1
|
Berger PI, Hermanns S, Kerner K, Schmelz F, Schüler V, Ewers C, Bauerfeind R, Doherr MG. Cross-sectional study: prevalence of oedema disease Escherichia coli (EDEC) in weaned piglets in Germany at pen and farm levels. Porcine Health Manag 2023; 9:49. [PMID: 37885038 PMCID: PMC10601234 DOI: 10.1186/s40813-023-00343-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/13/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND Escherichia coli bacteria capable of producing the toxin Stx2e and possessing F18-fimbriae (edema disease E. coli, EDEC) are considered causative agents of porcine oedema disease. This disease, which usually occurs in piglets shortly after weaning, has a high lethality in affected animals and can lead to high economic losses in piglet rearing. The aim of this cross-sectional field study was to determine the prevalence of EDEC in weaned piglets in Germany at pen and farm levels. RESULTS Ninety-nine farms with unknown history of infections with shigatoxin-producing E. coli (STEC) and oedema disease were sampled. On each farm, up to five pens were selected for sampling (n = 481). The piglets in these pens were at an age 1-3 weeks after weaning. Single faecal samples (n = 2405) and boot swabs (n = 479) were collected from the floor. On 50 farms, cotton ropes were additionally used to collect oral fluid samples (n = 185) and rope wash out samples (n = 231) from the selected pens. All samples were analyzed by bacterial culture combined with a duplex PCR for the presence of the corresponding genes stx2e and fedA (major subunit protein of F18 fimbriae). In addition, whole DNA specimens extracted from boot swabs, oral fluid samples, and rope wash out samples were directly examined by duplex PCR for DNA of stx2e and fedA. A pen was classified as positive if at least one of the samples, regardless of the technique, yielded a positive result in the PCR, and farms were considered positive if at least one pen was classified as positive. Overall, genes stx2e and fedA were found simultaneously in 24.9% (95% CI 22.1-29.1%) of sampled pens and in 37.4% (95% CI 27.9-47.7%) of sampled farms. Regardless of the presence of F18-fimbriae, Escherichia coli encoding for Stx2e (STEC-2e) were found in 35.1% (95% CI 31.0-39.1%) of the pens and 53.5% (95% CI 44.4-63.6%) of the farms sampled. CONCLUSIONS Escherichia coli strains considered capable to cause oedema disease in swine (EDEC) are highly prevalent in the surveyed pig producing farms in Germany. Due to intermittent shedding of EDEC and a potentially low within-farm prevalence, we recommend a combination of different sampling techniques for EDEC monitoring at pen and farm levels. Further studies are needed to understand which STEC-2e strains really pose the risk of causing severe porcine disease.
Collapse
Affiliation(s)
- Pia I Berger
- Institute of Veterinary Epidemiology and Biostatistics, Freie Universität Berlin, Berlin, Germany.
| | - Steffen Hermanns
- Institute for Hygiene and Infectious Diseases of Animals, Justus Liebig University, Giessen, Germany
| | - Katharina Kerner
- Institute for Hygiene and Infectious Diseases of Animals, Justus Liebig University, Giessen, Germany
| | | | | | - Christa Ewers
- Institute for Hygiene and Infectious Diseases of Animals, Justus Liebig University, Giessen, Germany
| | - Rolf Bauerfeind
- Institute for Hygiene and Infectious Diseases of Animals, Justus Liebig University, Giessen, Germany
| | - Marcus G Doherr
- Institute of Veterinary Epidemiology and Biostatistics, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
2
|
Kellnerová S, Huber S, Massri M, Fleischer V, Losso K, Sarg B, Kremser L, Talasz H, He X, Varrone E, Brigotti M, Ardissino G, Orth-Höller D, Würzner R. Enzymatic Cleavage of Stx2a in the Gut and Identification of Pancreatic Elastase and Trypsin as Possible Main Cleavers. Microorganisms 2023; 11:2487. [PMID: 37894145 PMCID: PMC10609011 DOI: 10.3390/microorganisms11102487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/15/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023] Open
Abstract
Shiga toxins (Stxs), especially the Stx2a subtype, are the major virulence factors involved in enterohemorrhagic Escherichia coli (EHEC)-associated hemolytic uremic syndrome (eHUS), a life-threatening disease causing acute kidney injury, especially in children. After oral transmission and colonization in the gut, EHEC release Stx. Intracellular cleavage of the Stx A subunit, when followed by reduction, boosts the enzymatic activity that causes damage to targeted cells. This cleavage was assumed to be mostly mediated by furin during Stx intracellular trafficking. To investigate whether this cleavage could occur in the intestine, even prior to entering target cells, Stx2a A subunit structure (intact or cleaved) was characterized after its exposure to specific host factors present in human stool. The molecular weight of Stx2a A subunit/fragments was determined by immunoblotting after electrophoretic separation under reducing conditions. In this study, it was demonstrated that Stx2a is cleaved by certain human stool components. Trypsin and chymotrypsin-like elastase 3B (CELA3B), two serine proteases, were identified as potential candidates that can trigger the extracellular cleavage of Stx2a A subunit directly after its secretion by EHEC in the gut. Whether the observed cleavage indeed translates to natural infections and plays a role in eHUS pathogenesis has yet to be determined. If so, it seems likely that a host's protease profile could affect disease development by changing the toxin's biological features.
Collapse
Affiliation(s)
- Sára Kellnerová
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (S.K.); (S.H.); (M.M.); (V.F.)
| | - Silke Huber
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (S.K.); (S.H.); (M.M.); (V.F.)
| | - Mariam Massri
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (S.K.); (S.H.); (M.M.); (V.F.)
| | - Verena Fleischer
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (S.K.); (S.H.); (M.M.); (V.F.)
| | - Klemens Losso
- Institute of Analytical Chemistry and Radiochemistry, University of Innsbruck, 6020 Innsbruck, Austria;
- Department of Food Technology and Nutrition, MCI|The Entrepreneurial School, 6020 Innsbruck, Austria
| | - Bettina Sarg
- Protein Core Facility, Institute of Medical Biochemistry, Center of Chemistry and Biomedicine, Medical University of Innsbruck, 6020 Innsbruck, Austria; (B.S.); (L.K.); (H.T.)
| | - Leopold Kremser
- Protein Core Facility, Institute of Medical Biochemistry, Center of Chemistry and Biomedicine, Medical University of Innsbruck, 6020 Innsbruck, Austria; (B.S.); (L.K.); (H.T.)
| | - Heribert Talasz
- Protein Core Facility, Institute of Medical Biochemistry, Center of Chemistry and Biomedicine, Medical University of Innsbruck, 6020 Innsbruck, Austria; (B.S.); (L.K.); (H.T.)
| | - Xiaohua He
- Western Regional Research Center, U.S. Department of Agriculture, Agricultural Research Service, Albany, CA 74710, USA;
| | - Elisa Varrone
- Department of Medical and Surgical Sciences, School of Medicine, University of Bologna, 40126 Bologna, Italy; (E.V.); (M.B.)
| | - Maurizio Brigotti
- Department of Medical and Surgical Sciences, School of Medicine, University of Bologna, 40126 Bologna, Italy; (E.V.); (M.B.)
| | - Gianluigi Ardissino
- Center for HUS Prevention, Control and Management at Pediatric Nephrology, Dialysis and Transplant Unit, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Dorothea Orth-Höller
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (S.K.); (S.H.); (M.M.); (V.F.)
- MB-LAB–Clinical Microbiology Laboratory, 6020 Innsbruck, Austria
| | - Reinhard Würzner
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (S.K.); (S.H.); (M.M.); (V.F.)
| |
Collapse
|
3
|
Targeting the Inside of Cells with Biologicals: Toxin Routes in a Therapeutic Context. BioDrugs 2023; 37:181-203. [PMID: 36729328 PMCID: PMC9893211 DOI: 10.1007/s40259-023-00580-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2023] [Indexed: 02/03/2023]
Abstract
Numerous toxins translocate to the cytosol in order to fulfil their function. This demonstrates the existence of routes for proteins from the extracellular space to the cytosol. Understanding these routes is relevant to multiple aspects related to therapeutic applications. These include the development of anti-toxin treatments, the potential use of toxins as shuttles for delivering macromolecular cargo to the cytosol or the use of drugs based on toxins. Compared with other strategies for delivery, such as chemicals as carriers for macromolecular delivery or physical methods like electroporation, toxin routes present paths into the cell that potentially cause less damage and can be specifically targeted. The efficiency of delivery via toxin routes is limited. However, low-delivery efficiencies can be entirely sufficient, if delivered cargoes possess an amplification effect or if very few molecules are sufficient for inducing the desired effects. This is known for example from RNA-based vaccines that have been developed during the coronavirus disease 2019 pandemic as well as for other approved RNA-based drugs, which elicited the desired effect despite their typically low delivery efficiencies. The different mechanisms by which toxins enter cells may have implications for their technological utility. We review the mechanistic principles of the translocation pathway of toxins from the extracellular space to the cytosol, the delivery efficiencies, and therapeutic strategies or applications that exploit toxin routes for intracellular delivery.
Collapse
|
4
|
Detzner J, Püttmann C, Pohlentz G, Humpf HU, Mellmann A, Karch H, Müthing J. Primary Human Colon Epithelial Cells (pHCoEpiCs) Do Express the Shiga Toxin (Stx) Receptor Glycosphingolipids Gb3Cer and Gb4Cer and Are Largely Refractory but Not Resistant towards Stx. Int J Mol Sci 2021; 22:ijms221810002. [PMID: 34576167 PMCID: PMC8472147 DOI: 10.3390/ijms221810002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 01/13/2023] Open
Abstract
Shiga toxin (Stx) is released by enterohemorrhagic Escherichia coli (EHEC) into the human intestinal lumen and transferred across the colon epithelium to the circulation. Stx-mediated damage of human kidney and brain endothelial cells and renal epithelial cells is a renowned feature, while the sensitivity of the human colon epithelium towards Stx and the decoration with the Stx receptor glycosphingolipids (GSLs) globotriaosylceramide (Gb3Cer, Galα1-4Galβ1-4Glcβ1-1Cer) and globotetraosylceramide (Gb4Cer, GalNAcβ1-3Galα1-4Galβ1-4Glcβ1-1Cer) is a matter of debate. Structural analysis of the globo-series GSLs of serum-free cultivated primary human colon epithelial cells (pHCoEpiCs) revealed Gb4Cer as the major neutral GSL with Cer (d18:1, C16:0), Cer (d18:1, C22:1/C22:0) and Cer (d18:1, C24:2/C24:1) accompanied by minor Gb3Cer with Cer (d18:1, C16:0) and Cer (d18:1, C24:1) as the dominant lipoforms. Gb3Cer and Gb4Cer co-distributed with cholesterol and sphingomyelin to detergent-resistant membranes (DRMs) used as microdomain analogs. Exposure to increasing Stx concentrations indicated only a slight cell-damaging effect at the highest toxin concentration of 1 µg/mL for Stx1a and Stx2a, whereas a significant effect was detected for Stx2e. Considerable Stx refractiveness of pHCoEpiCs that correlated with the rather low cellular content of the high-affinity Stx-receptor Gb3Cer renders the human colon epithelium questionable as a major target of Stx1a and Stx2a.
Collapse
Affiliation(s)
- Johanna Detzner
- Institute for Hygiene, University of Münster, 48149 Münster, Germany; (J.D.); (C.P.); (G.P.); (A.M.); (H.K.)
| | - Charlotte Püttmann
- Institute for Hygiene, University of Münster, 48149 Münster, Germany; (J.D.); (C.P.); (G.P.); (A.M.); (H.K.)
| | - Gottfried Pohlentz
- Institute for Hygiene, University of Münster, 48149 Münster, Germany; (J.D.); (C.P.); (G.P.); (A.M.); (H.K.)
| | - Hans-Ulrich Humpf
- Institute for Food Chemistry, University of Münster, 48149 Münster, Germany;
| | - Alexander Mellmann
- Institute for Hygiene, University of Münster, 48149 Münster, Germany; (J.D.); (C.P.); (G.P.); (A.M.); (H.K.)
| | - Helge Karch
- Institute for Hygiene, University of Münster, 48149 Münster, Germany; (J.D.); (C.P.); (G.P.); (A.M.); (H.K.)
| | - Johannes Müthing
- Institute for Hygiene, University of Münster, 48149 Münster, Germany; (J.D.); (C.P.); (G.P.); (A.M.); (H.K.)
- Correspondence: ; Tel.: +49-(0)251-8355192
| |
Collapse
|
5
|
Detzner J, Klein AL, Pohlentz G, Krojnewski E, Humpf HU, Mellmann A, Karch H, Müthing J. Primary Human Renal Proximal Tubular Epithelial Cells (pHRPTEpiCs): Shiga Toxin (Stx) Glycosphingolipid Receptors, Stx Susceptibility, and Interaction with Membrane Microdomains. Toxins (Basel) 2021; 13:toxins13080529. [PMID: 34437399 PMCID: PMC8402424 DOI: 10.3390/toxins13080529] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 12/13/2022] Open
Abstract
Tubular epithelial cells of the human kidney are considered as targets of Shiga toxins (Stxs) in the Stx-mediated pathogenesis of hemolytic–uremic syndrome (HUS) caused by Stx-releasing enterohemorrhagic Escherichia coli (EHEC). Analysis of Stx-binding glycosphingolipids (GSLs) of primary human renal proximal tubular epithelial cells (pHRPTEpiCs) yielded globotriaosylceramide (Gb3Cer) and globotetraosylceramide (Gb4Cer) with Cer (d18:1, C16:0), Cer (d18:1, C22:0), and Cer (d18:1, C24:1/C24:0) as the dominant lipoforms. Investigation of detergent-resistant membranes (DRMs) and nonDRMs, serving as equivalents for the liquid-ordered and liquid-disordered membrane phase, respectively, revealed the prevalence of Gb3Cer and Gb4Cer together with cholesterol and sphingomyelin in DRMs, suggesting lipid raft association. Stx1a and Stx2a exerted strong cellular damage with half-maximal cytotoxic doses (CD50) of 1.31 × 102 pg/mL and 1.66 × 103 pg/mL, respectively, indicating one order of magnitude higher cellular cytotoxicity of Stx1a. Surface acoustic wave (SAW) real-time interaction analysis using biosensor surfaces coated with DRM or nonDRM fractions gave stronger binding capability of Stx1a versus Stx2a that correlated with the lower cytotoxicity of Stx2a. Our study underlines the substantial role of proximal tubular epithelial cells of the human kidney being associated with the development of Stx-mediated HUS at least for Stx1a, while the impact of Stx2a remains somewhat ambiguous.
Collapse
Affiliation(s)
- Johanna Detzner
- Institute of Hygiene, University of Münster, D-48149 Münster, Germany; (J.D.); (A.-L.K.); (G.P.); (E.K.); (A.M.); (H.K.)
| | - Anna-Lena Klein
- Institute of Hygiene, University of Münster, D-48149 Münster, Germany; (J.D.); (A.-L.K.); (G.P.); (E.K.); (A.M.); (H.K.)
| | - Gottfried Pohlentz
- Institute of Hygiene, University of Münster, D-48149 Münster, Germany; (J.D.); (A.-L.K.); (G.P.); (E.K.); (A.M.); (H.K.)
| | - Elisabeth Krojnewski
- Institute of Hygiene, University of Münster, D-48149 Münster, Germany; (J.D.); (A.-L.K.); (G.P.); (E.K.); (A.M.); (H.K.)
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, University of Münster, D-48149 Münster, Germany;
| | - Alexander Mellmann
- Institute of Hygiene, University of Münster, D-48149 Münster, Germany; (J.D.); (A.-L.K.); (G.P.); (E.K.); (A.M.); (H.K.)
| | - Helge Karch
- Institute of Hygiene, University of Münster, D-48149 Münster, Germany; (J.D.); (A.-L.K.); (G.P.); (E.K.); (A.M.); (H.K.)
| | - Johannes Müthing
- Institute of Hygiene, University of Münster, D-48149 Münster, Germany; (J.D.); (A.-L.K.); (G.P.); (E.K.); (A.M.); (H.K.)
- Correspondence:
| |
Collapse
|
6
|
Lee KS, Jeong YJ, Lee MS. Escherichia coli Shiga Toxins and Gut Microbiota Interactions. Toxins (Basel) 2021; 13:toxins13060416. [PMID: 34208170 PMCID: PMC8230793 DOI: 10.3390/toxins13060416] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/03/2021] [Accepted: 06/08/2021] [Indexed: 12/19/2022] Open
Abstract
Escherichia coli (EHEC) and Shigella dysenteriae serotype 1 are enterohemorrhagic bacteria that induce hemorrhagic colitis. This, in turn, may result in potentially lethal complications, such as hemolytic uremic syndrome (HUS), which is characterized by thrombocytopenia, acute renal failure, and neurological abnormalities. Both species of bacteria produce Shiga toxins (Stxs), a phage-encoded exotoxin inhibiting protein synthesis in host cells that are primarily responsible for bacterial virulence. Although most studies have focused on the pathogenic roles of Stxs as harmful substances capable of inducing cell death and as proinflammatory factors that sensitize the host target organs to damage, less is known about the interface between the commensalism of bacterial communities and the pathogenicity of the toxins. The gut contains more species of bacteria than any other organ, providing pathogenic bacteria that colonize the gut with a greater number of opportunities to encounter other bacterial species. Notably, the presence in the intestines of pathogenic EHEC producing Stxs associated with severe illness may have compounding effects on the diversity of the indigenous bacteria and bacterial communities in the gut. The present review focuses on studies describing the roles of Stxs in the complex interactions between pathogenic Shiga toxin-producing E. coli, the resident microbiome, and host tissues. The determination of these interactions may provide insights into the unresolved issues regarding these pathogens.
Collapse
Affiliation(s)
- Kyung-Soo Lee
- Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Daejeon 34141, Korea;
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 127 Gajeong-ro, Yuseong-gu, Daejeon 34113, Korea
| | - Yu-Jin Jeong
- Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Daejeon 34141, Korea;
- Correspondence: (Y.-J.J.); (M.-S.L.)
| | - Moo-Seung Lee
- Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Daejeon 34141, Korea;
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 127 Gajeong-ro, Yuseong-gu, Daejeon 34113, Korea
- Correspondence: (Y.-J.J.); (M.-S.L.)
| |
Collapse
|
7
|
Szymczak-Kulus K, Weidler S, Bereznicka A, Mikolajczyk K, Kaczmarek R, Bednarz B, Zhang T, Urbaniak A, Olczak M, Park EY, Majorczyk E, Kapczynska K, Lukasiewicz J, Wuhrer M, Unverzagt C, Czerwinski M. Human Gb3/CD77 synthase produces P1 glycotope-capped N-glycans, which mediate Shiga toxin 1 but not Shiga toxin 2 cell entry. J Biol Chem 2021; 296:100299. [PMID: 33460651 PMCID: PMC7949097 DOI: 10.1016/j.jbc.2021.100299] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/07/2021] [Accepted: 01/12/2021] [Indexed: 12/15/2022] Open
Abstract
The human Gb3/CD77 synthase, encoded by the A4GALT gene, is an unusually promiscuous glycosyltransferase. It synthesizes the Galα1→4Gal linkage on two different glycosphingolipids (GSLs), producing globotriaosylceramide (Gb3, CD77, Pk) and the P1 antigen. Gb3 is the major receptor for Shiga toxins (Stxs) produced by enterohemorrhagic Escherichia coli. A single amino acid substitution (p.Q211E) ramps up the enzyme's promiscuity, rendering it able to attach Gal both to another Gal residue and to GalNAc, giving rise to NOR1 and NOR2 GSLs. Human Gb3/CD77 synthase was long believed to transfer Gal only to GSL acceptors, therefore its GSL products were, by default, considered the only human Stx receptors. Here, using soluble, recombinant human Gb3/CD77 synthase and p.Q211E mutein, we demonstrate that both enzymes can synthesize the P1 glycotope (terminal Galα1→4Galβ1→4GlcNAc-R) on a complex type N-glycan and a synthetic N-glycoprotein (saposin D). Moreover, by transfection of CHO-Lec2 cells with vectors encoding human Gb3/CD77 synthase and its p.Q211E mutein, we demonstrate that both enzymes produce P1 glycotopes on N-glycoproteins, with the mutein exhibiting elevated activity. These P1-terminated N-glycoproteins are recognized by Stx1 but not Stx2 B subunits. Finally, cytotoxicity assays show that Stx1 can use P1 N-glycoproteins produced in CHO-Lec2 cells as functional receptors. We conclude that Stx1 can recognize and use P1 N-glycoproteins in addition to its canonical GSL receptors to enter and kill the cells, while Stx2 can use GSLs only. Collectively, these results may have important implications for our understanding of the Shiga toxin pathology.
Collapse
Affiliation(s)
- Katarzyna Szymczak-Kulus
- Laboratory of Glycobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Wroclaw, Poland
| | - Sascha Weidler
- Department of Bioorganic Chemistry, University of Bayreuth, Bayreuth, Germany
| | - Anna Bereznicka
- Laboratory of Glycobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Wroclaw, Poland
| | - Krzysztof Mikolajczyk
- Laboratory of Glycobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Wroclaw, Poland
| | - Radoslaw Kaczmarek
- Laboratory of Glycobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Wroclaw, Poland
| | - Bartosz Bednarz
- Laboratory of Molecular Biology of Microorganisms, Hirszfeld Institute of Immunology and Experimental Therapy, Wroclaw, Poland
| | - Tao Zhang
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Anna Urbaniak
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Mariusz Olczak
- Department of Biochemistry, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Enoch Y Park
- Laboratory of Biotechnology, Shizuoka University, Shizuoka, Japan
| | - Edyta Majorczyk
- Faculty of Physical Education and Physiotherapy, Opole University of Technology, Opole, Poland
| | - Katarzyna Kapczynska
- Laboratory of Medical Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Wroclaw, Poland
| | - Jolanta Lukasiewicz
- Laboratory of Microbial Immunochemistry and Vaccines, Hirszfeld Institute of Immunology and Experimental Therapy, Wroclaw, Poland
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Carlo Unverzagt
- Department of Bioorganic Chemistry, University of Bayreuth, Bayreuth, Germany
| | - Marcin Czerwinski
- Laboratory of Glycobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Wroclaw, Poland.
| |
Collapse
|
8
|
Detzner J, Pohlentz G, Müthing J. Thin-Layer Chromatography in Structure and Recognition Studies of Shiga Toxin Glycosphingolipid Receptors. Methods Mol Biol 2021; 2291:229-252. [PMID: 33704756 DOI: 10.1007/978-1-0716-1339-9_10] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Glycosphingolipids (GSLs) consist of a ceramide (Cer) lipid anchor, which is typically composed of the long-chain aminoalcohol sphingosine (d18:1) and a fatty acid (mostly C16-C24) and a sugar moiety harboring to a great extent one to five monosaccharides. GSLs of the globo-series are well-recognized receptors of Shiga toxins (Stxs) released by Stx-producing Escherichia coli (STEC). Receptors for the Stx subtypes Stx1a and Stx2a are globotriaosylceramide (Gb3Cer) and globotetraosylceramide (Gb4Cer), whereby Gb3Cer represents their high-affinity and Gb4Cer their low-affinity receptor. In addition to Gb3Cer and Gb4Cer, Gb5Cer and Forssman GSL are further receptors of the Stx2e subtype rendering Stx2e unique among the various Stx subtypes. Thin-layer chromatography (TLC) is a convenient and ubiquitously employed method for analyzing GSL mixtures of unknown composition. In particular, TLC immunochemical overlay detection allows for sensitive identification of Stx-binding GSLs in complex mixtures directly on the TLC plate. For this purpose, specific anti-GSL antibodies or Stxs themselves in conjunction with anti-Stx antibodies can be used. The described protocols of antibody-mediated detection of TLC-separated globo-series GSLs and corresponding identification of Stx-binding globo-series GSLs will provide detailed advice for successful GSL analysis and particularly highlight the power of the TLC overlay technique.
Collapse
Affiliation(s)
- Johanna Detzner
- Institute for Hygiene, University of Münster, Münster, Germany
| | | | | |
Collapse
|
9
|
Shiga Toxin 2a Binds to Complement Components C3b and C5 and Upregulates Their Gene Expression in Human Cell Lines. Toxins (Basel) 2020; 13:toxins13010008. [PMID: 33374102 PMCID: PMC7824702 DOI: 10.3390/toxins13010008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/16/2020] [Accepted: 12/22/2020] [Indexed: 01/06/2023] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) infections can cause EHEC-associated hemolytic uremic syndrome (eHUS) via its main virulent factor, Shiga toxins (Stxs). Complement has been reported to be involved in the progression of eHUS. The aim of this study was to investigate the interactions of the most effective subtype of the toxin, Stx2a, with pivotal complement proteins C3b and C5. The study further examined the effect of Stx2a stimulation on the transcription and synthesis of these complement proteins in human target cell lines. Binding of Stx2a to C3b and C5 was evaluated by ELISA. Kidney and gut cell lines (HK-2 and HCT-8) were stimulated with varied concentrations of Stx2a. Subsequent evaluation of complement gene transcription was studied by real-time PCR (qPCR), and ELISAs and Western blots were performed to examine protein synthesis of C3 and C5 in supernatants and lysates of stimulated HK-2 cells. Stx2a showed a specific binding to C3b and C5. Gene transcription of C3 and C5 was upregulated with increasing concentrations of Stx2a in both cell lines, but protein synthesis was not. This study demonstrates the binding of Stx2a to complement proteins C3b and C5, which could potentially be involved in regulating complement during eHUS infection, supporting further investigations into elucidating the role of complement in eHUS pathogenesis.
Collapse
|
10
|
Valid Presumption of Shiga Toxin-Mediated Damage of Developing Erythrocytes in EHEC-Associated Hemolytic Uremic Syndrome. Toxins (Basel) 2020; 12:toxins12060373. [PMID: 32512916 PMCID: PMC7354503 DOI: 10.3390/toxins12060373] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 02/06/2023] Open
Abstract
The global emergence of clinical diseases caused by enterohemorrhagic Escherichia coli (EHEC) is an issue of great concern. EHEC release Shiga toxins (Stxs) as their key virulence factors, and investigations on the cell-damaging mechanisms toward target cells are inevitable for the development of novel mitigation strategies. Stx-mediated hemolytic uremic syndrome (HUS), characterized by the triad of microangiopathic hemolytic anemia, thrombocytopenia, and acute renal injury, is the most severe outcome of an EHEC infection. Hemolytic anemia during HUS is defined as the loss of erythrocytes by mechanical disruption when passing through narrowed microvessels. The formation of thrombi in the microvasculature is considered an indirect effect of Stx-mediated injury mainly of the renal microvascular endothelial cells, resulting in obstructions of vessels. In this review, we summarize and discuss recent data providing evidence that HUS-associated hemolytic anemia may arise not only from intravascular rupture of erythrocytes, but also from the extravascular impairment of erythropoiesis, the development of red blood cells in the bone marrow, via direct Stx-mediated damage of maturing erythrocytes, leading to “non-hemolytic” anemia.
Collapse
|
11
|
Josenhans C, Müthing J, Elling L, Bartfeld S, Schmidt H. How bacterial pathogens of the gastrointestinal tract use the mucosal glyco-code to harness mucus and microbiota: New ways to study an ancient bag of tricks. Int J Med Microbiol 2020; 310:151392. [DOI: 10.1016/j.ijmm.2020.151392] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/28/2019] [Accepted: 12/06/2019] [Indexed: 12/13/2022] Open
|
12
|
Detzner J, Gloerfeld C, Pohlentz G, Legros N, Humpf HU, Mellmann A, Karch H, Müthing J. Structural Insights into Escherichia coli Shiga Toxin (Stx) Glycosphingolipid Receptors of Porcine Renal Epithelial Cells and Inhibition of Stx-Mediated Cellular Injury Using Neoglycolipid-Spiked Glycovesicles. Microorganisms 2019; 7:microorganisms7110582. [PMID: 31752441 PMCID: PMC6920957 DOI: 10.3390/microorganisms7110582] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/15/2019] [Accepted: 11/16/2019] [Indexed: 11/18/2022] Open
Abstract
Shiga toxin (Stx) producing Escherichia coli (STEC) cause the edema disease in pigs by releasing the swine-pathogenic Stx2e subtype as the key virulence factor. Stx2e targets endothelial cells of animal organs including the kidney harboring the Stx receptor glycosphingolipids (GSLs) globotriaosylceramide (Gb3Cer, Galα1-4Galβ1-4Glcβ1-1Cer) and globotetraosylceramide (Gb4Cer, GalNAcβ1-3Galα1-4Galβ1-4Glcβ1-1Cer). Since the involvement of renal epithelial cells in the edema disease is unknown, in this study, we analyzed the porcine kidney epithelial cell lines, LLC-PK1 and PK-15, regarding the presence of Stx-binding GSLs, their sensitivity towards Stx2e, and the inhibitory potential of Gb3- and Gb4-neoglycolipids, carrying phosphatidylethanolamine (PE) as the lipid anchor, towards Stx2e. Immunochemical and mass spectrometric analysis revealed various Gb3Cer and Gb4Cer lipoforms as the dominant Stx-binding GSLs in both LLC-PK1 and PK-15 cells. A dihexosylceramide with proposed Galα1-4Gal-sequence (Gal2Cer) was detected in PK-15 cells, whereas LLC-PK1 cells lacked this compound. Both cell lines were susceptible towards Stx2e with LLC-PK1 representing an extremely Stx2e-sensitive cell line. Gb3-PE and Gb4-PE applied as glycovesicles significantly reduced the cytotoxic activity of Stx2e towards LLC-PK1 cells, whereas only Gb4-PE exhibited some protection against Stx2e for PK-15 cells. This is the first report identifying Stx2e receptors of porcine kidney epithelial cells and providing first data on their Stx2e-mediated damage suggesting possible involvement in the edema disease.
Collapse
Affiliation(s)
- Johanna Detzner
- Institute for Hygiene, University of Münster, 48149 Münster, Germany; (J.D.); (C.G.); (G.P.); (N.L.); (A.M.); (H.K.)
| | - Caroline Gloerfeld
- Institute for Hygiene, University of Münster, 48149 Münster, Germany; (J.D.); (C.G.); (G.P.); (N.L.); (A.M.); (H.K.)
| | - Gottfried Pohlentz
- Institute for Hygiene, University of Münster, 48149 Münster, Germany; (J.D.); (C.G.); (G.P.); (N.L.); (A.M.); (H.K.)
| | - Nadine Legros
- Institute for Hygiene, University of Münster, 48149 Münster, Germany; (J.D.); (C.G.); (G.P.); (N.L.); (A.M.); (H.K.)
| | - Hans-Ulrich Humpf
- Institute for Food Chemistry, University of Münster, 48149 Münster, Germany;
| | - Alexander Mellmann
- Institute for Hygiene, University of Münster, 48149 Münster, Germany; (J.D.); (C.G.); (G.P.); (N.L.); (A.M.); (H.K.)
| | - Helge Karch
- Institute for Hygiene, University of Münster, 48149 Münster, Germany; (J.D.); (C.G.); (G.P.); (N.L.); (A.M.); (H.K.)
| | - Johannes Müthing
- Institute for Hygiene, University of Münster, 48149 Münster, Germany; (J.D.); (C.G.); (G.P.); (N.L.); (A.M.); (H.K.)
- Correspondence: ; Tel.: +49-(0)251-8355192
| |
Collapse
|
13
|
Vinh PT, Shinohara Y, Yamada A, Duc HM, Nakayama M, Ozawa T, Sato J, Masuda Y, Honjoh KI, Miyamoto T. Baicalein Inhibits Stx1 and 2 of EHE: Effects of Baicalein on the Cytotoxicity, Production, and Secretion of Shiga Toxins of Enterohaemorrhagic Escherichia coli. Toxins (Basel) 2019; 11:toxins11090505. [PMID: 31470657 PMCID: PMC6784239 DOI: 10.3390/toxins11090505] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/25/2019] [Accepted: 08/27/2019] [Indexed: 12/14/2022] Open
Abstract
Shiga toxin-producing enterohaemorrhagic Escherichia coli (EHEC) O157:H7 is an important foodborne pathogen. Baicalein (5,6,7-trihydroxylflavone), a flavone isolated from the roots of Scutellaria baicalensis, is considered as a potential antibacterial agent to control foodborne pathogens. Among seven compounds selected by in silico screening of the natural compound database, baicalein inhibited the cytotoxicity of both Shiga toxins 1 and 2 (Stx1 and Stx2) against Vero cells after pretreatment at 0.13 mmol/L. In addition, baicalein reduced the susceptibility of Vero cells to both Stx1 and Stx2. Real-time qPCR showed that baicalein increased transcription of stx1 but not of stx2. However, baicalein had no effects on production or secretion of Stx1 or Stx2. Docking models suggested that baicalein formed a stable structure with StxB pentamer with low intramolecular energy. The results demonstrate that inhibitory activity of baicalein against the cytotoxicity of both Stx1 and Stx2 might be due to of the formation of a binding structure inside the pocket of the Stx1B and Stx2B pentamers.
Collapse
Affiliation(s)
- Pham Thi Vinh
- Division of Food Science & Biotechnology, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Yui Shinohara
- Division of Food Science & Biotechnology, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Akifumi Yamada
- Division of Food Science & Biotechnology, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Hoang Minh Duc
- Division of Food Science & Biotechnology, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Motokazu Nakayama
- Global R&D-Safty Science, Kao Corporation, 2606, Akabane, Ichikai-machi, Haga-gun, Tochigi 321-3497, Japan
| | - Tadahiro Ozawa
- Bioscience Research, Kao Corporation, 2606, Akabane, Ichikai-machi, Haga-gun, Tochigi 321-3497, Japan
| | - Jun Sato
- Global R&D-Safty Science, Kao Corporation, 2606, Akabane, Ichikai-machi, Haga-gun, Tochigi 321-3497, Japan
| | - Yoshimitsu Masuda
- Division of Food Science & Biotechnology, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Ken-Ichi Honjoh
- Division of Food Science & Biotechnology, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takahisa Miyamoto
- Division of Food Science & Biotechnology, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
14
|
Pohlentz G, Steil D, Rubin D, Mellmann A, Karch H, Müthing J. Pectin-derived neoglycolipids: Tools for differentiation of Shiga toxin subtypes and inhibitors of Shiga toxin-mediated cellular injury. Carbohydr Polym 2019; 212:323-333. [DOI: 10.1016/j.carbpol.2019.02.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/04/2019] [Accepted: 02/12/2019] [Indexed: 01/14/2023]
|
15
|
Lee MS, Tesh VL. Roles of Shiga Toxins in Immunopathology. Toxins (Basel) 2019; 11:E212. [PMID: 30970547 PMCID: PMC6521259 DOI: 10.3390/toxins11040212] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/04/2019] [Accepted: 04/05/2019] [Indexed: 12/20/2022] Open
Abstract
Shigella species and Shiga toxin-producing Escherichia coli (STEC) are agents of bloody diarrhea that may progress to potentially lethal complications such as diarrhea-associated hemolytic uremic syndrome (D+HUS) and neurological disorders. The bacteria share the ability to produce virulence factors called Shiga toxins (Stxs). Research over the past two decades has identified Stxs as multifunctional toxins capable of inducing cell stress responses in addition to their canonical ribotoxic function inhibiting protein synthesis. Notably, Stxs are not only potent inducers of cell death, but also activate innate immune responses that may lead to inflammation, and these effects may increase the severity of organ injury in patients infected with Stx-producing bacteria. In the intestines, kidneys, and central nervous system, excessive or uncontrolled host innate and cellular immune responses triggered by Stxs may result in sensitization of cells to toxin mediated damage, leading to immunopathology and increased morbidity and mortality in animal models (including primates) and human patients. Here, we review studies describing Stx-induced innate immune responses that may be associated with tissue damage, inflammation, and complement activation. We speculate on how these processes may contribute to immunopathological responses to the toxins.
Collapse
Affiliation(s)
- Moo-Seung Lee
- Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Daejeon 34141, Korea.
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 127 Gajeong-ro, Yuseong-gu, Daejeon 34113, Korea.
| | - Vernon L Tesh
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX 77807, USA.
| |
Collapse
|
16
|
Szuster-Ciesielska A, Urban-Chmiel R, Wernicki A, Mascaron L, Wasak M, Bousquet E. Evaluation of the ability of colistin, amoxicillin (components of Potencil ® ), and fluoroquinolones to attenuate bacterial endotoxin- and Shiga exotoxin-mediated cytotoxicity-In vitro studies. J Vet Pharmacol Ther 2018; 42:85-103. [PMID: 30218443 DOI: 10.1111/jvp.12710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 08/08/2018] [Accepted: 08/13/2018] [Indexed: 01/27/2023]
Abstract
Escherichia coli is one of the major pathogens in humans and animals causing localized and systemic infections, which often lead to acute inflammation, watery diarrhea, and hemorrhagic colitis. Bacterial lipopolysaccharide (LPS) and Shiga exotoxins (Stx) are mostly responsible for such clinical signs. Therefore, highly effective treatment of E. coli infections should include both eradication of bacteria and neutralization of their toxins. Here, for the first time, we compared the in vitro ability of common antibiotics to decrease LPS- and Stx-mediated cytotoxicity: colistin, amoxicillin (used separately or combined), enrofloxacin, and its metabolite ciprofloxacin. Three experimental scenarios were realized as follows: (a) the direct effect of antibiotics on endotoxin, (b) the effect of antibiotic treatment on LPS-mediated cytotoxicity in an experiment mimicking "natural infection," (c) the effect of antibiotics to decrease Stx2e-mediated cytotoxicity. Two cell lines, A549 and Vero cells, were used to perform cytotoxic assays with the methyl tetrazolium (MTT) and lactate dehydrogenase leakage (LDH) methods, respectively. Colistin and amoxicillin, especially used in combination, were able to attenuate LPS toxic effect, which was reflected by increase in A549 cell viability. In comparison with other antibiotics, the combination of colistin and amoxicillin exhibited the highest boster or additive effect in protecting cells against LPS- and Stx2e-induced toxicity. In summary, in comparison with fluoroquinolones, the combination of colistin and amoxicillin at concentrations similar to those achieved in plasma of treated animals exhibited the highest ability to attenuate LPS- and Stx2e-mediated cytotoxicity.
Collapse
Affiliation(s)
| | - Renata Urban-Chmiel
- Department of Veterinary Prevention and Avian Diseases, Institute of Biological Bases of Animal Diseases, University of Life Sciences, Lublin, Poland
| | - Andrzej Wernicki
- Department of Veterinary Prevention and Avian Diseases, Institute of Biological Bases of Animal Diseases, University of Life Sciences, Lublin, Poland
| | | | | | | |
Collapse
|
17
|
Legros N, Pohlentz G, Steil D, Müthing J. Shiga toxin-glycosphingolipid interaction: Status quo of research with focus on primary human brain and kidney endothelial cells. Int J Med Microbiol 2018; 308:1073-1084. [PMID: 30224239 DOI: 10.1016/j.ijmm.2018.09.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/28/2018] [Accepted: 09/06/2018] [Indexed: 12/21/2022] Open
Abstract
Shiga toxin (Stx)-mediated injury of the kidneys and the brain represent the major extraintestinal complications in humans upon infection by enterohemorrhagic Escherichia coli (EHEC). Damage of renal and cerebral endothelial cells is the key event in the pathogenesis of the life-threatening hemolytic uremic syndrome (HUS). Stxs are AB5 toxins and the B-pentamers of the two clinically important Stx subtypes Stx1a and Stx2a preferentially bind to the glycosphingolipid globotriaosylceramide (Gb3Cer, Galα4Galβ4Glcβ1Cer) and to less extent to globotetraosylceramide (Gb4Cer, GalNAcβ3Galα4Galβ4Glcβ1), which are expected to reside in lipid rafts in the plasma membrane of the human endothelium. This review summarizes the current knowledge on the Stx glycosphingolipid receptors and their lipid membrane ensemble in primary human brain microvascular endothelial cells (pHBMECs) and primary human renal glomerular endothelial cells (pHRGECs). Increasing knowledge on the precise initial molecular mechanisms by which Stxs interact with cellular targets will help to develop specific therapeutics and/or preventive measures to combat EHEC-caused diseases.
Collapse
Affiliation(s)
- Nadine Legros
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany
| | | | - Daniel Steil
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany
| | - Johannes Müthing
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany; Interdisciplinary Center for Clinical Research (IZKF), University of Münster, D-48149 Münster, Germany.
| |
Collapse
|
18
|
Steil D, Pohlentz G, Legros N, Mormann M, Mellmann A, Karch H, Müthing J. Combining Mass Spectrometry, Surface Acoustic Wave Interaction Analysis, and Cell Viability Assays for Characterization of Shiga Toxin Subtypes of Pathogenic Escherichia coli Bacteria. Anal Chem 2018; 90:8989-8997. [PMID: 29939014 DOI: 10.1021/acs.analchem.8b01189] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Shiga toxin (Stx)-producing Escherichia coli (STEC) and enterohemorrhagic E. coli (EHEC) as a human pathogenic subgroup of STEC are characterized by releasing Stx AB5-toxin as the major virulence factor. Worldwide disseminated EHEC strains cause sporadic infections and outbreaks in the human population and swine pathogenic STEC strains represent greatly feared pathogens in pig breeding and fattening plants. Among the various Stx subtypes, Stx1a and Stx2a are of eminent clinical importance in human infections being associated with life-threatening hemorrhagic colitis and hemolytic uremic syndrome, whereas Stx2e subtype is associated with porcine edema disease with a generalized fatal outcome for the animals. Binding toward the glycosphingolipid globotriaosylceramide (Gb3Cer) is a common feature of all Stx subtypes analyzed so far. Here, we report on the development of a matched strategy combining (i) miniaturized one-step affinity purification of native Stx subtypes from culture supernatant of bacterial wild-type strains using Gb3-functionalized magnetic beads, (ii) structural analysis and identification of Stx holotoxins by electrospray ionization ion mobility mass spectrometry (ESI MS), (iii) functional Stx-receptor real-time interaction analysis employing the surface acoustic wave (SAW) technology, and (iv) Vero cell culture assays for determining Stx-caused cytotoxic effects. Structural investigations revealed diagnostic tryptic peptide ions for purified Stx1a, Stx2a, and Stx2e, respectively, and functional analysis resulted in characteristic binding kinetics of each Stx subtype. Cytotoxicity studies revealed differing toxin-mediated cell damage ranked with Stx1a > Stx2a > Stx2e. Collectively, this matched procedure represents a promising clinical application for the characterization of life-endangering Stx subtypes at the protein level.
Collapse
Affiliation(s)
- Daniel Steil
- Institute for Hygiene , University of Münster , Robert-Koch-Strasse 41 , D-48149 Münster , Germany
| | - Gottfried Pohlentz
- Institute for Hygiene , University of Münster , Robert-Koch-Strasse 41 , D-48149 Münster , Germany
| | - Nadine Legros
- Institute for Hygiene , University of Münster , Robert-Koch-Strasse 41 , D-48149 Münster , Germany
| | - Michael Mormann
- Institute for Hygiene , University of Münster , Robert-Koch-Strasse 41 , D-48149 Münster , Germany
| | - Alexander Mellmann
- Institute for Hygiene , University of Münster , Robert-Koch-Strasse 41 , D-48149 Münster , Germany.,Interdisciplinary Center for Clinical Research (IZKF) Münster , Domagkstrasse 3 , D-48149 Münster , Germany
| | - Helge Karch
- Institute for Hygiene , University of Münster , Robert-Koch-Strasse 41 , D-48149 Münster , Germany.,Interdisciplinary Center for Clinical Research (IZKF) Münster , Domagkstrasse 3 , D-48149 Münster , Germany
| | - Johannes Müthing
- Institute for Hygiene , University of Münster , Robert-Koch-Strasse 41 , D-48149 Münster , Germany.,Interdisciplinary Center for Clinical Research (IZKF) Münster , Domagkstrasse 3 , D-48149 Münster , Germany
| |
Collapse
|
19
|
Legros N, Pohlentz G, Steil D, Kouzel IU, Liashkovich I, Mellmann A, Karch H, Müthing J. Membrane assembly of Shiga toxin glycosphingolipid receptors and toxin refractiveness of MDCK II epithelial cells. J Lipid Res 2018; 59:1383-1401. [PMID: 29866658 DOI: 10.1194/jlr.m083048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 05/22/2018] [Indexed: 12/16/2022] Open
Abstract
Shiga toxins (Stxs) are the major virulence factors of Stx-producing Escherichia coli (STEC), which cause hemorrhagic colitis and severe extraintestinal complications due to injury of renal endothelial cells, resulting in kidney failure. Since kidney epithelial cells are suggested additional targets for Stxs, we analyzed Madin-Darby canine kidney (MDCK) II epithelial cells for presence of Stx-binding glycosphingolipids (GSLs), determined their distribution to detergent-resistant membranes (DRMs), and ascertained the lipid composition of DRM and non-DRM preparations. Globotriaosylceramide and globotetraosylceramide, known as receptors for Stx1a, Stx2a, and Stx2e, and Forssman GSL as a specific receptor for Stx2e, were found to cooccur with SM and cholesterol in DRMs of MDCK II cells, which was shown using TLC overlay assay detection combined with mass spectrometry. The various lipoforms of GSLs were found to mainly harbor ceramide moieties composed of sphingosine (d18:1) and C24:1/C24:0 or C16:0 FA. The cells were highly refractory toward Stx1a, Stx2a, and Stx2e, most likely due to the absence of Stx-binding GSLs in the apical plasma membrane determined by immunofluorescence confocal laser scanning microscopy. The results suggest that the cellular content of Stx receptor GSLs and their biochemical detection in DRM preparations alone are inadequate to predict cellular sensitivity toward Stxs.
Collapse
Affiliation(s)
- Nadine Legros
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany
| | | | - Daniel Steil
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany
| | - Ivan U Kouzel
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany.,Interdisciplinary Center for Clinical Research, University of Münster, D-48149 Münster, Germany
| | - Ivan Liashkovich
- Institute of Physiology II, University of Münster, D-48149 Münster, Germany
| | - Alexander Mellmann
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany.,Interdisciplinary Center for Clinical Research, University of Münster, D-48149 Münster, Germany
| | - Helge Karch
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany.,Interdisciplinary Center for Clinical Research, University of Münster, D-48149 Münster, Germany
| | - Johannes Müthing
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany .,Interdisciplinary Center for Clinical Research, University of Münster, D-48149 Münster, Germany
| |
Collapse
|
20
|
Legros N, Pohlentz G, Runde J, Dusny S, Humpf HU, Karch H, Müthing J. Colocalization of receptors for Shiga toxins with lipid rafts in primary human renal glomerular endothelial cells and influence of D-PDMP on synthesis and distribution of glycosphingolipid receptors. Glycobiology 2018; 27:947-965. [PMID: 28535204 DOI: 10.1093/glycob/cwx048] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 05/17/2017] [Indexed: 12/12/2022] Open
Abstract
Damage of human renal glomerular endothelial cells (HRGECs) of the kidney represents the linchpin in the pathogenesis of the hemolytic uremic syndrome caused by Shiga toxins of enterohemorrhagic Escherichia coli (EHEC). We performed a comprehensive structural analysis of the Stx-receptor glycosphingolipids (GSLs) globotriaosylceramide (Gb3Cer, Galα4Galβ4Glcβ1Cer) and globotetraosylceramide (Gb4Cer, GalNAcβ3Galα4Galβ4Glcβ1Cer) and their distribution in lipid raft analog detergent-resistant membranes (DRMs) and nonDRMs prepared from primary HRGECs. Predominant receptor lipoforms were Gb3Cer and Gb4Cer with Cer (d18:1, C16:0), Cer (d18:1, C22:0) and Cer (d18:1, C24:1/C24:0). Stx-receptor GSLs co-distribute with sphingomyelin (SM) and cholesterol as well as flotillin-2 in DRMs, representing the liquid-ordered membrane phase and indicating lipid raft association. Lyso-phosphatidylcholine (lyso-PC) was identified as a nonDRM marker phospholipid of the liquid-disordered membrane phase. Exposure of primary HRGECs to the ceramide analogon d-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (D-PDMP) reduced total Gb3Cer and Gb4Cer content, roughly calculated from two biological replicates, down to half and quarter of its primordial content, respectively, but strengthened their prevalence and cholesterol preponderance in DRMs. At the same time, the distribution of PC, SM and lyso-PC to subcellular membrane fractions remained unaffected by D-PDMP treatment. Defining the GSL composition and precise microdomain structures of primary HRGECs may help to develop novel therapeutic options to combat life-threatening EHEC infections.
Collapse
Affiliation(s)
- Nadine Legros
- Institute for Hygiene, University of Münster, Robert-Koch-Str. 41, D-48149 Münster, Germany
| | - Gottfried Pohlentz
- Institute for Hygiene, University of Münster, Robert-Koch-Str. 41, D-48149 Münster, Germany
| | - Jana Runde
- Institute for Food Chemistry, University of Münster, D-48149 Münster, Germany
| | - Stefanie Dusny
- Institute for Food Chemistry, University of Münster, D-48149 Münster, Germany
| | - Hans-Ulrich Humpf
- Institute for Food Chemistry, University of Münster, D-48149 Münster, Germany
| | - Helge Karch
- Institute for Hygiene, University of Münster, Robert-Koch-Str. 41, D-48149 Münster, Germany
| | - Johannes Müthing
- Institute for Hygiene, University of Münster, Robert-Koch-Str. 41, D-48149 Münster, Germany
| |
Collapse
|
21
|
Overview of the role of Shiga toxins in porcine edema disease pathogenesis. Toxicon 2018; 148:149-154. [PMID: 29698757 DOI: 10.1016/j.toxicon.2018.04.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 03/16/2018] [Accepted: 04/22/2018] [Indexed: 11/20/2022]
Abstract
Shiga toxin-producing Escherichia coli (STEC) have been implicated as the cause of enterotoxemias, such as hemolytic uremic syndrome in humans and edema disease (ED) of pigs. Stx1 and Stx2 are the most common types found in association with illness, but only Stx2e is associated with disease in the animal host. Porcine edema disease is a serious affection which can lead to dead causing great losses of weaned piglets. Stx2e is the most frequent Stx variant found in porcine feces and is considered the key virulence factor involved in the pathogenesis of porcine edema disease. Stx2e binds with higher affinity to Gb4 receptor than to Gb3 which could be due to amino acid changes in B subunit. Moreover, this subtype also binds to Forssman glycosphingolipids conferring upon Stx2e a unique promiscuous recognition feature. Manifestations of edema disease are caused by systemic effects of Stx2e with no significant morphologic changes in enterocytes. Endothelial cell necrosis in the brain is an early event in the pathogenesis of ED caused by Stx2e-producing STEC strains. Further studies are needed to generate techniques and tools which allow to understand the circulation and ecology of STEC strains in pigs even in resistant animals for diagnostic and epidemiological purposes.
Collapse
|
22
|
Shiga Toxin Glycosphingolipid Receptors in Human Caco-2 and HCT-8 Colon Epithelial Cell Lines. Toxins (Basel) 2017; 9:toxins9110338. [PMID: 29068380 PMCID: PMC5705953 DOI: 10.3390/toxins9110338] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 10/11/2017] [Accepted: 10/19/2017] [Indexed: 12/21/2022] Open
Abstract
Shiga toxins (Stxs) released by enterohemorrhagic Escherichia coli (EHEC) into the human colon are the causative agents for fatal outcome of EHEC infections. Colon epithelial Caco-2 and HCT-8 cells are widely used for investigating Stx-mediated intestinal cytotoxicity. Only limited data are available regarding precise structures of their Stx receptor glycosphingolipids (GSLs) globotriaosylceramide (Gb3Cer) and globotetraosylceramide (Gb4Cer), and lipid raft association. In this study we identified Gb3Cer and Gb4Cer lipoforms of serum-free cultivated Caco-2 and HCT-8 cells, chiefly harboring ceramide moieties composed of sphingosine (d18:1) and C16:0, C22:0 or C24:0/C24:1 fatty acid. The most significant difference between the two cell lines was the prevalence of Gb3Cer with C16 fatty acid in HCT-8 and Gb4Cer with C22–C24 fatty acids in Caco-2 cells. Lipid compositional analysis of detergent-resistant membranes (DRMs), which were used as lipid raft-equivalents, indicated slightly higher relative content of Stx receptor Gb3Cer in DRMs of HCT-8 cells when compared to Caco-2 cells. Cytotoxicity assays revealed substantial sensitivity towards Stx2a for both cell lines, evidencing little higher susceptibility of Caco-2 cells versus HCT-8 cells. Collectively, Caco-2 and HCT-8 cells express a plethora of different receptor lipoforms and are susceptible towards Stx2a exhibiting somewhat lower sensitivity when compared to Vero cells.
Collapse
|
23
|
Steil D, Bonse R, Meisen I, Pohlentz G, Vallejo G, Karch H, Müthing J. A Topographical Atlas of Shiga Toxin 2e Receptor Distribution in the Tissues of Weaned Piglets. Toxins (Basel) 2016; 8:toxins8120357. [PMID: 27916888 PMCID: PMC5198551 DOI: 10.3390/toxins8120357] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 11/21/2016] [Accepted: 11/28/2016] [Indexed: 01/08/2023] Open
Abstract
Shiga toxin (Stx) 2e of Stx-producing Escherichia coli (STEC) is the primary virulence factor in the development of pig edema disease shortly after weaning. Stx2e binds to the globo-series glycosphingolipids (GSLs) globotriaosylceramide (Gb3Cer, Galα1-4Galβ1-4Glcβ1-1Cer) and globotetraosylceramide (Gb4Cer, GalNAcβ1-3Galα1-4Galβ1-4Glcβ1-1Cer), the latter acting as the preferential Stx2e receptor. We determined Stx receptor profiles of 25 different tissues of a male and a female weaned piglet using immunochemical solid phase binding assays combined with mass spectrometry. All probed tissues harbored GSL receptors, ranging from high (category I) over moderate (category II) to low content (category III). Examples of Gb4Cer expression in category I tissues are small intestinal ileum, kidney pelvis and whole blood, followed by colon, small intestinal duodenum and jejunum belonging to category II, and kidney cortex, cerebrum and cerebellum as members of category III organs holding true for both genders. Dominant Gb3Cer and Gb4Cer lipoforms were those with ceramides carrying constant sphingosine (d18:1) and a variable C16:0, C22:0 or C24:1/C24:0 fatty acid. From the mapping data, we created a topographical atlas for Stx2e receptors in piglet tissues and organs, which might be helpful to further investigations on the molecular and cellular mechanisms that underlie infections of Stx2e-producing STEC in pigs and their zoonotic potential for humans.
Collapse
Affiliation(s)
- Daniel Steil
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany.
| | - Robert Bonse
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany.
| | - Iris Meisen
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany.
| | | | - German Vallejo
- Veterinary practice Dr. med. vet. K. Nolte and Dr. med. vet. G. Vallejo, D-48329 Havixbeck, Germany.
| | - Helge Karch
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany.
| | - Johannes Müthing
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany.
| |
Collapse
|
24
|
Legros N, Dusny S, Humpf HU, Pohlentz G, Karch H, Müthing J. Shiga toxin glycosphingolipid receptors and their lipid membrane ensemble in primary human blood-brain barrier endothelial cells. Glycobiology 2016; 27:99-109. [PMID: 27558838 DOI: 10.1093/glycob/cww090] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/17/2016] [Accepted: 08/19/2016] [Indexed: 12/22/2022] Open
Abstract
Shiga toxin (Stx)-mediated injury to microvascular endothelial cells in the brain significantly contributes to the pathogenesis of the hemolytic-uremic syndrome caused by enterohemorrhagic Escherichia coli (EHEC). Stxs are AB5 toxins and the B-pentamers of the two major Stx subtypes Stx1a and Stx2a preferentially bind to the glycosphingolipid (GSL) globotriaosylceramide (Gb3Cer) expressed by human endothelial cells. Here we report on comprehensive structural analysis of the different lipoforms of Gb3Cer (Galα4Galβ4Glcβ1Cer) and globotetraosylceramide (Gb4Cer, GalNAcβ3Galα4Galβ4Glcβ1Cer, the less effective Stx receptor) of primary human brain microvascular endothelial cells and their association with lipid rafts. Detergent-resistant membranes (DRMs), obtained by sucrose density gradient ultracentrifugation, were used as lipid raft-analogous microdomains of the liquid-ordered phase and nonDRM fractions were employed as equivalents for the liquid-disordered phase of cell membranes. Structures of the prevalent lipoforms of Gb3Cer and Gb4Cer were those with Cer (d18:1, C16:0), Cer (d18:1, C22:0) and Cer (d18:1, C24:1/C24:0) determined by electrospray ionization mass spectrometry that was combined with thin-layer chromatography immunodetection using anti-Gb3Cer and anti-Gb4Cer antibodies as well as Stx1a and Stx2a subtypes. Association of Stx receptor GSLs was determined by co-localization with lipid raft-specific membrane protein flotillin-2 and canonical lipid raft marker sphingomyelin with Cer (d18:1, C16:0) and Cer (d18:1, C24:1/C24:0) in the liquid-ordered phase, whereas lyso-phosphatidylcholine was detectable exclusively in the liquid-disordered phase. Defining the precise microdomain structures of primary endothelial cells may help to unravel the initial mechanisms by which Stxs interact with their target cells and will help to develop novel preventive and therapeutic measures for EHEC-mediated diseases.
Collapse
Affiliation(s)
- Nadine Legros
- Institute for Hygiene, University of Münster, Robert-Koch-Str. 41, D-48149 Münster, Germany
| | - Stefanie Dusny
- Institute for Food Chemistry, University of Münster, Corrensstr. 45, D-48149 Münster, Germany
| | - Hans-Ulrich Humpf
- Institute for Food Chemistry, University of Münster, Corrensstr. 45, D-48149 Münster, Germany
| | - Gottfried Pohlentz
- Institute for Hygiene, University of Münster, Robert-Koch-Str. 41, D-48149 Münster, Germany
| | - Helge Karch
- Institute for Hygiene, University of Münster, Robert-Koch-Str. 41, D-48149 Münster, Germany
| | - Johannes Müthing
- Institute for Hygiene, University of Münster, Robert-Koch-Str. 41, D-48149 Münster, Germany .,Interdisciplinary Center for Clinical Research (IZKF), University of Münster, Albert-Schweitzer-Campus 1, D-48149 Münster, Germany
| |
Collapse
|
25
|
Abstract
Post-infectious hemolytic uremic syndrome (HUS) is caused by specific pathogens in patients with no identifiable HUS-associated genetic mutation or autoantibody. The majority of episodes is due to infections by Shiga toxin (Stx) producing Escherichia coli (STEC). This chapter reviews the epidemiology and pathogenesis of STEC-HUS, including bacterial-derived factors and host responses. STEC disease is characterized by hematological (microangiopathic hemolytic anemia), renal (acute kidney injury) and extrarenal organ involvement. Clinicians should always strive for an etiological diagnosis through the microbiological or molecular identification of Stx-producing bacteria and Stx or, if negative, serological assays. Treatment of STEC-HUS is supportive; more investigations are needed to evaluate the efficacy of putative preventive and therapeutic measures, such as non-phage-inducing antibiotics, volume expansion and anti-complement agents. The outcome of STEC-HUS is generally favorable, but chronic kidney disease, permanent extrarenal, mainly cerebral complication and death (in less than 5 %) occur and long-term follow-up is recommended. The remainder of this chapter highlights rarer forms of (post-infectious) HUS due to S. dysenteriae, S. pneumoniae, influenza A and HIV and discusses potential interactions between these pathogens and the complement system.
Collapse
Affiliation(s)
- Denis F. Geary
- Division of Nephrology, The Hospital for Sick Children, Toronto, Ontario Canada
| | - Franz Schaefer
- Division of Pediatric Nephrology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
26
|
Betz J, Dorn I, Kouzel IU, Bauwens A, Meisen I, Kemper B, Bielaszewska M, Mormann M, Weymann L, Sibrowski W, Karch H, Schlenke P, Müthing J. Shiga toxin of enterohaemorrhagicEscherichia colidirectly injures developing human erythrocytes. Cell Microbiol 2016; 18:1339-48. [DOI: 10.1111/cmi.12592] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/02/2016] [Accepted: 03/03/2016] [Indexed: 12/23/2022]
Affiliation(s)
- Josefine Betz
- Institute for Hygiene; University of Münster; Münster Germany
| | - Isabel Dorn
- Pediatric Hematology and Oncology; University of Münster; Münster Germany
| | - Ivan U. Kouzel
- Institute for Hygiene; University of Münster; Münster Germany
- Interdisciplinary Center for Clinical Research (IZKF); University of Münster; Münster Germany
| | - Andreas Bauwens
- Institute for Hygiene; University of Münster; Münster Germany
| | - Iris Meisen
- Institute for Hygiene; University of Münster; Münster Germany
- Interdisciplinary Center for Clinical Research (IZKF); University of Münster; Münster Germany
| | - Björn Kemper
- Center for Biomedical Optics; University of Münster; Münster Germany
- Biomedical Technology Center; University of Münster; Münster Germany
| | | | - Michael Mormann
- Institute for Hygiene; University of Münster; Münster Germany
| | - Lena Weymann
- Institute for Hygiene; University of Münster; Münster Germany
| | - Walter Sibrowski
- Institute of Transfusion Medicine and Transplantation Immunology; University of Münster; Münster Germany
| | - Helge Karch
- Institute for Hygiene; University of Münster; Münster Germany
| | - Peter Schlenke
- Institute of Transfusion Medicine and Transplantation Immunology; University of Münster; Münster Germany
- Department of Blood Group Serology and Transfusion Medicine; Medical University of Graz; Graz Austria
| | - Johannes Müthing
- Institute for Hygiene; University of Münster; Münster Germany
- Interdisciplinary Center for Clinical Research (IZKF); University of Münster; Münster Germany
| |
Collapse
|
27
|
Fagerquist CK, Zaragoza WJ. Bacteriophage cell lysis of Shiga toxin-producing Escherichia coli for top-down proteomic identification of Shiga toxins 1 & 2 using matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2016; 30:671-680. [PMID: 26864518 DOI: 10.1002/rcm.7507] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 01/05/2016] [Accepted: 01/09/2016] [Indexed: 06/05/2023]
Abstract
RATIONAL Analysis of bacteria by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) often relies upon sample preparation methods that result in cell lysis, e.g. bead-beating. However, Shiga toxin-producing Escherichia coli (STEC) can undergo bacteriophage-induced cell lysis triggered by antibiotic exposure that may allow greater selectivity of the proteins extracted. METHODS We have developed a sample preparation method for selective extraction of bacteriophage-encoded proteins and specifically Shiga toxins 1 and 2 (Stx1 & 2) expressed from STEC strains induced by DNA-damaging antibiotics. STEC strains were cultured overnight on agar supplemented with ciprofloxacin, mitomycin-C or an iron chelator to induce the bacteriophage lytic cycle with concomitant expression and release of Stx1 and/or Stx2. Sample preparation relied exclusively on bacteriophage lysis for release Stx into the extraction solution. RESULTS Three clinical STEC strains were analyzed by matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry (MALDI-TOF-TOF-MS/MS) and top-down proteomics analysis: E. coli O157:H7 strain EDL933, E. coli O91:H21 strain B2F1 and E. coli O26:H11 strain ECRC #05.2217. The B-subunit of Stx1a of EDL933 was detected and identified even though it was ~100-fold less abundant than the B-subunit of Stx2a that had been identified previously for this strain. Two bacteriophage-encoded proteins were also identified: L0117 and L0136. The B-subunits of Stx2d of strain B2F1 and Stx1a of strain ECRC #05.2217 were also detected and identified. CONCLUSIONS Bacteriophage lysis appeared to enhance the detection sensitivity of Stx for these STEC strains compared to previous work using mechanical lysis. Detection/identification of other bacteriophage-encoded proteins (beyond Stx) tends to support the hypothesis of Stx release by bacteriophage cell lysis.
Collapse
Affiliation(s)
- Clifton K Fagerquist
- Produce Safety & Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, 800 Buchanan Street, Albany, CA, 94710, USA
| | - William J Zaragoza
- Produce Safety & Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, 800 Buchanan Street, Albany, CA, 94710, USA
| |
Collapse
|
28
|
Abstract
Shiga toxin-producing Escherichia coli (STEC) strains are commonly found in the intestine of ruminant species of wild and domestic animals. Excretion of STEC with animal feces results in a broad contamination of food and the environment. Humans get infected with STEC through ingestion of contaminated food, by contact with the environment, and from STEC-excreting animals and humans. STEC strains can behave as human pathogens, and some of them, called enterohemorrhagic E. coli (EHEC), may cause hemorrhagic colitis (HC) and hemolytic-uremic syndrome (HUS). Because of the diversity of STEC types, detection strategies for STEC and EHEC are based on the identification of Shiga toxins or the underlying genes. Cultural enrichment of STEC from test samples is needed for identification, and different protocols were developed for this purpose. Multiplex real-time PCR protocols (ISO/CEN TS13136 and USDA/FSIS MLG5B.01) have been developed to specifically identify EHEC by targeting the LEE (locus of enterocyte effacement)-encoded eae gene and genes for EHEC-associated O groups. The employment of more genetic markers (nle and CRISPR) is a future challenge for better identification of EHEC from any kinds of samples. The isolation of STEC or EHEC from a sample is required for confirmation, and different cultivation protocols and media for this purpose have been developed. Most STEC strains present in food, animals, and the environment are eae negative, but some of these strains can cause HC and HUS in humans as well. Phenotypic assays and molecular tools for typing EHEC and STEC strains are used to detect and characterize human pathogenic strains among members of the STEC group.
Collapse
|
29
|
Chan YS, Ng TB. Shiga toxins: from structure and mechanism to applications. Appl Microbiol Biotechnol 2015; 100:1597-1610. [PMID: 26685676 DOI: 10.1007/s00253-015-7236-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 12/03/2015] [Accepted: 12/06/2015] [Indexed: 01/03/2023]
Abstract
Shiga toxins are a group of type 2 ribosome-inactivating proteins (RIPs) produced in several types of bacteria. The toxins possess an AB5 structure, which comprises a catalytic A chain with N-glycosidase activity, and five identical B chains and recognize and bind to the target cells with specific carbohydrate moieties. In humans, the major molecular target which recognizes the Shiga toxins is the Gb3 receptor, which is mainly expressed on the cell surface of endothelial cells of the intestine, kidney, and the brain. This causes these organs to be susceptible to the toxicity of Shiga toxins. When a person is infected by Shiga toxin-producing bacteria, the toxin is produced in the gut, translocated to the circulatory system, and carried to the target cells. Toxicity of the toxin causes inflammatory responses and severe cell damages in the intestine, kidneys, and brain, bringing about the hemolytic uremic syndrome (HUS), which can be fatal. The Shiga toxin requires a couple of steps to exert its toxicity to the target cells. After binding with the target cell surface receptor, the toxin requires a complicated process to be transported into the cytosol of the cell before it can approach the ribosomes. The mechanisms for the interactions of the toxin with the cells are described in this review. The consequences of the toxin on the cells are also discussed. It gives an overview of the steps for the toxin to be produced and transported, expression of catalytic activity, and the effects of the toxin on the target cells, as well as effects on the human body.
Collapse
Affiliation(s)
- Yau Sang Chan
- School of Biomedical Sciences, Lo Kwee Seong Integrated Biomedical Sciences Building, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| | - Tzi Bun Ng
- School of Biomedical Sciences, Lo Kwee Seong Integrated Biomedical Sciences Building, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| |
Collapse
|
30
|
Steil D, Schepers CL, Pohlentz G, Legros N, Runde J, Humpf HU, Karch H, Müthing J. Shiga toxin glycosphingolipid receptors of Vero-B4 kidney epithelial cells and their membrane microdomain lipid environment. J Lipid Res 2015; 56:2322-36. [PMID: 26464281 DOI: 10.1194/jlr.m063040] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Indexed: 12/12/2022] Open
Abstract
Shiga toxins (Stxs) are produced by enterohemorrhagic Escherichia coli (EHEC), which cause human infections with an often fatal outcome. Vero cell lines, derived from African green monkey kidney, represent the gold standard for determining the cytotoxic effects of Stxs. Despite their global use, knowledge about the exact structures of the Stx receptor glycosphingolipids (GSLs) and their assembly in lipid rafts is poor. Here we present a comprehensive structural analysis of Stx receptor GSLs and their distribution to detergent-resistant membranes (DRMs), which were prepared from Vero-B4 cells and used as lipid raft equivalents. We identified globotriaosylceramide (Gb3Cer) and globotetraosylceramide (Gb4Cer) as the GSL receptors for Stx1a, Stx2a, and Stx2e subtypes using TLC overlay detection combined with MS. The uncommon Stx receptor, globopentaosylceramide (Gb5Cer, Galβ3GalNAcβ3Galα4Galβ4Glcβ1Cer), which was specifically recognized (in addition to Gb3Cer and Gb4Cer) by Stx2e, was fully structurally characterized. Lipoforms of Stx receptor GSLs were found to mainly harbor ceramide moieties composed of sphingosine (d18:1) and C24:0/C24:1 or C16:0 fatty acid. Moreover, co-occurrence with lipid raft markers, SM and cholesterol, in DRMs suggested GSL association with membrane microdomains. This study provides the basis for further exploring the functional impact of lipid raft-associated Stx receptors for toxin-mediated injury of Vero-B4 cells.
Collapse
Affiliation(s)
- Daniel Steil
- Institutes for Hygiene University of Münster, D-48149 Münster, Germany
| | | | | | - Nadine Legros
- Institutes for Hygiene University of Münster, D-48149 Münster, Germany
| | - Jana Runde
- Food Chemistry, University of Münster, D-48149 Münster, Germany
| | | | - Helge Karch
- Institutes for Hygiene University of Münster, D-48149 Münster, Germany
| | - Johannes Müthing
- Institutes for Hygiene University of Münster, D-48149 Münster, Germany Interdisciplinary Center for Clinical Research (IZKF), University of Münster, D-48149 Münster, Germany
| |
Collapse
|
31
|
New Stx2e Monoclonal Antibodies for Immunological Detection and Distinction of Stx2 Subtypes. PLoS One 2015; 10:e0132419. [PMID: 26192407 PMCID: PMC4507848 DOI: 10.1371/journal.pone.0132419] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 06/12/2015] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Stx2e is a primary virulence factor in STEC strains that cause edema disease in neonatal piglets. Though Stx2a and Stx2e are similar, many antibody-based Stx detection kits are designed to detect Stx2a and do not recognize the Stx2e subtype. METHODS AND FINDINGS Four monoclonal antibodies against Stx2e were developed and characterized. Two of these mAbs recognize the B subunit of Stx2e, Stx2f, and to a lesser extent, Stx2b, Stx2c, and Stx2d. The other two mAbs recognize the A subunit of Stx2e, and cross-react with all Stx2 subtypes except Stx2f. The most sensitive sandwich ELISA using these mAbs has a limit of detection for Stx2e of 11.8 pg/mL. The ability of the neutralizing antibody Stx2e-2 to block Stx2e-receptor binding in Vero cells was visualized using immunofluorescence. Combinations of these and previously developed mAbs permit ELISA-based differentiation between closely related Stx2a, Stx2c, and Stx2d (using mAbs Stx2-5/2-1, Stx2-5/2e-2, and Stx2e-3/2e-2, respectively). CONCLUSIONS The sensitive immunoassays developed in this study should augment our capacity to detect Stx2e in porcine environments and biological samples. Moreover, immunoassays that can distinguish between the closely related Stx2a, Stx2c, and Stx2d subtypes can be useful in quickly analyzing Stx subtypes in samples containing more than one strain of STEC.
Collapse
|
32
|
Reduced Toxicity of Shiga Toxin (Stx) Type 2c in Mice Compared to Stx2d Is Associated with Instability of Stx2c Holotoxin. Toxins (Basel) 2015; 7:2306-20. [PMID: 26110507 PMCID: PMC4488704 DOI: 10.3390/toxins7062306] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 05/28/2015] [Accepted: 06/16/2015] [Indexed: 11/28/2022] Open
Abstract
Shiga toxin (Stx) is an AB5 ribotoxin made by Stx-producing Escherichia coli (STEC). These organisms cause diarrhea, hemorrhagic colitis and the hemolytic uremic syndrome. STEC make two types of Stxs, Stx1 and/or Stx2. Stx2 has one prototype (a) and six subtypes (b–g), but only STEC that make Stx2a, and/or Stx2c, or Stx2d are associated with severe disease. However, Stx2c is about 10-fold less toxic than Stx2d in vivo despite only two amino acid differences in the A subunit at positions 291 and 297. We made mutations at these two sites to create intermediate toxins between Stx2c and Stx2d, and determined the 50% cytotoxic dose on Vero cells before and after heat treatment, and the 50% lethal dose in mice of the toxins. We found that serine 291 was associated with increased toxicity in vivo and that either amino acid change from that in Stx2c to that in Stx2d increased heat stability. We also assessed the secondary structure of Stx2c and Stx2d by circular dichroism (CD) spectroscopy. The CD studies suggest that Stx2c has a less-ordered secondary structure than Stx2d. We conclude that both amino acids at positions 291 and 297 in Stx2c contribute to its decreased stability and in vivo toxicity compared to Stx2d.
Collapse
|
33
|
Basu D, Tumer NE. Do the A subunits contribute to the differences in the toxicity of Shiga toxin 1 and Shiga toxin 2? Toxins (Basel) 2015; 7:1467-85. [PMID: 25938272 PMCID: PMC4448158 DOI: 10.3390/toxins7051467] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 04/23/2015] [Accepted: 04/27/2015] [Indexed: 12/25/2022] Open
Abstract
Shiga toxin producing Escherichia coli O157:H7 (STEC) is one of the leading causes of food-poisoning around the world. Some STEC strains produce Shiga toxin 1 (Stx1) and/or Shiga toxin 2 (Stx2) or variants of either toxin, which are critical for the development of hemorrhagic colitis (HC) or hemolytic uremic syndrome (HUS). Currently, there are no therapeutic treatments for HC or HUS. E. coli O157:H7 strains carrying Stx2 are more virulent and are more frequently associated with HUS, which is the most common cause of renal failure in children in the US. The basis for the increased potency of Stx2 is not fully understood. Shiga toxins belong to the AB5 family of protein toxins with an A subunit, which depurinates a universally conserved adenine residue in the α-sarcin/ricin loop (SRL) of the 28S rRNA and five copies of the B subunit responsible for binding to cellular receptors. Recent studies showed differences in the structure, receptor binding, dependence on ribosomal proteins and pathogenicity of Stx1 and Stx2 and supported a role for the B subunit in differential toxicity. However, the current data do not rule out a potential role for the A1 subunits in the differential toxicity of Stx1 and Stx2. This review highlights the recent progress in understanding the differences in the A1 subunits of Stx1 and Stx2 and their role in defining toxicity.
Collapse
Affiliation(s)
- Debaleena Basu
- Department of Plant Biology and Pathology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ 08901-8520, USA.
| | - Nilgun E Tumer
- Department of Plant Biology and Pathology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ 08901-8520, USA.
| |
Collapse
|
34
|
Abstract
ABSTRACT
Shiga toxin-producing
Escherichia coli
(STEC) strains have been detected in a wide diversity of mammals, birds, fish, and several insects. Carriage by most animals is asymptomatic, thus allowing for dissemination of the bacterium in the environment without detection. Replication of the organism may occur in the gastrointestinal tract of some animals, notably ruminants. Carriage may also be passive or transient, without significant amplification of bacterial numbers while in the animal host. Animals may be classified as reservoir species, spillover hosts, or dead-end hosts. This classification is based on the animal's ability to (i) transmit STEC to other animal species and (ii) maintain STEC infection in the absence of continuous exposure. Animal reservoirs are able to maintain STEC infections in the absence of continuous STEC exposure and transmit infection to other species. Spillover hosts, although capable of transmitting STEC to other animals, are unable to maintain infection in the absence of repeated exposure. The large diversity of reservoir and spillover host species and the survival of the organism in environmental niches result in complex pathways of transmission that are difficult to interrupt.
Collapse
|
35
|
Kettling H, Vens-Cappell S, Soltwisch J, Pirkl A, Haier J, Müthing J, Dreisewerd K. MALDI Mass Spectrometry Imaging of Bioactive Lipids in Mouse Brain with a Synapt G2-S Mass Spectrometer Operated at Elevated Pressure: Improving the Analytical Sensitivity and the Lateral Resolution to Ten Micrometers. Anal Chem 2014; 86:7798-805. [DOI: 10.1021/ac5017248] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Hans Kettling
- Institute
for Hygiene, University of Münster, Robert-Koch-Str. 41, 48149 Münster, Germany
- Interdisciplinary
Center for Clinical Research (IZKF) Münster, University of Münster, Domagkstr. 3, 48149 Münster, Germany
| | - Simeon Vens-Cappell
- Institute
for Hygiene, University of Münster, Robert-Koch-Str. 41, 48149 Münster, Germany
- Interdisciplinary
Center for Clinical Research (IZKF) Münster, University of Münster, Domagkstr. 3, 48149 Münster, Germany
| | - Jens Soltwisch
- Institute
for Hygiene, University of Münster, Robert-Koch-Str. 41, 48149 Münster, Germany
| | - Alexander Pirkl
- Institute
for Hygiene, University of Münster, Robert-Koch-Str. 41, 48149 Münster, Germany
| | - Jörg Haier
- Comprehensive
Cancer Center Münster, University Hospital Münster, Waldeyerstr. 1, 48149 Münster, Germany
| | - Johannes Müthing
- Institute
for Hygiene, University of Münster, Robert-Koch-Str. 41, 48149 Münster, Germany
| | - Klaus Dreisewerd
- Institute
for Hygiene, University of Münster, Robert-Koch-Str. 41, 48149 Münster, Germany
- Interdisciplinary
Center for Clinical Research (IZKF) Münster, University of Münster, Domagkstr. 3, 48149 Münster, Germany
| |
Collapse
|
36
|
P1PK, GLOB, and FORS Blood Group Systems and GLOB Collection: Biochemical and Clinical Aspects. Do We Understand It All Yet? Transfus Med Rev 2014; 28:126-36. [DOI: 10.1016/j.tmrv.2014.04.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 04/15/2014] [Accepted: 04/17/2014] [Indexed: 01/09/2023]
|
37
|
Skinner C, Patfield S, Stanker LH, Fratamico P, He X. New high-affinity monoclonal antibodies against Shiga toxin 1 facilitate the detection of hybrid Stx1/Stx2 in vivo. PLoS One 2014; 9:e99854. [PMID: 24914553 PMCID: PMC4051773 DOI: 10.1371/journal.pone.0099854] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 05/16/2014] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Shiga toxin-producing E. coli (STEC) are a group of common and potentially deadly intestinal pathogens expressing Shiga toxin (Stx) as a primary virulence factor. Of the two types of Stx, Stx2 is responsible for more severe symptoms during infection, while Stx1 is almost identical to the Shiga toxin from Shigella dysenteriae, a ubiquitous pathogen in developing countries. Although antibodies against Stx1 have been reported, few have reached the affinity needed for assembling highly sensitive immunoassays. Sensitive and affordable immunoassays for Stx1 and Stx2 could help improve detection of STEC in livestock, food, the environment, and in clinical samples resulting in improved food safety and human health. METHOD AND FINDINGS Three new monoclonal antibodies (mAbs) against the B subunit of Stx1 were generated using recombinant toxoid Stx1E167Q and hybridoma technology. These new mAbs recognize all subtypes of Stx1, but do not cross-react with any subtype of Stx2. In addition, they exhibited the ability to neutralize Stx1 toxicity in Vero cell assays. An optimized sandwich ELISA using of a pair of these mAbs had a limit of detection of 8.7 pg/mL, which is superior to any existing assay of this kind. Using one of these Stx1 mAbs in concert with Stx2 mAbs, the presence of hybrid Stx1/Stx2 toxin in the culture media of STEC strains that express both Stx1 and Stx2 was demonstrated. CONCLUSIONS These new mAbs provide a mix of availability, utility, versatility, and most importantly, increased sensitivity for detection of Stx1. There are numerous potential applications for these mAbs, including low-cost detection assays and therapeutic use. Analysis of hybrid Stx1/2 could provide new insights on the structure, activity, and cellular targets of Shiga toxins.
Collapse
Affiliation(s)
- Craig Skinner
- Western Regional Research Center, U.S. Department of Agriculture, Agricultural Research Service, Albany, California, United States of America
| | - Stephanie Patfield
- Western Regional Research Center, U.S. Department of Agriculture, Agricultural Research Service, Albany, California, United States of America
| | - Larry H. Stanker
- Western Regional Research Center, U.S. Department of Agriculture, Agricultural Research Service, Albany, California, United States of America
| | - Pina Fratamico
- Eastern Regional Research Center, U.S. Department of Agriculture, Agricultural Research Service, Wyndmoor, Pennslvania, United States of America
| | - Xiaohua He
- Western Regional Research Center, U.S. Department of Agriculture, Agricultural Research Service, Albany, California, United States of America
- * E-mail:
| |
Collapse
|
38
|
Top-down proteomic identification of Shiga toxin 2 subtypes from Shiga toxin-producing Escherichia coli by matrix-assisted laser desorption ionization-tandem time of flight mass spectrometry. Appl Environ Microbiol 2014; 80:2928-40. [PMID: 24584253 DOI: 10.1128/aem.04058-13] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
We have analyzed 26 Shiga toxin-producing Escherichia coli (STEC) strains for Shiga toxin 2 (Stx2) production using matrix-assisted laser desorption ionization (MALDI)-tandem time of flight (TOF-TOF) tandem mass spectrometry (MS/MS) and top-down proteomic analysis. STEC strains were induced to overexpress Stx2 by overnight culturing on solid agar supplemented with either ciprofloxacin or mitomycin C. Harvested cells were lysed by bead beating, and unfractionated bacterial cell lysates were ionized by MALDI. The A2 fragment of the A subunit and the mature B subunit of Stx2 were analyzed by MS/MS. Sequence-specific fragment ions were used to identify amino acid subtypes of Stx2 using top-down proteomic analysis using software developed in-house at the U.S. Department of Agriculture (USDA). Stx2 subtypes (a, c, d, f, and g) were identified on the basis of the mass of the A2 fragment and the B subunit as well as from their sequence-specific fragment ions by MS/MS (postsource decay). Top-down proteomic identification was in agreement with DNA sequencing of the full Stx2 operon (stx2) for all strains. Top-down results were also compared to a bioassay using a Vero-d2EGFP cell line. Our results suggest that top-down proteomic identification is a rapid, highly specific technique for distinguishing Stx2 subtypes.
Collapse
|
39
|
Kouzel IU, Pirkl A, Pohlentz G, Soltwisch J, Dreisewerd K, Karch H, Müthing J. Progress in Detection and Structural Characterization of Glycosphingolipids in Crude Lipid Extracts by Enzymatic Phospholipid Disintegration Combined with Thin-Layer Chromatography Immunodetection and IR-MALDI Mass Spectrometry. Anal Chem 2014; 86:1215-22. [DOI: 10.1021/ac4035696] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ivan U. Kouzel
- Institute for Hygiene, University of Münster, Robert-Koch-Strasse 41, D-48149 Münster, Germany
| | - Alexander Pirkl
- Institute for Hygiene, University of Münster, Robert-Koch-Strasse 41, D-48149 Münster, Germany
| | - Gottfried Pohlentz
- Institute for Hygiene, University of Münster, Robert-Koch-Strasse 41, D-48149 Münster, Germany
| | - Jens Soltwisch
- Institute for Hygiene, University of Münster, Robert-Koch-Strasse 41, D-48149 Münster, Germany
| | - Klaus Dreisewerd
- Institute for Hygiene, University of Münster, Robert-Koch-Strasse 41, D-48149 Münster, Germany
| | - Helge Karch
- Institute for Hygiene, University of Münster, Robert-Koch-Strasse 41, D-48149 Münster, Germany
| | - Johannes Müthing
- Institute for Hygiene, University of Münster, Robert-Koch-Strasse 41, D-48149 Münster, Germany
| |
Collapse
|
40
|
Skinner C, Patfield S, Stanker L, He X. Development of monoclonal antibodies and immunoassays for sensitive and specific detection of Shiga toxin Stx2f. PLoS One 2013; 8:e76563. [PMID: 24069462 PMCID: PMC3775747 DOI: 10.1371/journal.pone.0076563] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 08/31/2013] [Indexed: 11/26/2022] Open
Abstract
Background Shiga toxin 2 (Stx2) is a major virulence factor in gastrointestinal diseases caused by Escherichia coli. Although Stx2a (prototypical Stx2) is well-studied, all seven subtypes of Stx2 have been associated with disease in mammals. Several subtypes of Stx2, including Stx2f, are difficult to detect immunologically. Methods And Findings Four novel monoclonal antibodies (mAbs) against the Stx2f subtype were produced and characterized. These mAbs react exclusively to the Stx2f A subunit, and do not cross-react with other subtypes of Stx2. A Stx2f-specific sandwich ELISA was established and a limit of detection of 0.123 ng/mL was obtained using one pair of the mAbs. The receptor preference of Stx2f was confirmed using this sandwich ELISA. Three out of four mAbs can partially neutralize the toxicity of Stx2f in a cell-based assay. These mAbs were also demonstrated to be highly specific and reactive when applied to colony immunoblot assays. Conclusions Novel mAbs specific to Stx2f were developed for the first time, providing new assets for the STEC community. Immunoassays with improved sensitivity and specificity will be useful for the detection of Stx2f present in food, environmental, and clinical samples.
Collapse
Affiliation(s)
- Craig Skinner
- Western Regional Research Center, United States Department of Agriculture, Agricultural Research Service, Albany, California, United States of America
| | - Stephanie Patfield
- Western Regional Research Center, United States Department of Agriculture, Agricultural Research Service, Albany, California, United States of America
| | - Larry Stanker
- Western Regional Research Center, United States Department of Agriculture, Agricultural Research Service, Albany, California, United States of America
| | - Xiaohua He
- Western Regional Research Center, United States Department of Agriculture, Agricultural Research Service, Albany, California, United States of America
- * E-mail:
| |
Collapse
|
41
|
Gisch N, Kohler T, Ulmer AJ, Müthing J, Pribyl T, Fischer K, Lindner B, Hammerschmidt S, Zähringer U. Structural reevaluation of Streptococcus pneumoniae Lipoteichoic acid and new insights into its immunostimulatory potency. J Biol Chem 2013; 288:15654-67. [PMID: 23603911 DOI: 10.1074/jbc.m112.446963] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Streptococcus pneumoniae is a Gram-positive human pathogen with a complex lipoteichoic acid (pnLTA) structure. Because the current structural model for pnLTA shows substantial inconsistencies, we reinvestigated purified and, more importantly, O-deacylated pnLTA, which is most suitable for NMR spectroscopy and electrospray ionization-MS spectrometry. We analyzed pnLTA of nonencapsulated pneumococcal strains D39Δcps and TIGR4Δcps, respectively. The data obtained allowed us to (re)define (i) the position and linkage of the repeating unit, (ii) the putative α-GalpNAc substitution at the ribitiol 5-phosphate (Rib-ol-5-P), and (iii) the length of (i.e. the number of repeating units in) the pnLTA chain. We here also describe for the first time that the terminal sugar residues in the pnLTA (Forssman disaccharide; α-D-GalpNAc-(1→3)-β-D-GalpNAc-(1→)), responsible for the cross-reactivity with anti-Forssman antigen antibodies, can be heterogeneous with respect to its degree of phosphorylcholine substitution in both O-6-positions. To assess the proinflammatory potency of pnLTA, we generated a (lipopeptide-free) Δlgt mutant of strain D39Δcps, isolated its pnLTA, and showed that it is capable of inducing IL-6 release in human mononuclear cells, independent of TLR2 activation. This finding was quite in contrast to LTA of the Staphylococcus aureus SA113Δlgt mutant, which did not activate human mononuclear cells in our experiments. Remarkably, this is also contrary to various other reports showing a proinflammatory potency of S. aureus LTA. Taken together, our study refines the structure of pnLTA and indicates that pneumococcal and S. aureus LTAs differ not only in their structure but also in their bioactivity.
Collapse
Affiliation(s)
- Nicolas Gisch
- Division of Immunochemistry, Leibniz-Center for Medicine and Biosciences, Borstel, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Purification and characterization of Shiga toxin 2f, an immunologically unrelated subtype of Shiga toxin 2. PLoS One 2013; 8:e59760. [PMID: 23555772 PMCID: PMC3608586 DOI: 10.1371/journal.pone.0059760] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 02/17/2013] [Indexed: 01/01/2023] Open
Abstract
Background Shiga-like toxin 2 (Stx2) is one of the most important virulence factors in enterohaemorrhagic Escherichia coli (E. coli) strains such as O157H7. Subtypes of Stx2 are diverse with respect to their sequence, toxicity, and distribution. The most diverse Stx2 subtype, Stx2f, is difficult to detect immunologically, but is becoming more frequently associated with human illness. Methods and Findings A purification regimen was developed for the purification of Stx2f involving cation exchange, hydrophobic interaction, anion exchange, and gel filtration. The molecular weight of Stx2f B-subunit was approximately 5 kDa, which appeared significantly smaller than that of Stx2a (6 kDa) on a SDS-PAGE gel, although the size of the A subunit was similar to Stx2a (30 kDa). Stx2f was shown to be active in both cell-free and cell-based assays. The 50% cytotoxic dose in Vero cells was 3.4 or 1.7 pg (depending on the assay conditions), about 3–5 times higher than the archetypical Stx2a, while the activity of Stx2f and Stx2a in a cell-free rabbit reticulocyte system was similar. Stx2f bound to both globotriose-lipopolysaccharide (Gb3-LPS) and globotetraose-LPS (Gb4-LPS, mimics for globotriaosylceramide and globotetraosylceramide, respectively), but its ability to bind Gb4-LPS was much stronger than Stx2a. Stx2f was also much more stable at low pH and high temperature compared to Stx2a, suggesting the toxin itself may survive harsher food preparation practices. Conclusions Here, we detail the purification, biochemical properties, and toxicity of Stx2f, from an E. coli strain isolated from a feral pigeon. Information obtained in this study will be valuable for characterizing Stx2f and explaining the differences of Stx2a and Stx2f in host specificity and cytotoxicity.
Collapse
|
43
|
Kouzel IU, Pohlentz G, Storck W, Radamm L, Hoffmann P, Bielaszewska M, Bauwens A, Cichon C, Schmidt MA, Mormann M, Karch H, Müthing J. Association of Shiga toxin glycosphingolipid receptors with membrane microdomains of toxin-sensitive lymphoid and myeloid cells. J Lipid Res 2013; 54:692-710. [PMID: 23248329 PMCID: PMC3617944 DOI: 10.1194/jlr.m031781] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 12/14/2012] [Indexed: 11/20/2022] Open
Abstract
Glycosphingolipids (GSLs) of the globo-series constitute specific receptors for Shiga toxins (Stxs) released by certain types of pathogenic Escherichia coli strains. Stx-loaded leukocytes may act as transporter cells in the blood and transfer the toxin to endothelial target cells. Therefore, we performed a thorough investigation on the expression of globo-series GSLs in serum-free cultivated Raji and Jurkat cells, representing B- and T-lymphocyte descendants, respectively, as well as THP-1 and HL-60 cells of the monocyte and granulocyte lineage, respectively. The presence of Stx-receptors in GSL preparations of Raji and THP-1 cells and the absence in Jurkat and HL-60 cells revealed high compliance of solid-phase immunodetection assays with the expression profiles of receptor-related glycosyltransferases, performed by qRT-PCR analysis, and Stx2-caused cellular damage. Canonical microdomain association of Stx GSL receptors, sphingomyelin, and cholesterol in membranes of Raji and THP-1 cells was assessed by comparative analysis of detergent-resistant membrane (DRM) and nonDRM fractions obtained by density gradient centrifugation and showed high correlation based on nonparametric statistical analysis. Our comprehensive study on the expression of Stx-receptors and their subcellular distribution provides the basis for exploring the functional role of lipid raft-associated Stx-receptors in cells of leukocyte origin.
Collapse
Affiliation(s)
- Ivan U. Kouzel
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany
| | | | - Wiebke Storck
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany
| | - Lena Radamm
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany
| | - Petra Hoffmann
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany
| | | | - Andreas Bauwens
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany
| | - Christoph Cichon
- Institute of Infectiology, University of Münster, D-48149 Münster, Germany
| | | | - Michael Mormann
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany
| | - Helge Karch
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany
| | - Johannes Müthing
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany
- Interdisciplinary Center for Clinical Research (IZKF), University of Münster, D-48149 Münster, Germany
| |
Collapse
|
44
|
Meisen I, Rosenbrück R, Galla HJ, Hüwel S, Kouzel IU, Mormann M, Karch H, Müthing J. Expression of Shiga toxin 2e glycosphingolipid receptors of primary porcine brain endothelial cells and toxin-mediated breakdown of the blood-brain barrier. Glycobiology 2013; 23:745-59. [PMID: 23431059 DOI: 10.1093/glycob/cwt013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Shiga toxin (Stx) 2e, released by certain Stx-producing Escherichia coli, is presently the best characterized virulence factor responsible for pig edema disease, which is characterized by hemorrhagic lesions, neurological disorders and often fatal outcomes. Although Stx2e-mediated brain vascular injury is the key event in development of neurologic signs, the glycosphingolipid (GSL) receptors of Stx2e and toxin-mediated impairment of pig brain endothelial cells have not been investigated so far. Here, we report on the detailed structural characterization of Stx2e receptors globotriaosylceramide (Gb3Cer) and globotetraosylceramide (Gb4Cer), which make up the major neutral GSLs in primary porcine brain capillary endothelial cells (PBCECs). Various Gb3Cer and Gb4Cer lipoforms harboring sphingenine (d18:1) or sphinganine (d18:0) and mostly a long-chain fatty acid (C20-C24) were detected. A notable batch-to-batch heterogeneity of primary endothelial cells was observed regarding the extent of ceramide hydroxylation of Gb3Cer or Gb4Cer species. Gb3Cer, Gb4Cer and sphingomyelin preferentially distribute to detergent-resistant membrane fractions and can be considered lipid raft markers in PBCECs. Moreover, we employed an in vitro model of the blood-brain barrier (BBB), which exhibited strong cytotoxic effects of Stx2e on the endothelial monolayer and a rapid collapse of the BBB. These data strongly suggest the involvement of Stx2e in cerebral vascular damage with resultant neurological disturbance characteristic of edema disease.
Collapse
Affiliation(s)
- Iris Meisen
- Institute for Hygiene, Robert-Koch-Str. 41, Germany
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Bauwens A, Betz J, Meisen I, Kemper B, Karch H, Müthing J. Facing glycosphingolipid-Shiga toxin interaction: dire straits for endothelial cells of the human vasculature. Cell Mol Life Sci 2013; 70:425-57. [PMID: 22766973 PMCID: PMC11113656 DOI: 10.1007/s00018-012-1060-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 05/25/2012] [Accepted: 06/14/2012] [Indexed: 12/23/2022]
Abstract
The two major Shiga toxin (Stx) types, Stx1 and Stx2, produced by enterohemorrhagic Escherichia coli (EHEC) in particular injure renal and cerebral microvascular endothelial cells after transfer from the human intestine into the circulation. Stxs are AB(5) toxins composed of an enzymatically active A subunit and the pentameric B subunit, which preferentially binds to the glycosphingolipid globotriaosylceramide (Gb3Cer/CD77). This review summarizes the current knowledge on Stx-caused cellular injury and the structural diversity of Stx receptors as well as the initial molecular interaction of Stxs with the human endothelium of different vascular beds. The varying lipoforms of Stx receptors and their spatial organization in lipid rafts suggest a central role in different modes of receptor-mediated endocytosis and intracellular destiny of the toxins. The design and development of tailored Stx neutralizers targeting the oligosaccharide-toxin recognition event has become a very real prospect to ameliorate or prevent life-threatening renal and neurological complications.
Collapse
Affiliation(s)
- Andreas Bauwens
- Institute for Hygiene, University of Münster, Robert-Koch-Str. 41, 48149 Münster, Germany
| | - Josefine Betz
- Institute for Hygiene, University of Münster, Robert-Koch-Str. 41, 48149 Münster, Germany
| | - Iris Meisen
- Institute for Hygiene, University of Münster, Robert-Koch-Str. 41, 48149 Münster, Germany
- Interdisciplinary Center for Clinical Research, University of Münster, Domagkstr. 3, 48149 Münster, Germany
| | - Björn Kemper
- Center for Biomedical Optics and Photonics, University of Münster, Robert-Koch-Str. 45, 48149 Münster, Germany
| | - Helge Karch
- Institute for Hygiene, University of Münster, Robert-Koch-Str. 41, 48149 Münster, Germany
| | - Johannes Müthing
- Institute for Hygiene, University of Münster, Robert-Koch-Str. 41, 48149 Münster, Germany
- Interdisciplinary Center for Clinical Research, University of Münster, Domagkstr. 3, 48149 Münster, Germany
| |
Collapse
|
46
|
Karch H, Müthing J, Dobrindt U, Mellmann A. [Evolution and infection biology of hemolytic-uremic syndrome (HUS) associated E. coli (HUSEC)]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2013; 56:8-14. [PMID: 23275950 DOI: 10.1007/s00103-012-1586-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Shiga toxin (Stx)-producing Escherichia coli (STEC), which cause hemolytic-uremic syndrome (HUS), are designated as HUSEC. Their exceptional genome variability driven by evolutionary diversification permits fast adaptation to changed environmental conditions. The HUSEC collection (http://www.ehec.org), which has been established at the Institute for Hygiene in Münster, contains 42 EHEC reference strains (HUSEC001-HUSEC042). It represents a unique repository collection of pathogens and is extremely helpful for the analysis of evolutionary changes and fixed properties in the STEC that cause the most severe host injury. Such genomic attributes include slowly evolving loci, mobile genetic elements that often encode virulence factors and are assimilated via horizontal gene transfer. Current evolutionary models indicate that numerous outbreak strains evolved recently and that highly pathogenic HUSEC descend from less pathogenic progenitors. However, additional data suggest that HUSEC have small effective population sizes. The HUSEC collection is also a valuable resource with which to study important non-Shiga toxin virulence factors.
Collapse
Affiliation(s)
- H Karch
- Institut für Hygiene und Nationales Konsiliarlaboratorium für Hämolytisch-Urämisches Syndrom, Universitätsklinikum Münster, Robert-Koch-Str. 41, 48149, Münster, Deutschland.
| | | | | | | |
Collapse
|
47
|
Forssman expression on human erythrocytes: biochemical and genetic evidence of a new histo-blood group system. Blood 2012; 121:1459-68. [PMID: 23255552 DOI: 10.1182/blood-2012-10-455055] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In analogy with histo-blood group A antigen, Forssman (Fs) antigen terminates with α3-N-acetylgalactosamine and can be used by pathogens as a host receptor in many mammals. However, primates including humans lack Fs synthase activity and have naturally occurring Fs antibodies in plasma. We investigated individuals with the enigmatic ABO subgroup A(pae) and found them to be homozygous for common O alleles. Their erythrocytes had no A antigens but instead expressed Fs glycolipids. The unexpected Fs antigen was confirmed in structural, serologic, and flow-cytometric studies. The Fs synthase gene, GBGT1, in A(pae) individuals encoded an arginine to glutamine change at residue 296. Gln296 is present in lower mammals, whereas Arg296 was found in 6 other primates, > 250 blood donors and A(pae) family relatives without the A(pae) phenotype. Transfection experiments and molecular modeling showed that Agr296Gln reactivates the human Fs synthase. Uropathogenic E coli containing prsG-adhesin-encoding plasmids agglutinated A(pae) but not group O cells, suggesting biologic implications. Predictive tests for intravascular hemolysis with crossmatch-incompatible sera indicated complement-mediated destruction of Fs-positive erythrocytes. Taken together, we provide the first conclusive description of Fs expression in normal human hematopoietic tissue and the basis of a new histo-blood group system in man, FORS.
Collapse
|