory of Experimental Medicine, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University and University Hospital in Olomouc, Puškinova 6, 775 20, Olomouc, Czech Republic
| | - Florian Wöls
- Department of Chemistry, University of Natural Resources and Life Sciences, 1190, Vienna, Austria
| | - Iain B H Wilson
- Department of Chemistry, University of Natural Resources and Life Sciences, 1190, Vienna, Austria
| | - Vladimir Sladek
- Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovakia
| | - Marián Hajdúch
- Laboratory of Experimental Medicine, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University and University Hospital in Olomouc, Puškinova 6, 775 20, Olomouc, Czech Republic
| | - Monika Poláková
- Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovakia
| | - Juraj Kóňa
- Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovakia
| |
Collapse
|
18
|
Yan S, Vanbeselaere J, Jin C, Blaukopf M, Wöls F, Wilson IBH, Paschinger K. Core Richness of N-Glycans of Caenorhabditis elegans: A Case Study on Chemical and Enzymatic Release. Anal Chem 2017; 90:928-935. [PMID: 29182268 PMCID: PMC5757221 DOI: 10.1021/acs.analchem.7b03898] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Despite years of research, the glycome of the model nematode Caenorhabditis elegans is still not fully understood. Certainly, data over the years have indicated that this organism synthesizes unusual N-glycans with a range of galactose and fucose modifications on the Man2-3GlcNAc2 core region. Previously, up to four fucose residues were detected on its N-glycans, despite these lacking the fucosylated antennae typical of many other eukaryotes; some of these fucose residues are capped with hexose residues as shown by the studies of us and others. There have, though, been contrasting reports regarding the maximal number of fucose substitutions in C. elegans, which in part may be due to different methodological approaches, including use of either peptide:N-glycosidases F and A (PNGase F and A) or anhydrous hydrazine to cleave the N-glycans from glycopeptides. Here we compare the use of hydrazine with that of a new enzyme (rice PNGase Ar) and show that both enable release of glycans with more sugar residues on the proximal GlcNAc than previously resolved. By use of exoglycosidase sequencing, in conjunction with high-performance liquid chromatography (HPLC) and matrix-assisted laser desorption ionization time-of-flight tandem mass spectrometry (MALDI-TOF MS/MS), we now reveal that actually up to five fucose residues modify the core region of C. elegans N-glycans and that the α1,3-fucose on the reducing terminus can be substituted by an α-linked galactose. Thus, traditional PNGase F and A release may be insufficient for release of the more highly core-modified N-glycans, especially those occurring in C. elegans, but novel enzymes can compete against chemical methods in terms of safety, ease of cleanup, and quality of resulting glycomic data.
Collapse
Affiliation(s)
- Shi Yan
- Department für Chemie, Universität für Bodenkultur , 1190 Wien, Austria
| | | | - Chunsheng Jin
- Institutionen för Biomedicin, Göteborgs Universitet , 405 30 Göteborg, Sweden
| | - Markus Blaukopf
- Department für Chemie, Universität für Bodenkultur , 1190 Wien, Austria
| | - Florian Wöls
- Department für Chemie, Universität für Bodenkultur , 1190 Wien, Austria
| | - Iain B H Wilson
- Department für Chemie, Universität für Bodenkultur , 1190 Wien, Austria
| | | |
Collapse
|
19
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2011-2012. MASS SPECTROMETRY REVIEWS 2017; 36:255-422. [PMID: 26270629 DOI: 10.1002/mas.21471] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 01/15/2015] [Indexed: 06/04/2023]
Abstract
This review is the seventh update of the original article published in 1999 on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2012. General aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, and fragmentation are covered in the first part of the review and applications to various structural types constitute the remainder. The main groups of compound are oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Much of this material is presented in tabular form. Also discussed are medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. © 2015 Wiley Periodicals, Inc. Mass Spec Rev 36:255-422, 2017.
Collapse
Affiliation(s)
- David J Harvey
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford, OX1 3QU, UK
| |
Collapse
|
20
|
Haserick JR, Leon DR, Samuelson J, Costello CE. Asparagine-Linked Glycans of Cryptosporidium parvum Contain a Single Long Arm, Are Barely Processed in the Endoplasmic Reticulum (ER) or Golgi, and Show a Strong Bias for Sites with Threonine. Mol Cell Proteomics 2017; 16:S42-S53. [PMID: 28179475 PMCID: PMC5393390 DOI: 10.1074/mcp.m116.066035] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/05/2017] [Indexed: 12/27/2022] Open
Abstract
Cryptosporidium parvum causes severe diarrhea in infants in developing countries and in immunosuppressed persons, including those with AIDS. We are interested in the Asn-linked glycans (N-glycans) of C. parvum, because (1) the N-glycan precursor is predicted to contain five mannose and two glucose residues on a single long arm versus nine mannose and three glucose residues on the three-armed structure common in host N-glycans, (2) C. parvum is a rare eukaryote that lacks the machinery for N-glycan-dependent quality control of protein folding in the lumen of the Endoplasmic Reticulum (ER), and (3) ER and Golgi mannosidases, as well as glycosyltransferases that build complex N-glycans, are absent from the predicted proteome. The C. parvum N-glycans reported here, which were determined using a combination of collision-induced dissociation and electronic excitation dissociation, contain a single, unprocessed mannose arm ± terminal glucose on the trimannosyl chitobiose core. Upon nanoUPLC-MS/MS separation and analysis of the C. parvum tryptic peptides, the total ion and extracted oxonium ion chromatograms delineated 32 peptides with occupied N-glycan sites; these were derived from 16 glycoproteins. Although the number of potential N-glycan sites with Thr (NxT) is only about twice that with Ser (NxS), almost 90% of the occupied N-glycan sites contain NxT. The two most abundant C. parvum proteins modified with N-glycans were an immunodominant antigen on the surface of sporozoites (gp900) and the possible oocyst wall protein 1 (POWP1). Seven other glycoproteins with N-glycans were unique to C. parvum; five shared common ancestry with other apicomplexans; two glycoproteins shared common ancestry with many organisms. In summary, C. parvum N-glycans are remarkable for the absence of ER and Golgi modification and for the strong bias toward occupancy of N-glycan motifs containing Thr.
Collapse
Affiliation(s)
- John R Haserick
- From the ‡Center for Biomedical Mass Spectrometry, Department of Biochemistry, Cell Biology and Genomics, Boston University School of Medicine, Boston, Massachusetts 02118 and
- §Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts 02118
| | - Deborah R Leon
- From the ‡Center for Biomedical Mass Spectrometry, Department of Biochemistry, Cell Biology and Genomics, Boston University School of Medicine, Boston, Massachusetts 02118 and
| | - John Samuelson
- §Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts 02118
| | - Catherine E Costello
- From the ‡Center for Biomedical Mass Spectrometry, Department of Biochemistry, Cell Biology and Genomics, Boston University School of Medicine, Boston, Massachusetts 02118 and
| |
Collapse
|
21
|
The underestimated N-glycomes of lepidopteran species. Biochim Biophys Acta Gen Subj 2017; 1861:699-714. [PMID: 28077298 DOI: 10.1016/j.bbagen.2017.01.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 12/23/2016] [Accepted: 01/06/2017] [Indexed: 11/20/2022]
Abstract
BACKGROUND Insects are significant to the environment, agriculture, health and biotechnology. Many of these aspects display some relationship to glycosylation, e.g., in case of pathogen binding or production of humanised antibodies; for a long time, it has been considered that insect N-glycosylation potentials are rather similar and simple, but as more species are glycomically analysed in depth, it is becoming obvious that there is indeed a large structural diversity and interspecies variability. METHODS Using an off-line LC-MALDI-TOF MS approach, we have analysed the N-glycomes of two lepidopteran species (the cabbage looper Trichoplusia ni and the gypsy moth Lymantria dispar) as well as of the commonly-used T. ni High Five cell line. RESULTS We detected not only sulphated, glucuronylated, core difucosylated and Lewis-like antennal fucosylated structures, but also the zwitterion phosphorylcholine on antennal GlcNAc residues, a modification otherwise familiar from nematodes; in L. dispar, N-glycans with glycolipid-like antennae containing α-linked N-acetylgalactosamine were also revealed. CONCLUSION The lepidopteran glycomes analysed not only display core α1,3-fucosylation, which is foreign to mammals, but also up to 5% anionic and/or zwitterionic glycans previously not found in these species. SIGNIFICANCE The occurrence of anionic and zwitterionic glycans in the Lepidoptera data is not only of glycoanalytical and evolutionary interest, but is of biotechnological relevance as lepidopteran cell lines are potential factories for recombinant glycoprotein production.
Collapse
|
22
|
Abstract
N-glycans from invertebrates and protists have often unusual structures which present analytical challenges. Both core and antennal modifications can be quite different from the more familiar vertebrate glycan motifs; thereby, contrary to the concept that "simple" organisms have "simple" N-glycans, rather complex oligosaccharides structures, including zwitterionic and anionic ones, have been found in a range of species. Thus, to facilitate the optimized elucidation of the maximal possible range of structures, the analytical workflow for glycomics of these organisms should include sequential release and fractionation steps. Peptide:N-glycosidase F is sufficient to isolate N-glycans from fungi and some protists, but in most invertebrates core α1,3-fucose is present, so release of the glycans from glycopeptides with peptide:N-glycosidases A is required. Subsequent solid-phase extraction with graphitized carbon and reversed phase resins enables different classes of N-glycans to be separated prior to high-pressure liquid chromatography (HPLC) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Depending on the types and numbers of glycans present, either reversed- or normal-phase HPLC (or both in series) enable even single isomeric or isobaric structures to be separated prior to MALDI-TOF MS and MS/MS. The use of enzymatic or chemical treatments allows further insights to be gained, although some glycan modifications (especially methylation) are resistant. Using a battery of methods, sometimes up to 100 structures from a single organism can be assigned, a complexity which raises evolutionary questions regarding the function of these glycans.
Collapse
Affiliation(s)
- Alba Hykollari
- Department für Chemie, Universität für Bodenkultur, Muthgasse 18, 1190, Vienna, Austria
| | - Katharina Paschinger
- Department für Chemie, Universität für Bodenkultur, Muthgasse 18, 1190, Vienna, Austria
| | - Barbara Eckmair
- Department für Chemie, Universität für Bodenkultur, Muthgasse 18, 1190, Vienna, Austria
| | - Iain B H Wilson
- Department für Chemie, Universität für Bodenkultur, Muthgasse 18, 1190, Vienna, Austria.
| |
Collapse
|
23
|
Jiménez-Castells C, Vanbeselaere J, Kohlhuber S, Ruttkowski B, Joachim A, Paschinger K. Gender and developmental specific N-glycomes of the porcine parasite Oesophagostomum dentatum. Biochim Biophys Acta Gen Subj 2016; 1861:418-430. [PMID: 27751954 DOI: 10.1016/j.bbagen.2016.10.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/06/2016] [Accepted: 10/13/2016] [Indexed: 12/31/2022]
Abstract
BACKGROUND The porcine nodule worm Oesophagostomum dentatum is a strongylid class V nematode rather closely related to the model organism Caenorhabditis elegans. However, in contrast to the non-parasitic C. elegans, the parasitic O. dentatum is an obligate sexual organism, which makes both a gender and developmental glycomic comparison possible. METHODS Different enzymatic and chemical methods were used to release N-glycans from male and female O. dentatum as well as from L3 and L4 larvae. Glycans were analysed by MALDI-TOF MS after either 2D-HPLC (normal then reversed phase) or fused core RP-HPLC. RESULTS Whereas the L3 N-glycome was simpler and more dominated by phosphorylcholine-modified structures, the male and female worms express a wide range of core fucosylated N-glycans with up to three fucose residues. Seemingly, simple methylated paucimannosidic structures can be considered 'male', while methylation of fucosylated glycans was more pronounced in females. On the other hand, while many of the fucosylated paucimannosidic glycans are identical with examples from other nematode species, but simpler than the tetrafucosylated glycans of C. elegans, there is a wide range of phosphorylcholine-modified glycans with extended HexNAc2-4PC2-4 motifs not observed in our previous studies on other nematodes. CONCLUSION The interspecies tendency of class V nematodes to share most, but not all, N-glycans applies also to O. dentatum; furthermore, we establish, for the first time in a parasitic nematode, that glycomes vary upon development and sexual differentiation. GENERAL SIGNIFICANCE Unusual methylated, core fucosylated and phosphorylcholine-containing N-glycans vary between stages and genders in a parasitic nematode.
Collapse
Affiliation(s)
| | | | - Sonja Kohlhuber
- Department für Chemie, Universität für Bodenkultur, 1190 Wien, Austria
| | - Bärbel Ruttkowski
- Institut für Parasitologie, Department für Pathobiologie, Veterinärmedizinische Universität, A-1210 Wien, Austria
| | - Anja Joachim
- Institut für Parasitologie, Department für Pathobiologie, Veterinärmedizinische Universität, A-1210 Wien, Austria
| | | |
Collapse
|
24
|
Pihikova D, Pakanova Z, Nemcovic M, Barath P, Belicky S, Bertok T, Kasak P, Mucha J, Tkac J. Sweet characterisation of prostate specific antigen using electrochemical lectin-based immunosensor assay and MALDI TOF/TOF analysis: Focus on sialic acid. Proteomics 2016; 16:3085-3095. [PMID: 26920336 DOI: 10.1002/pmic.201500463] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 01/21/2016] [Accepted: 02/22/2016] [Indexed: 12/21/2022]
Abstract
The construction of a sensitive electrochemical lectin-based immunosensor for detection of a prostate specific antigen (PSA) is shown here. Three lectins with different carbohydrate specificities were used in this study to glycoprofile PSA, which is the most common biomarker for prostate cancer (PCa) diagnosis. The biosensor showed presence of α-L-fucose and α-(2,6)-linked terminal sialic acid within PSA´s glycan with high abundance, while only traces of α-(2,3)-linked terminal sialic acid were found. MALDI TOF/TOF mass spectrometry was applied to validate results obtained by the biosensor with a focus on determination of a type of sialic acid linkage by two methods. The first direct comparison of electrochemical immunosensor assay employing lectins for PSA glycoprofiling with mass spectrometric techniques is provided here and both methods show significant agreement. Thus, electrochemical lectin-based immunosensor has potential to be applied for prostate cancer diagnosis.
Collapse
Affiliation(s)
- Dominika Pihikova
- Department of Glycobiotechnology, Slovak Academy of Sciences, Institute of Chemistry, Bratislava, Slovak Republic
| | - Zuzana Pakanova
- Center of Excellence for Glycomics, Slovak Academy of Sciences, Institute of Chemistry, Bratislava, Slovak Republic
| | - Marek Nemcovic
- Center of Excellence for Glycomics, Slovak Academy of Sciences, Institute of Chemistry, Bratislava, Slovak Republic
| | - Peter Barath
- Center of Excellence for Glycomics, Slovak Academy of Sciences, Institute of Chemistry, Bratislava, Slovak Republic
| | - Stefan Belicky
- Department of Glycobiotechnology, Slovak Academy of Sciences, Institute of Chemistry, Bratislava, Slovak Republic
| | - Tomas Bertok
- Department of Glycobiotechnology, Slovak Academy of Sciences, Institute of Chemistry, Bratislava, Slovak Republic
| | - Peter Kasak
- Centre for Advanced Materials, Qatar University, Doha, Qatar
| | - Jan Mucha
- Center of Excellence for Glycomics, Slovak Academy of Sciences, Institute of Chemistry, Bratislava, Slovak Republic
| | - Jan Tkac
- Department of Glycobiotechnology, Slovak Academy of Sciences, Institute of Chemistry, Bratislava, Slovak Republic
| |
Collapse
|
25
|
Ahmed UK, Maller NC, Iqbal AJ, Al-Riyami L, Harnett W, Raynes JG. The Carbohydrate-linked Phosphorylcholine of the Parasitic Nematode Product ES-62 Modulates Complement Activation. J Biol Chem 2016; 291:11939-53. [PMID: 27044740 PMCID: PMC4882459 DOI: 10.1074/jbc.m115.702746] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Indexed: 12/04/2022] Open
Abstract
Parasitic nematodes manufacture various carbohydrate-linked phosphorylcholine (PCh)-containing molecules, including ES-62, a protein with an N-linked glycan terminally substituted with PCh. The PCh component is biologically important because it is required for immunomodulatory effects. We showed that most ES-62 was bound to a single protein, C-reactive protein (CRP), in normal human serum, displaying a calcium-dependent, high-avidity interaction and ability to form large complexes. Unexpectedly, CRP binding to ES-62 failed to efficiently activate complement as far as the C3 convertase stage in comparison with PCh-BSA and PCh-containing Streptococcus pneumoniae cell wall polysaccharide. C1q capture assays demonstrated an ES-62-CRP-C1q interaction in serum. The three ligands all activated C1 and generated C4b to similar extents. However, a C2a active site was not generated following ES-62 binding to CRP, demonstrating that C2 cleavage was far less efficient for ES-62-containing complexes. We proposed that failure of C2 cleavage was due to the flexible nature of carbohydrate-bound PCh and that reduced proximity of the C1 complex was the reason that C2 was poorly cleaved. This was confirmed using synthetic analogues that were similar to ES-62 only in respect of having a flexible PCh. Furthermore, ES-62 was shown to deplete early complement components, such as the rate-limiting C4, following CRP interaction and thereby inhibit classical pathway activation. Thus, flexible PCh-glycan represents a novel mechanism for subversion of complement activation. These data illustrate the importance of the rate-limiting C4/C2 stage of complement activation and reveal a new addition to the repertoire of ES-62 immunomodulatory mechanisms with possible therapeutic applications.
Collapse
Affiliation(s)
- Umul Kulthum Ahmed
- From the Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT and
| | - N Claire Maller
- From the Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT and
| | - Asif J Iqbal
- From the Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT and
| | - Lamyaa Al-Riyami
- the Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, United Kingdom
| | - William Harnett
- the Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, United Kingdom
| | - John G Raynes
- From the Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT and
| |
Collapse
|
26
|
Yan S, Wilson IBH, Paschinger K. Comparison of RP-HPLC modes to analyse the N-glycome of the free-living nematode Pristionchus pacificus. Electrophoresis 2016; 36:1314-29. [PMID: 25639343 DOI: 10.1002/elps.201400528] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 01/09/2015] [Accepted: 01/11/2015] [Indexed: 11/09/2022]
Abstract
Pristionchus pacificus is a free-living nematode increasingly used as an organism for comparison to the more familiar model Caenorhabditis elegans. In this study, we examined the N-glycans of this organism isolated after serial release with peptide:N-glycosidases F and A; after fluorescent labelling with 2-aminopyridine, chromatographic fractionation by three types of RP-HPLC (with either classical C18, fused core C18 or alkylamide-bonded phases) followed by mass spectrometric analyses revealed key features of its N-glycome. In addition to paucimannosidic and oligomannosidic glycans typical of invertebrates, N-glycans with two core fucose residues were detected. Furthermore, a range of glycans carrying up to three phosphorylcholine residues was observed whereas, unlike C. elegans, no tetrafucosylated N-glycans were detected. Structures with three fucose residues, unusual methylation of core α1,3-fucose or with galactosylated fucose motifs were found in low amounts; these features may correlate with a different ensemble or expression of glycosyltransferase genes as compared to C. elegans. From an analytical perspective, both the alkylamide RP-amide and fused core C18 columns, as compared to a classical C18 material, offer advantages in terms of resolution and of elution properties, as some minor pyridylamino-labelled glycans (e.g. those carrying phosphorylcholine) appear in earlier fractions and so potential losses of such structures due to insufficient gradient length can be avoided.
Collapse
Affiliation(s)
- Shi Yan
- Department für Chemie, Universität für Bodenkultur, Wien, Austria
| | - Iain B H Wilson
- Department für Chemie, Universität für Bodenkultur, Wien, Austria
| | | |
Collapse
|
27
|
Analysis of zwitterionic and anionic N-linked glycans from invertebrates and protists by mass spectrometry. Glycoconj J 2016; 33:273-83. [PMID: 26899268 PMCID: PMC4891362 DOI: 10.1007/s10719-016-9650-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 12/11/2015] [Accepted: 01/18/2016] [Indexed: 11/04/2022]
Abstract
Glycomic analyses over the years have revealed that non-vertebrate eukaryotes express oligosaccharides with inorganic and zwitterionic modifications which are either occurring in different contexts as compared to, or are absent from, mammals. Examples of anionic N-glycans (carrying sulphate or phosphate) are known from amoebae, fungi, molluscs and insects, while zwitterionic modifications by phosphorylcholine, phosphoethanolamine and aminoethylphosphonate occur on N-, O- and lipid-linked glycans from trichomonads, annelids, fungi, molluscs, insects, cestodes and nematodes. For detection of zwitterionic and anionic glycans, mass spectrometry has been a key method, but their ionic character affects the preparation and purification; therefore, as part of a glycomic strategy, the possibility of their presence must be considered in advance. On the other hand, their ionisation and fragmentation in positive and negative ion mode mass spectrometry as well as specific chemical or enzymatic treatments can prove diagnostic to their analysis. In our laboratory, we combine solid-phase extraction, reversed and normal phase HPLC, MALDI-TOF MS, exoglycosidase digests and hydrofluoric acid treatment to reveal N-glycans modified with anionic and zwitterionic moieties in a wide range of organisms. It is to be anticipated that, as more species are glycomically analysed, zwitterionic and anionic modifications of N-glycans will prove rather widespread. This knowledge is - in the longer term - then the basis for understanding the function of this cornucopia of glycan modifications.
Collapse
|
28
|
Abstract
The microaerophilic protist parasite Trichomonas vaginalis is occurring globally and causes infections in the urogenital tract in humans, a condition termed trichomoniasis. In fact, trichomoniasis is the most prevalent non-viral sexually transmitted disease with more than 250 million people infected every year. Although trichomoniasis is not life threatening in itself, it can be debilitating and increases the risk of adverse pregnancy outcomes, HIV infection, and, possibly, neoplasias in the prostate and the cervix. Apart from its role as a pathogen, T. vaginalis is also a fascinating organism with a surprisingly large genome for a parasite, i. e. larger than 160 Mb, and a physiology adapted to its microaerophilic lifestyle. In particular, the hydrogenosome, a mitochondria-derived organelle that produces hydrogen, has attracted much interest in the last few decades and rendered T. vaginalis a model organism for eukaryotic evolution. This review will give a succinct overview of the major advances in the T. vaginalis field in the last few years.
Collapse
Affiliation(s)
- David Leitsch
- Institute of Parasitology, Vetsuisse Faculty of the University of Bern, University of Bern, Längassstrasse, Bern, 3012, Switzerland
| |
Collapse
|
29
|
Kurz S, King JG, Dinglasan RR, Paschinger K, Wilson IBH. The fucomic potential of mosquitoes: Fucosylated N-glycan epitopes and their cognate fucosyltransferases. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 68:52-63. [PMID: 26617287 PMCID: PMC4707139 DOI: 10.1016/j.ibmb.2015.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 11/06/2015] [Accepted: 11/10/2015] [Indexed: 05/12/2023]
Abstract
Fucoconjugates are key mediators of protein-glycan interactions in prokaryotes and eukaryotes. As examples, N-glycans modified with the non-mammalian core α1,3-linked fucose have been detected in various organisms ranging from plants to insects and are immunogenic in mammals. The rabbit polyclonal antibody raised against plant horseradish peroxidase (anti-HRP) is able to recognize the α1,3-linked fucose epitope and is also known to specifically stain neural tissues in the fruit fly Drosophila melanogaster. In this study, we have detected and localized the anti-HRP cross-reactivity in another insect species, the malaria mosquito vector Anopheles gambiae. We were able to identify and structurally elucidate fucosylated N-glycans including core mono- and difucosylated structures (responsible for anti-HRP cross reactivity) as well as a Lewis-type antennal modification on mosquito anionic N-glycans by applying enzymatic and chemical treatments. The three mosquito fucosyltransferase open reading frames (FucT6, FucTA and FucTC) required for the in vivo biosynthesis of the fucosylated N-glycan epitopes were identified in the Anopheles gambiae genome, cloned and recombinantly expressed in Pichia pastoris. Using a robust MALDI-TOF MS approach, we characterised the activity of the three recombinant fucosyltransferases in vitro and demonstrate that they share similar enzymatic properties as compared to their homologues from D. melanogaster and Apis mellifera. Thus, not only do we confirm the neural reactivity of anti-HRP in a mosquito species, but also demonstrate enzymatic activity for all its α1,3- and α1,6-fucosyltransferase homologues, whose specificity matches the results of glycomic analyses.
Collapse
Affiliation(s)
- Simone Kurz
- Department für Chemie, Universität für Bodenkultur, 1190 Wien, Austria
| | - Jonas G King
- W. Harry Feinstone Department of Molecular Microbiology & Immunology, Johns Hopkins Bloomberg School of Public Health & The Malaria Research Institute, Baltimore, MD 21205, USA
| | - Rhoel R Dinglasan
- W. Harry Feinstone Department of Molecular Microbiology & Immunology, Johns Hopkins Bloomberg School of Public Health & The Malaria Research Institute, Baltimore, MD 21205, USA
| | | | - Iain B H Wilson
- Department für Chemie, Universität für Bodenkultur, 1190 Wien, Austria.
| |
Collapse
|
30
|
Wilson IBH, Paschinger K. Sweet secrets of a therapeutic worm: mass-spectrometric N-glycomic analysis of Trichuris suis. Anal Bioanal Chem 2015; 408:461-71. [PMID: 26650734 DOI: 10.1007/s00216-015-9154-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/23/2015] [Accepted: 10/27/2015] [Indexed: 01/15/2023]
Abstract
Trichuris suis, a nematode parasite of pigs, has attracted attention as its eggs have been administered to human patients as a potential therapy for inflammatory diseases. The immunomodulatory factors remain molecularly uncharacterised, but in vitro studies suggest that glycans on the parasite's excretory/secretory proteins may play a role. Using an off-line LC-MS approach in combination with chemical and enzymatic treatments, we have examined the N-linked oligosaccharides of T. suis. In addition to the paucimannosidic and oligomannosidic N-glycans typical of many invertebrates, a number of glycans carry N,N'-diacetyllactosamine (LacdiNAc) modified by fucose and/or phosphorylcholine. Such antennal epitopes are similar to ones previously associated with immunomodulation by helminths; here we propose phosphorylcholine modifications predominantly of terminal N-acetylgalactosamine but also of subterminal α1,3-fucosylated N-acetylglucosamine. Exact knowledge of the glycome of T. suis will facilitate more targeted studies on glycan receptors in the host as well as the engineering of cell lines to produce correctly glycosylated recombinant forms of candidate proteins for future studies on immunomodulation.
Collapse
Affiliation(s)
- Iain B H Wilson
- Department of Chemistry, Universität für Bodenkultur, Muthgasse 18, 1190, Wien, Austria.
| | - Katharina Paschinger
- Department of Chemistry, Universität für Bodenkultur, Muthgasse 18, 1190, Wien, Austria
| |
Collapse
|
31
|
Figueroa-Angulo EE, Calla-Choque JS, Mancilla-Olea MI, Arroyo R. RNA-Binding Proteins in Trichomonas vaginalis: Atypical Multifunctional Proteins. Biomolecules 2015; 5:3354-95. [PMID: 26703754 PMCID: PMC4693282 DOI: 10.3390/biom5043354] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/07/2015] [Accepted: 11/12/2015] [Indexed: 01/08/2023] Open
Abstract
Iron homeostasis is highly regulated in vertebrates through a regulatory system mediated by RNA-protein interactions between the iron regulatory proteins (IRPs) that interact with an iron responsive element (IRE) located in certain mRNAs, dubbed the IRE-IRP regulatory system. Trichomonas vaginalis, the causal agent of trichomoniasis, presents high iron dependency to regulate its growth, metabolism, and virulence properties. Although T. vaginalis lacks IRPs or proteins with aconitase activity, possesses gene expression mechanisms of iron regulation at the transcriptional and posttranscriptional levels. However, only one gene with iron regulation at the transcriptional level has been described. Recently, our research group described an iron posttranscriptional regulatory mechanism in the T. vaginalis tvcp4 and tvcp12 cysteine proteinase mRNAs. The tvcp4 and tvcp12 mRNAs have a stem-loop structure in the 5'-coding region or in the 3'-UTR, respectively that interacts with T. vaginalis multifunctional proteins HSP70, α-Actinin, and Actin under iron starvation condition, causing translation inhibition or mRNA stabilization similar to the previously characterized IRE-IRP system in eukaryotes. Herein, we summarize recent progress and shed some light on atypical RNA-binding proteins that may participate in the iron posttranscriptional regulation in T. vaginalis.
Collapse
Affiliation(s)
- Elisa E Figueroa-Angulo
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, CP 07360 México, D.F., Mexico.
| | - Jaeson S Calla-Choque
- Laboratorio de Inmunopatología en Neurocisticercosis, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Av. Honorio Delgado 430, Urb. Ingeniería, S.M.P., Lima 15102, Peru.
| | - Maria Inocente Mancilla-Olea
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, CP 07360 México, D.F., Mexico.
| | - Rossana Arroyo
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, CP 07360 México, D.F., Mexico.
| |
Collapse
|
32
|
Yan S, Jin C, Wilson IBH, Paschinger K. Comparisons of Caenorhabditis Fucosyltransferase Mutants Reveal a Multiplicity of Isomeric N-Glycan Structures. J Proteome Res 2015; 14:5291-305. [PMID: 26538210 PMCID: PMC4673604 DOI: 10.1021/acs.jproteome.5b00746] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recent studies have shown a remarkable degree of plasticity in the N-glycome of the model nematode Caenorhabditis elegans; ablation of glycosylation-relevant genes can result in radically altered N-glycan profiles despite only minor biological phenotypic effects. Up to four fucose residues and five different linkages of fucose are known on the N-glycans of C. elegans. Due to the complexity in the wild type, we established three mutant strains defective in two core fucosyltransferases each (fut-1;fut-6, fut-1;fut-8, and fut-6;fut-8). Enzymatically released N-glycans were subject to HPLC and MALDI-TOF MS/MS, in combination with various treatments, to verify structural details. The N-glycome of the fut-1;fut-6 mutant was the most complex of the three double-mutant strains due to the extension of the core α1,6-fucose as well as the presence of fucose on the bisecting galactose. In contrast, maximally two fucoses were found on N-glycans of the fut-1;fut-8 and fut-6;fut-8 strains. The different locations and capping of fucose meant that up to 13 isomeric structures, many highly galactosylated, were determined for some single masses. These data not only show the high variability of the N-glycomic capacity of a "simple" nematode but also exemplify the need for multiple approaches to reveal individual glycan structures within complex invertebrate glycomes.
Collapse
Affiliation(s)
- Shi Yan
- Department für Chemie, Universität für Bodenkultur , 1190 Wien, Austria
| | - Chunsheng Jin
- Institutionen för Biomedicin, Göteborgs Universitet , 405 30 Göteborg, Sweden
| | - Iain B H Wilson
- Department für Chemie, Universität für Bodenkultur , 1190 Wien, Austria
| | | |
Collapse
|
33
|
Eckmair B, Jin C, Abed-Navandi D, Paschinger K. Multistep Fractionation and Mass Spectrometry Reveal Zwitterionic and Anionic Modifications of the N- and O-glycans of a Marine Snail. Mol Cell Proteomics 2015; 15:573-97. [PMID: 26598642 DOI: 10.1074/mcp.m115.051573] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Indexed: 12/11/2022] Open
Abstract
Various studies in the past have revealed that molluscs can produce a wide range of rather complex N-glycan structures, which vary from those occurring in other invertebrate animals; particularly methylated glycans have been found in gastropods, and there are some reports of anionic glycans in bivalves. Due to the high variability in terms of previously described structures and methodologies, it is a major challenge to establish glycomic workflows that yield the maximum amount of detailed structural information from relatively low quantities of sample. In this study, we apply differential release with peptide:N-glycosidases F and A followed by solid-phase extraction on graphitized carbon and reversed-phase materials to examine the glycome of Volvarina rubella (C. B. Adams, 1845), a margin snail of the clade Neogastropoda. The resulting four pools of N-glycans were fractionated on a fused core RP-HPLC column and subject to MALDI-TOF MS and MS/MS in conjunction with chemical and enzymatic treatments. In addition, selected N-glycan fractions, as well as O-glycans released by β-elimination, were analyzed by porous graphitized carbon-LC-MS and MS(n). This comprehensive approach enabled us to determine a number of novel modifications of protein-linked glycans, including N-methyl-2-aminoethylphosphonate on mannose and N-acetylhexosamine residues, core β1,3-linked mannose, zwitterionic moieties on core Galβ1,4Fuc motifs, additional mannose residues on oligomannosidic glycans, and bisubstituted antennal fucose; furthermore, typical invertebrate N-glycans with sulfate and core fucose residues are present in this gastropod.
Collapse
Affiliation(s)
- Barbara Eckmair
- From the ‡Department für Chemie, Universität für Bodenkultur Wien, 1190 Wien, Austria
| | - Chunsheng Jin
- §Institutionen för Biomedicin, Göteborgs universitet, 405 30 Göteborg, Sweden
| | | | - Katharina Paschinger
- From the ‡Department für Chemie, Universität für Bodenkultur Wien, 1190 Wien, Austria;
| |
Collapse
|
34
|
Hykollari A, Eckmair B, Voglmeir J, Jin C, Yan S, Vanbeselaere J, Razzazi-Fazeli E, Wilson IBH, Paschinger K. More Than Just Oligomannose: An N-glycomic Comparison of Penicillium Species. Mol Cell Proteomics 2015; 15:73-92. [PMID: 26515459 DOI: 10.1074/mcp.m115.055061] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Indexed: 11/06/2022] Open
Abstract
N-glycosylation is an essential set of post-translational modifications of proteins; in the case of filamentous fungi, N-glycans are present on a range of secreted and cell wall proteins. In this study, we have compared the glycans released by peptide/N-glycosidase F from proteolysed cell pellets of three Penicillium species (P. dierckxii, P. nordicum and P. verrucosum that all belong to the Eurotiomycetes). Although the major structures are all within the range Hex(5-11)HexNAc(2) as shown by mass spectrometry, variations in reversed-phase chromatograms and MS/MS fragmentation patterns are indicative of differences in the actual structure. Hydrofluoric acid and mannosidase treatments revealed that the oligomannosidic glycans were not only in part modified with phosphoethanolamine residues and outer chain och1-dependent mannosylation, but that bisecting galactofuranose was present in a species-dependent manner. These data are the first to specifically show the modification of N-glycans in fungi with zwitterionic moieties. Furthermore, our results indicate that mere mass spectrometric screening is insufficient to reveal the subtly complex nature of N-glycosylation even within a single fungal genus.
Collapse
Affiliation(s)
- Alba Hykollari
- From the ‡Department für Chemie, Universität für Bodenkultur, Muthgasse 18, 1190 Wien, Austria
| | - Barbara Eckmair
- From the ‡Department für Chemie, Universität für Bodenkultur, Muthgasse 18, 1190 Wien, Austria
| | - Josef Voglmeir
- From the ‡Department für Chemie, Universität für Bodenkultur, Muthgasse 18, 1190 Wien, Austria
| | - Chunsheng Jin
- §Institutionen för Biomedicin, Göteborgs universitet, 405 30 Göteborg, Sweden
| | - Shi Yan
- From the ‡Department für Chemie, Universität für Bodenkultur, Muthgasse 18, 1190 Wien, Austria
| | - Jorick Vanbeselaere
- From the ‡Department für Chemie, Universität für Bodenkultur, Muthgasse 18, 1190 Wien, Austria
| | | | - Iain B H Wilson
- From the ‡Department für Chemie, Universität für Bodenkultur, Muthgasse 18, 1190 Wien, Austria
| | - Katharina Paschinger
- From the ‡Department für Chemie, Universität für Bodenkultur, Muthgasse 18, 1190 Wien, Austria;
| |
Collapse
|
35
|
Kurz S, Aoki K, Jin C, Karlsson NG, Tiemeyer M, Wilson IBH, Paschinger K. Targeted release and fractionation reveal glucuronylated and sulphated N- and O-glycans in larvae of dipteran insects. J Proteomics 2015; 126:172-88. [PMID: 26047717 DOI: 10.1016/j.jprot.2015.05.030] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 05/18/2015] [Accepted: 05/22/2015] [Indexed: 01/04/2023]
Abstract
Mosquitoes are important vectors of parasitic and viral diseases with Anopheles gambiae transmitting malaria and Aedes aegypti spreading yellow and Dengue fevers. Using two different approaches (solid-phase extraction and reversed-phase or hydrophilic interaction HPLC fractionation followed by MALDI-TOF MS or permethylation followed by NSI-MS), we examined the N-glycans of both A. gambiae and A. aegypti larvae and demonstrate the presence of a range of paucimannosidic glycans as well as bi- and tri-antennary glycans, some of which are modified with fucose or with sulphate or glucuronic acid residues; the latter anionic modifications were also found on N-glycans of larvae from another dipteran species (Drosophila melanogaster). The sulphate groups are attached primarily to core α-mannose residues (especially the α1,6-linked mannose), whereas the glucuronic acid residues are linked to non-reducing β1,3-galactose. Also, O-glycans were found to possess glucuronic acid and sulphate as well as phosphoethanolamine modifications. The presence of sulphated and glucuronylated N-glycans is a novel feature in dipteran glycomes; these structures have the potential to act as additional anionic glycan ligands involved in parasite interactions with the vector host.
Collapse
Affiliation(s)
- Simone Kurz
- Department für Chemie, Universität für Bodenkultur, 1190 Wien, Austria
| | - Kazuhiro Aoki
- Complex Carbohydrate Research Centre, University of Georgia, Athens, GA 30602, USA
| | - Chunsheng Jin
- Department of Medical Biochemistry, University of Gothenburg, SE-405 30 Göteborg, Sweden
| | - Niclas G Karlsson
- Department of Medical Biochemistry, University of Gothenburg, SE-405 30 Göteborg, Sweden
| | - Michael Tiemeyer
- Complex Carbohydrate Research Centre, University of Georgia, Athens, GA 30602, USA
| | - Iain B H Wilson
- Department für Chemie, Universität für Bodenkultur, 1190 Wien, Austria.
| | | |
Collapse
|
36
|
Yan S, Brecker L, Jin C, Titz A, Dragosits M, Karlsson NG, Jantsch V, Wilson IBH, Paschinger K. Bisecting Galactose as a Feature of N-Glycans of Wild-type and Mutant Caenorhabditis elegans. Mol Cell Proteomics 2015; 14:2111-25. [PMID: 26002521 DOI: 10.1074/mcp.m115.049817] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Indexed: 01/15/2023] Open
Abstract
The N-glycosylation of the model nematode Caenorhabditis elegans has proven to be highly variable and rather complex; it is an example to contradict the existing impression that "simple" organisms possess also a rather simple glycomic capacity. In previous studies in a number of laboratories, N-glycans with up to four fucose residues have been detected. However, although the linkage of three fucose residues to the N,N'-diacetylchitobiosyl core has been proven by structural and enzymatic analyses, the nature of the fourth fucose has remained uncertain. By constructing a triple mutant with deletions in the three genes responsible for core fucosylation (fut-1, fut-6 and fut-8), we have produced a nematode strain lacking products of these enzymes, but still retaining maximally one fucose residue on its N-glycans. Using mass spectrometry and HPLC in conjunction with chemical and enzymatic treatments as well as NMR, we examined a set of α-mannosidase-resistant N-glycans. Within this glycomic subpool, we can reveal that the core β-mannose can be trisubstituted and so carries not only the ubiquitous α1,3- and α1,6-mannose residues, but also a "bisecting" β-galactose, which is substoichiometrically modified with fucose or methylfucose. In addition, the α1,3-mannose can also be α-galactosylated. Our data, showing the presence of novel N-glycan modifications, will enable more targeted studies to understand the biological functions and interactions of nematode glycans.
Collapse
Affiliation(s)
- Shi Yan
- From the ‡Department für Chemie, Universität für Bodenkultur, 1190 Wien, Austria
| | - Lothar Brecker
- §Institut für Organische Chemie, Universität Wien, 1090 Wien, Austria
| | - Chunsheng Jin
- ¶Institutionen för Biomedicin, Göteborgs universitet, 405 30 Göteborg, Sweden
| | - Alexander Titz
- From the ‡Department für Chemie, Universität für Bodenkultur, 1190 Wien, Austria
| | - Martin Dragosits
- From the ‡Department für Chemie, Universität für Bodenkultur, 1190 Wien, Austria
| | - Niclas G Karlsson
- ¶Institutionen för Biomedicin, Göteborgs universitet, 405 30 Göteborg, Sweden
| | - Verena Jantsch
- ‖Department für Chromosomenbiologie, Max F. Perutz Laboratories, Universität Wien, 1030 Wien, Austria
| | - Iain B H Wilson
- From the ‡Department für Chemie, Universität für Bodenkultur, 1190 Wien, Austria;
| | - Katharina Paschinger
- From the ‡Department für Chemie, Universität für Bodenkultur, 1190 Wien, Austria
| |
Collapse
|
37
|
Trichomonas vaginalis Cysteine Proteinases: Iron Response in Gene Expression and Proteolytic Activity. BIOMED RESEARCH INTERNATIONAL 2015; 2015:946787. [PMID: 26090464 PMCID: PMC4450334 DOI: 10.1155/2015/946787] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Accepted: 03/09/2015] [Indexed: 12/29/2022]
Abstract
We focus on the iron response of Trichomonas vaginalis to gene family products such as the cysteine proteinases (CPs) involved in virulence properties. In particular, we examined the effect of iron on the gene expression regulation and function of cathepsin L-like and asparaginyl endopeptidase-like CPs as virulence factors. We addressed some important aspects about CPs genomic organization and we offer possible explanations to the fact that only few members of this large gene family are expressed at the RNA and protein levels and the way to control their proteolytic activity. We also summarized all known iron regulations of CPs at transcriptional, posttranscriptional, and posttranslational levels along with new insights into the possible epigenetic and miRNA processes.
Collapse
|
38
|
Paschinger K, Wilson IBH. Two types of galactosylated fucose motifs are present on N-glycans of Haemonchus contortus. Glycobiology 2015; 25:585-90. [PMID: 25740940 DOI: 10.1093/glycob/cwv015] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 03/02/2015] [Indexed: 11/15/2022] Open
Abstract
N-Glycans from the nematode Haemonchus contortus (barber pole worm), a parasite of sheep and cattle, were the first to be described to possess up to three fucose residues associated with the N,N'-diacetylchitobiosyl core, two being on the reducing-terminal proximal GlcNAc and one on the distal core GlcNAc residue. The assumption was that truncated glycans from this organism with three hexose residues have the composition Man3GlcNAc2Fuc1-3. In this study, we have performed HPLC and MALDI-TOF MS/MS in combination with selected digestions of N-glycans from Haemonchus. A dominant trifucosylated Hex3HexNAc2Fuc3 glycan was modified not only with α1,6-fucose but also with a proximal core α1,3-fucose and a galactosylated distal α1,3-fucose; thereby, only two of the hexose residues were mannose. Other N-glycans displayed galactosylation of the core α1,6-fucose, antennal fucosylation or modification with phosphorylcholine. Thus, the N-glycans of Haemonchus contain a number of potentially immunogenic glycan epitopes also found in other parasites and our proposed structures are in line with the previously defined specificity of nematode glycosyltransferases as we show that distal fucosylation and the presence of an α1,6-mannose are apparently mutually exclusive. These data are thereby of importance for engineering cell lines capable of mimicking Haemonchus-type N-glycans in the preparation of recombinant proteins as vaccine candidates.
Collapse
Affiliation(s)
| | - Iain B H Wilson
- Department für Chemie, Universität für Bodenkultur Wien, Wien 1190, Austria
| |
Collapse
|
39
|
'Click chemistry' synthesis of 1-(α-D-mannopyranosyl)-1,2,3-triazoles for inhibition of α-mannosidases. Carbohydr Res 2015; 406:34-40. [PMID: 25658064 DOI: 10.1016/j.carres.2015.01.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 01/09/2015] [Accepted: 01/11/2015] [Indexed: 12/14/2022]
Abstract
Three new triazole conjugates derived from d-mannose were synthesized and assayed in in vitro assays to investigate their ability to inhibit α-mannosidase enzymes from the glycoside hydrolase (GH) families 38 and 47. The triazole conjugates were more selective for a GH47 α-mannosidase (Aspergillus saitoi α1,2-mannosidase), showing inhibition at the micromolar level (IC50 values of 50-250 μM), and less potent towards GH38 mannosidases (IC50 values in the range of 0.5-6 mM towards jack bean α-mannosidase or Drosophila melanogaster lysosomal and Golgi α-mannosidases). The highest selectivity ratio [IC50(GH38)/IC50(GH47)] of 100 was exhibited by the phenyltriazole conjugate. To understand structure-activity properties of synthesized compounds, 3-D complexes of inhibitors with α-mannosidases were built using molecular docking calculations.
Collapse
|
40
|
Dragosits M, Yan S, Razzazi-Fazeli E, Wilson IBH, Rendic D. Enzymatic properties and subtle differences in the substrate specificity of phylogenetically distinct invertebrate N-glycan processing hexosaminidases. Glycobiology 2014; 25:448-64. [PMID: 25488985 PMCID: PMC4339880 DOI: 10.1093/glycob/cwu132] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Fused lobes (FDL) hexosaminidases are the most recently genetically defined glycosidases involved in the biosynthesis of N-glycans in invertebrates, and their narrow specificity is essential for the generation of paucimannosidic N-glycans in insects. In this study, we explored the potential of FDL hexosaminidases in the utilization of different artificial and natural substrates, both as purified, native compounds or generated in vitro using various relevant glycosyltransferases. In addition to the already-known FDL enzyme from Drosophila melanogaster, we now have identified and characterized the Apis mellifera FDL homolog. The enzymatic properties of the soluble forms of the affinity-purified insect FDL enzymes, expressed in both yeast and insect cells, were compared with those of the phylogenetically distinct recombinant Caenorhabditis elegans FDL-like enzymes and the N-acetylgalactosamine (GalNAc)-specific Caenorhabditis hexosaminidase HEX-4. In tests with a range of substrates, including natural N-glycans, we show that the invertebrate FDL(-like) enzymes are highly specific for N-acetylglucosamine attached to the α1,3-mannose, but under extreme conditions also remove other terminal GalNAc and N-acetylglucosamine residues. Recombinant FDL also proved useful in the analysis of complex mixtures of N-glycans originating from wild-type and mutant Caenorhabditis strains, thereby aiding isomeric definition of paucimannosidic and hybrid N-glycans in this organism. Furthermore, differences in activity and specificity were shown for two site-directed mutants of Drosophila FDL, compatible with the high structural similarity of chitinolytic and N-glycan degrading exohexosaminidases in insects. Our studies are another indication for the variety of structural and function aspects in the GH20 hexosaminidase family important for both catabolism and biosynthesis of glycoconjugates in eukaryotes.
Collapse
Affiliation(s)
- Martin Dragosits
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna VetCore Facility for Research, University of Veterinary Medicine, Vienna, Austria
| | - Shi Yan
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna
| | | | - Iain B H Wilson
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna
| | - Dubravko Rendic
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna
| |
Collapse
|
41
|
Hykollari A, Dragosits M, Rendić D, Wilson IBH, Paschinger K. N-glycomic profiling of a glucosidase II mutant of Dictyostelium discoideum by ''off-line'' liquid chromatography and mass spectrometry. Electrophoresis 2014; 35:2116-29. [PMID: 24574058 DOI: 10.1002/elps.201300612] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 02/09/2014] [Indexed: 01/27/2023]
Abstract
In this study, we have performed the first mass spectrometric analysis of N-glycans of the M31 mutant strain of the cellular slime mould Dictyostelium discoideum, previously shown to have a defect in glucosidase II. Together with glucosidase I, this enzyme mediates part of the initial processing of N-glycans; defects in either glucosidase are associated with human diseases and result in an accumulation of incorrectly processed oligosaccharides which are not, or only poor, substrates for a range of downstream enzymes. To examine the effect of the glucosidase II mutation in Dictyostelium, we employed off-line LC-MALDI-TOF MS in combination with chemical and enzymatic treatments and MS/MS to analyze the neutral and anionic N-glycans of the mutant as compared to the wild type. The major neutral species were, as expected, of the composition Hex10-11 HexNAc2-3 with one or two terminal glucose residues. Consistent with the block in processing of neutral N-glycans caused by the absence of glucosidase II, fucose was apparently absent from the N-glycans and bisecting N-acetylglucosamine was rare. The major anionic oligosaccharides were sulfated and/or methylphosphorylated forms of Hex8-11 HexNAc2-3 , many of which surprisingly lacked glucose residues entirely. As anionic N-glycans are considered to be mostly associated with lysosomal enzymes in Dictyostelium, we hypothesise that glycosidases present in the acidic compartments may act on the oligosaccharides attached to such slime mould proteins. Furthermore, our chosen analytical approach enabled us, via observation of diagnostic negative-mode MS/MS fragments, to determine the fine structure of the methylphosphorylated and sulfated N-glycans of the M31 glucosidase mutant in their native state.
Collapse
Affiliation(s)
- Alba Hykollari
- Department für Chemie, Universität für Bodenkultur, Wien, Austria
| | | | | | | | | |
Collapse
|
42
|
Damerow M, Rodrigues JA, Wu D, Güther MLS, Mehlert A, Ferguson MAJ. Identification and functional characterization of a highly divergent N-acetylglucosaminyltransferase I (TbGnTI) in Trypanosoma brucei. J Biol Chem 2014; 289:9328-39. [PMID: 24550396 PMCID: PMC3979372 DOI: 10.1074/jbc.m114.555029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Trypanosoma brucei expresses a diverse repertoire of N-glycans, ranging from oligomannose and paucimannose structures to exceptionally large complex N-glycans. Despite the presence of the latter, no obvious homologues of known β1–4-galactosyltransferase or β1–2- or β1–6-N-acetylglucosaminyltransferase genes have been found in the parasite genome. However, we previously reported a family of putative UDP-sugar-dependent glycosyltransferases with similarity to the mammalian β1–3-glycosyltransferase family. Here we characterize one of these genes, TbGT11, and show that it encodes a Golgi apparatus resident UDP-GlcNAc:α3-d-mannoside β1–2-N-acetylglucosaminyltransferase I activity (TbGnTI). The bloodstream-form TbGT11 null mutant exhibited significantly modified protein N-glycans but normal growth in vitro and infectivity to rodents. In contrast to multicellular organisms, where the GnTI reaction is essential for biosynthesis of both complex and hybrid N-glycans, T. brucei TbGT11 null mutants expressed atypical “pseudohybrid” glycans, indicating that TbGnTII activity is not dependent on prior TbGnTI action. Using a functional in vitro assay, we showed that TbGnTI transfers UDP-GlcNAc to biantennary Man3GlcNAc2, but not to triantennary Man5GlcNAc2, which is the preferred substrate for metazoan GnTIs. Sequence alignment reveals that the T. brucei enzyme is far removed from the metazoan GnTI family and suggests that the parasite has adapted the β3-glycosyltransferase family to catalyze β1–2 linkages.
Collapse
Affiliation(s)
- Manuela Damerow
- From the Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom and
| | | | | | | | | | | |
Collapse
|
43
|
Recombinant Aspergillus β-galactosidases as a robust glycomic and biotechnological tool. Appl Microbiol Biotechnol 2013; 98:3553-67. [PMID: 24037406 PMCID: PMC3973953 DOI: 10.1007/s00253-013-5192-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 08/08/2013] [Accepted: 08/11/2013] [Indexed: 01/27/2023]
Abstract
Galactosidases are widespread enzymes that are used for manifold applications, including production of prebiotics, biosynthesis of different transgalactosylated products, improving lactose tolerance and in various analytical approaches. The nature of these applications often require galactosidases to be present in a purified form with clearly defined properties, including precisely determined substrate specificities, low sensitivity to inhibitors, and high efficiency and stability under distinct conditions. In this study, we present the recombinant expression and purification of two previously uncharacterized β-galactosidases from Aspergillus nidulans as well as one β-galactosidase from Aspergillus niger. All enzymes were active toward p-nitrophenyl-β-d-galactopyranoside as substrate and displayed similar temperature and pH optima. The purified recombinant galactosidases digested various complex substrates containing terminal galactose β-1,4 linked to either N-acetylglucosamine or fucose, such as N-glycans derived from bovine fibrin and Caenorhabditis elegans. In our comparative study of the recombinant galactosidases with the commercially available galactosidase from Aspergillus oryzae, all enzymes also displayed various degrees of activity toward complex oligosaccharides containing β-1,3-linked terminal galactose residues. All recombinant enzymes were found to be robust in the presence of various organic solvents, temperature variations, and freeze/thaw cycles and were also tested for their ability to synthesize galactooligosaccharides. Furthermore, the use of fermentors considerably increased the yield of recombinant galactosidases. Taken together, we demonstrate that purified recombinant galactosidases from A. niger and from A. nidulans are suitable for various glycobiological and biotechnological applications.
Collapse
|
44
|
Kurz S, Jin C, Hykollari A, Gregorich D, Giomarelli B, Vasta GR, Wilson IBH, Paschinger K. Hemocytes and plasma of the eastern oyster (Crassostrea virginica) display a diverse repertoire of sulfated and blood group A-modified N-glycans. J Biol Chem 2013; 288:24410-28. [PMID: 23824194 DOI: 10.1074/jbc.m113.478933] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The eastern oyster (Crassostrea virginica) has become a useful model system for glycan-dependent host-parasite interactions due to the hijacking of the oyster galectin CvGal1 for host entry by the protozoan parasite Perkinsus marinus, the causative agent of Dermo disease. In this study, we examined the N-glycans of both the hemocytes, which via CvGal1 are the target of the parasite, and the plasma of the oyster. In combination with HPLC fractionation, exoglycosidase digestion, and fragmentation of the glycans, mass spectrometry revealed that the major N-glycans of plasma are simple hybrid structures, sometimes methylated and core α1,6-fucosylated, with terminal β1,3-linked galactose; a remarkable high degree of sulfation of such glycans was observed. Hemocytes express a larger range of glycans, including core-difucosylated paucimannosidic forms, whereas bi- and triantennary glycans were found in both sources, including structures carrying sulfated and methylated variants of the histo-blood group A epitope. The primary features of the oyster whole hemocyte N-glycome were also found in dominin, the major plasma glycoprotein, which had also been identified as a CvGal1 glycoprotein ligand associated with hemocytes. The occurrence of terminal blood group moieties on oyster dominin and on hemocyte surfaces can account in part for their affinity for the endogenous CvGal1.
Collapse
Affiliation(s)
- Simone Kurz
- Department für Chemie, Universität für Bodenkultur, A-1190 Wien, Austria
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Hykollari A, Balog CIA, Rendić D, Braulke T, Wilson IBH, Paschinger K. Mass spectrometric analysis of neutral and anionic N-glycans from a Dictyostelium discoideum model for human congenital disorder of glycosylation CDG IL. J Proteome Res 2013; 12:1173-87. [PMID: 23320427 PMCID: PMC3588589 DOI: 10.1021/pr300806b] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
![]()
The HL241 mutant strain of the cellular slime mold Dictyostelium
discoideum is a potential model for human congenital disorder
of glycosylation type IL (ALG9-CDG) and has been previously predicted
to possess a lower degree of modification of its N-glycans with anionic
moieties than the parental wild-type. In this study, we first showed
that this strain has a premature stop codon in its alg9 mannosyltransferase gene compatible with the occurrence of truncated
N-glycans. These were subject to an optimized analytical workflow,
considering that the mass spectrometry of acidic glycans often presents
challenges due to neutral loss and suppression effects. Therefore,
the protein-bound N-glycans were first fractionated, after serial
enzymatic release, by solid phase extraction. Then primarily single
glycan species were isolated by mixed hydrophilic-interaction/anion-exchange
or reversed-phase HPLC and analyzed using chemical and enzymatic treatments
and MS/MS. We show that protein-linked N-glycans of the mutant are
of reduced size as compared to those of wild-type AX3, but still contain
core α1,3-fucose, intersecting N-acetylglucosamine,
bisecting N-acetylglucosamine, methylphosphate, phosphate,
and sulfate residues. We observe that a single N-glycan can carry
up to four of these six possible modifications. Due to the improved
analytical procedures, we reveal fuller details regarding the N-glycomic
potential of this fascinating model organism.
Collapse
Affiliation(s)
- Alba Hykollari
- Department für Chemie, Universität für Bodenkultur, A-1190 Wien, Austria
| | | | | | | | | | | |
Collapse
|
46
|
Schiller B, Hykollari A, Yan S, Paschinger K, Wilson IBH. Complicated N-linked glycans in simple organisms. Biol Chem 2013; 393:661-73. [PMID: 22944671 DOI: 10.1515/hsz-2012-0150] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 04/07/2012] [Indexed: 11/15/2022]
Abstract
Although countless genomes have now been sequenced, the glycomes of the vast majority of eukaryotes still present a series of unmapped frontiers. However, strides are being made in a few groups of invertebrate and unicellular organisms as regards their N-glycans and N-glycosylation pathways. Thereby, the traditional classification of glycan structures inevitably approaches its boundaries. Indeed, the glycomes of these organisms are rich in surprises, including a multitude of modifications of the core regions of N-glycans and unusual antennae. From the actually rather limited glycomic information we have, it is nevertheless obvious that the biotechnological, developmental and immunological relevance of these modifications, especially in insect cell lines, model organisms and parasites means that deciphering unusual glycomes is of more than just academic interest.
Collapse
Affiliation(s)
- Birgit Schiller
- Department für Chemie, Universität für Bodenkultur, A-1190 Wien, Austria
| | | | | | | | | |
Collapse
|
47
|
Abstract
N-glycans modify the great majority of all secreted and plasma membrane proteins, which themselves constitute one-third to one-half of the proteome. The ultimate definition of the glycoproteome would be the identification of all the N-glycans attached to all the modified asparaginyl sites of all the proteins, but glycosylation heterogeneity makes this an unachievable goal. However, mass spectrometry in combination with other methods does have the power to deeply mine the N-glycome of Dictyostelium, and characterize glycan profiles at individual sites of glycoproteins. Recent studies from our laboratories using mass spectrometry-based methods have confirmed basic precepts of the N-glycome based on prior classical methods using radiotracer methods, and have extended the scope of glycan diversity and the distribution of glycan types across specific glycoprotein attachment sites. The protocols described here simplify studies of the N-glycome and -glycoproteome, which should prove useful for interpreting mutant phenotypes, conducting interstrain and interspecies comparisons, and investigating glycan functions in glycoproteins of interest.
Collapse
|
48
|
The effects of environmental factors on the virulence of Trichomonas vaginalis. Microbes Infect 2012; 14:1411-27. [DOI: 10.1016/j.micinf.2012.09.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 07/26/2012] [Accepted: 09/02/2012] [Indexed: 11/21/2022]
|
49
|
Schiller B, Makrypidi G, Razzazi-Fazeli E, Paschinger K, Walochnik J, Wilson IBH. Exploring the unique N-glycome of the opportunistic human pathogen Acanthamoeba. J Biol Chem 2012; 287:43191-204. [PMID: 23139421 DOI: 10.1074/jbc.m112.418095] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Glycans play key roles in host-pathogen interactions; thus, knowing the N-glycomic repertoire of a pathogen can be helpful in deciphering its methods of establishing and sustaining a disease. Therefore, we sought to elucidate the glycomic potential of the facultative amoebal parasite Acanthamoeba. This is the first study of its asparagine-linked glycans, for which we applied biochemical tools and various approaches of mass spectrometry. An initial glycomic screen of eight strains from five genotypes of this human pathogen suggested, in addition to the common eukaryotic oligomannose structures, the presence of pentose and deoxyhexose residues on their N-glycans. A more detailed analysis was performed on the N-glycans of a genotype T11 strain (4RE); fractionation by HPLC and tandem mass spectrometric analyses indicated the presence of a novel mannosylfucosyl modification of the reducing terminal core as well as phosphorylation of mannose residues, methylation of hexose and various forms of pentosylation. The largest N-glycan in the 4RE strain contained two N-acetylhexosamine, thirteen hexose, one fucose, one methyl, and two pentose residues; however, in this and most other strains analyzed, glycans with compositions of Hex(8-9)HexNAc(2)Pnt(0-1) tended to dominate in terms of abundance. Although no correlation between pathogenicity and N-glycan structure can be proposed, highly unusual structures in this facultative parasite can be found which are potential virulence factors or therapeutic targets.
Collapse
Affiliation(s)
- Birgit Schiller
- Department of Chemistry, Universität für Bodenkultur (University of Natural Resources and Life Sciences), A-1190 Wien, Austria
| | | | | | | | | | | |
Collapse
|
50
|
Yan S, Bleuler-Martinez S, Plaza DF, Künzler M, Aebi M, Joachim A, Razzazi-Fazeli E, Jantsch V, Geyer R, Wilson IBH, Paschinger K. Galactosylated fucose epitopes in nematodes: increased expression in a Caenorhabditis mutant associated with altered lectin sensitivity and occurrence in parasitic species. J Biol Chem 2012; 287:28276-90. [PMID: 22733825 DOI: 10.1074/jbc.m112.353128] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The modification of α1,6-linked fucose residues attached to the proximal (reducing-terminal) core N-acetylglucosamine residue of N-glycans by β1,4-linked galactose ("GalFuc" epitope) is a feature of a number of invertebrate species including the model nematode Caenorhabditis elegans. A pre-requisite for both core α1,6-fucosylation and β1,4-galactosylation is the presence of a nonreducing terminal N-acetylglucosamine; however, this residue is normally absent from the final glycan structure in invertebrates due to the action of specific hexosaminidases. Previously, we have identified two hexosaminidases (HEX-2 and HEX-3) in C. elegans, which process N-glycans. In the present study, we have prepared a hex-2;hex-3 double mutant, which possesses a radically altered N-glycomic profile. Whereas in the double mutant core α1,3-fucosylation of the proximal N-acetylglucosamine was abolished, the degree of galactosylation of core α1,6-fucose increased, and a novel Galα1,2Fucα1,3 moiety attached to the distal core N-acetylglucosamine residue was detected. Both galactosylated fucose moieties were also found in two parasitic nematodes, Ascaris suum and Oesophagostomum dentatum. As core modifications of N-glycans are known targets for fungal nematotoxic lectins, the sensitivity of the C. elegans double hexosaminidase mutant was assessed. Although this mutant displayed hypersensitivity to the GalFuc-binding lectin CGL2 and the N-acetylglucosamine-binding lectin XCL, the mutant was resistant to CCL2, which binds core α1,3-fucose. Thus, the use of C. elegans mutants aids the identification of novel N-glycan modifications and the definition of in vivo specificities of nematotoxic lectins with potential as anthelmintic agents.
Collapse
Affiliation(s)
- Shi Yan
- Department für Chemie, Universität für Bodenkultur, A-1190 Wien, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|