1
|
You Y, Kong H, Li C, Gu Z, Ban X, Li Z. Carbohydrate binding modules: Compact yet potent accessories in the specific substrate binding and performance evolution of carbohydrate-active enzymes. Biotechnol Adv 2024; 73:108365. [PMID: 38677391 DOI: 10.1016/j.biotechadv.2024.108365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 04/29/2024]
Abstract
Carbohydrate binding modules (CBMs) are independent non-catalytic domains widely found in carbohydrate-active enzymes (CAZymes), and they play an essential role in the substrate binding process of CAZymes by guiding the appended catalytic modules to the target substrates. Owing to their precise recognition and selective affinity for different substrates, CBMs have received increasing research attention over the past few decades. To date, CBMs from different origins have formed a large number of families that show a variety of substrate types, structural features, and ligand recognition mechanisms. Moreover, through the modification of specific sites of CBMs and the fusion of heterologous CBMs with catalytic domains, improved enzymatic properties and catalytic patterns of numerous CAZymes have been achieved. Based on cutting-edge technologies in computational biology, gene editing, and protein engineering, CBMs as auxiliary components have become portable and efficient tools for the evolution and application of CAZymes. With the aim to provide a theoretical reference for the functional research, rational design, and targeted utilization of novel CBMs in the future, we systematically reviewed the function-related characteristics and potentials of CAZyme-derived CBMs in this review, including substrate recognition and binding mechanisms, non-catalytic contributions to enzyme performances, module modifications, and innovative applications in various fields.
Collapse
Affiliation(s)
- Yuxian You
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Haocun Kong
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Caiming Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Zhengbiao Gu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiaofeng Ban
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhaofeng Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China.
| |
Collapse
|
2
|
Mao M, Ahrens L, Luka J, Contreras F, Kurkina T, Bienstein M, Sárria Pereira de Passos M, Schirinzi G, Mehn D, Valsesia A, Desmet C, Serra MÁ, Gilliland D, Schwaneberg U. Material-specific binding peptides empower sustainable innovations in plant health, biocatalysis, medicine and microplastic quantification. Chem Soc Rev 2024; 53:6445-6510. [PMID: 38747901 DOI: 10.1039/d2cs00991a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Material-binding peptides (MBPs) have emerged as a diverse and innovation-enabling class of peptides in applications such as plant-/human health, immobilization of catalysts, bioactive coatings, accelerated polymer degradation and analytics for micro-/nanoplastics quantification. Progress has been fuelled by recent advancements in protein engineering methodologies and advances in computational and analytical methodologies, which allow the design of, for instance, material-specific MBPs with fine-tuned binding strength for numerous demands in material science applications. A genetic or chemical conjugation of second (biological, chemical or physical property-changing) functionality to MBPs empowers the design of advanced (hybrid) materials, bioactive coatings and analytical tools. In this review, we provide a comprehensive overview comprising naturally occurring MBPs and their function in nature, binding properties of short man-made MBPs (<20 amino acids) mainly obtained from phage-display libraries, and medium-sized binding peptides (20-100 amino acids) that have been reported to bind to metals, polymers or other industrially produced materials. The goal of this review is to provide an in-depth understanding of molecular interactions between materials and material-specific binding peptides, and thereby empower the use of MBPs in material science applications. Protein engineering methodologies and selected examples to tailor MBPs toward applications in agriculture with a focus on plant health, biocatalysis, medicine and environmental monitoring serve as examples of the transformative power of MBPs for various industrial applications. An emphasis will be given to MBPs' role in detecting and quantifying microplastics in high throughput, distinguishing microplastics from other environmental particles, and thereby assisting to close an analytical gap in food safety and monitoring of environmental plastic pollution. In essence, this review aims to provide an overview among researchers from diverse disciplines in respect to material-(specific) binding of MBPs, protein engineering methodologies to tailor their properties to application demands, re-engineering for material science applications using MBPs, and thereby inspire researchers to employ MBPs in their research.
Collapse
Affiliation(s)
- Maochao Mao
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Leon Ahrens
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Julian Luka
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Francisca Contreras
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Tetiana Kurkina
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Marian Bienstein
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | | | | | - Dora Mehn
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Andrea Valsesia
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Cloé Desmet
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | | | | | - Ulrich Schwaneberg
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| |
Collapse
|
3
|
Liu G, Chang Y, Mei X, Chen G, Zhang Y, Jiang X, Tao W, Xue C. Identification and structural characterization of a novel chondroitin sulfate-specific carbohydrate-binding module: The first member of a new family, CBM100. Int J Biol Macromol 2024; 255:127959. [PMID: 37951443 DOI: 10.1016/j.ijbiomac.2023.127959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/05/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
Chondroitin sulfate is a biologically and commercially important polysaccharide with a variety of applications. Carbohydrate-binding module (CBM) is an important class of carbohydrate-binding protein, which could be utilized as a promising tool for the applications of polysaccharides. In the present study, an unknown function domain was explored from a putative chondroitin sulfate lyase in PL29 family. Recombinant PhCBM100 demonstrated binding capacity to chondroitin sulfates with Ka values of 2.1 ± 0.2 × 106 M-1 and 6.0 ± 0.1 × 106 M-1 to chondroitin sulfate A and chondroitin sulfate C, respectively. The 1.55 Å resolution X-ray crystal structure of PhCBM100 exhibited a β-sandwich fold formed by two antiparallel β-sheets. A binding groove in PhCBM100 interacting with chondroitin sulfate was subsequently identified, and the potential of PhCBM100 for visualization of chondroitin sulfate was evaluated. PhCBM100 is the first characterized chondroitin sulfate-specific CBM. The novelty of PhCBM100 proposed a new CBM family of CBM100.
Collapse
Affiliation(s)
- Guanchen Liu
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Yaoguang Chang
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China.
| | - Xuanwei Mei
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Guangning Chen
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Yuying Zhang
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Xiaoxiao Jiang
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Wenwen Tao
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| |
Collapse
|
4
|
Hackl M, Power Z, Chundawat SPS. Oriented display of cello-oligosaccharides for pull-down binding assays to distinguish binding preferences of glycan binding proteins. Carbohydr Res 2023; 534:108943. [PMID: 37783054 DOI: 10.1016/j.carres.2023.108943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 09/13/2023] [Accepted: 09/13/2023] [Indexed: 10/04/2023]
Abstract
The production of biofuels from lignocellulosic biomass using carbohydrate-active enzymes like cellulases is key to a sustainable energy production. Understanding the adsorption mechanism of cellulases and associated binding domain proteins down to the molecular level details will help in the rational design of improved cellulases. In nature, carbohydrate-binding modules (CBMs) from families 17 and 28 often appear in tandem appended to the C-terminus of several endocellulases. Both CBMs are known to bind to the amorphous regions of cellulose non-competitively and show similar binding affinity towards soluble cello-oligosaccharides. Based on the available crystal structures, these CBMs may display a uni-directional binding preference towards cello-oligosaccharides (based on how the oligosaccharide was bound within the CBM binding cleft). However, molecular dynamics (MD) simulations have indicated no such clear preference. Considering that most soluble oligosaccharides are not always an ideal substrate surrogate to study the binding of CBMs to the native cell wall or cell surface displayed glycans, it is critical to use alternative reagents or substrates. To better understand the binding of type B CBMs towards smaller cello-oligosaccharides, we have developed a simple solid-state depletion or pull-down binding assay. Here, we specifically orient azido-labeled carbohydrates from the reducing end to alkyne-labeled micron-sized bead surfaces, using click chemistry, to mimic insoluble cell wall surface-displayed glycans. Our results reveal that both family 17 and 28 CBMs displayed a similar binding affinity towards cellohexaose-modified beads, but not cellopentaose-modified beads, which helps rationalize previously reported crystal structure and MD data. This may indicate a preferred uni-directional binding of specific CBMs and could explain their co-evolution as tandem constructs appended to endocellulases to increase amorphous cellulose substrate targeting efficiency. Overall, our proposed workflow can be easily translated to measure the affinity of glycan-binding proteins to click-chemistry based immobilized surface-displayed carbohydrates or antigens.
Collapse
Affiliation(s)
- Markus Hackl
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Zachary Power
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Shishir P S Chundawat
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA.
| |
Collapse
|
5
|
Shimokawa M, Ishiwata A, Kashima T, Nakashima C, Li J, Fukushima R, Sawai N, Nakamori M, Tanaka Y, Kudo A, Morikami S, Iwanaga N, Akai G, Shimizu N, Arakawa T, Yamada C, Kitahara K, Tanaka K, Ito Y, Fushinobu S, Fujita K. Identification and characterization of endo-α-, exo-α-, and exo-β-D-arabinofuranosidases degrading lipoarabinomannan and arabinogalactan of mycobacteria. Nat Commun 2023; 14:5803. [PMID: 37726269 PMCID: PMC10509167 DOI: 10.1038/s41467-023-41431-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/29/2023] [Indexed: 09/21/2023] Open
Abstract
The cell walls of pathogenic and acidophilic bacteria, such as Mycobacterium tuberculosis and Mycobacterium leprae, contain lipoarabinomannan and arabinogalactan. These components are composed of D-arabinose, the enantiomer of the typical L-arabinose found in plants. The unique glycan structures of mycobacteria contribute to their ability to evade mammalian immune responses. In this study, we identified four enzymes (two GH183 endo-D-arabinanases, GH172 exo-α-D-arabinofuranosidase, and GH116 exo-β-D-arabinofuranosidase) from Microbacterium arabinogalactanolyticum. These enzymes completely degraded the complex D-arabinan core structure of lipoarabinomannan and arabinogalactan in a concerted manner. Furthermore, through biochemical characterization using synthetic substrates and X-ray crystallography, we elucidated the mechanisms of substrate recognition and anomer-retaining hydrolysis for the α- and β-D-arabinofuranosidic bonds in both endo- and exo-mode reactions. The discovery of these D-arabinan-degrading enzymes, along with the understanding of their structural basis for substrate specificity, provides valuable resources for investigating the intricate glycan architecture of mycobacterial cell wall polysaccharides and their contribution to pathogenicity.
Collapse
Affiliation(s)
- Michiko Shimokawa
- Faculty of Agriculture, Kagoshima University, Kagoshima, 890-0065, Japan
| | - Akihiro Ishiwata
- Cluster for Pioneering Research, RIKEN, Saitama, 351-0198, Japan
| | - Toma Kashima
- Department of Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Chiho Nakashima
- Department of Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Jiaman Li
- Department of Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Riku Fukushima
- Department of Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Naomi Sawai
- Faculty of Agriculture, Kagoshima University, Kagoshima, 890-0065, Japan
| | - Miku Nakamori
- Faculty of Agriculture, Kagoshima University, Kagoshima, 890-0065, Japan
| | - Yuuki Tanaka
- Faculty of Agriculture, Kagoshima University, Kagoshima, 890-0065, Japan
| | - Azusa Kudo
- Faculty of Agriculture, Kagoshima University, Kagoshima, 890-0065, Japan
| | - Sae Morikami
- Faculty of Agriculture, Kagoshima University, Kagoshima, 890-0065, Japan
| | - Nao Iwanaga
- Faculty of Agriculture, Kagoshima University, Kagoshima, 890-0065, Japan
| | - Genki Akai
- Department of Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Nobutaka Shimizu
- Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki, 305-0801, Japan
| | - Takatoshi Arakawa
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, 278-8510, Japan
| | - Chihaya Yamada
- School of Agriculture, Meiji University, Kawasaki, Kanagawa, 214-8571, Japan
| | - Kanefumi Kitahara
- Faculty of Agriculture, Kagoshima University, Kagoshima, 890-0065, Japan
| | - Katsunori Tanaka
- Cluster for Pioneering Research, RIKEN, Saitama, 351-0198, Japan
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8552, Japan
| | - Yukishige Ito
- Cluster for Pioneering Research, RIKEN, Saitama, 351-0198, Japan
- Graduate School of Science, Osaka University, Osaka, 560-0043, Japan
| | - Shinya Fushinobu
- Department of Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan.
- CRIIM, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan.
| | - Kiyotaka Fujita
- Faculty of Agriculture, Kagoshima University, Kagoshima, 890-0065, Japan.
| |
Collapse
|
6
|
Shi Q, Abdel-Hamid AM, Sun Z, Cheng Y, Tu T, Cann I, Yao B, Zhu W. Carbohydrate-binding modules facilitate the enzymatic hydrolysis of lignocellulosic biomass: Releasing reducing sugars and dissociative lignin available for producing biofuels and chemicals. Biotechnol Adv 2023; 65:108126. [PMID: 36921877 DOI: 10.1016/j.biotechadv.2023.108126] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/05/2023] [Accepted: 03/08/2023] [Indexed: 03/16/2023]
Abstract
The microbial decomposition and utilization of lignocellulosic biomass present in the plant tissues are driven by a series of carbohydrate active enzymes (CAZymes) acting in concert. As the non-catalytic domains widely found in the modular CAZymes, carbohydrate-binding modules (CBMs) are intimately associated with catalytic domains (CDs) that effect the diverse hydrolytic reactions. The CBMs function as auxiliary components for the recognition, adhesion, and depolymerization of the complex substrate mediated by the associated CDs. Therefore, CBMs are deemed as significant biotools available for enzyme engineering, especially to facilitate the enzymatic hydrolysis of dense and insoluble plant tissues to acquire more fermentable sugars. This review aims at presenting the taxonomies and biological properties of the CBMs currently curated in the CAZy database. The molecular mechanisms that CBMs use in assisting the enzymatic hydrolysis of plant polysaccharides and the regulatory factors of CBM-substrate interactions are outlined in detail. In addition, guidelines for the rational designs of CBM-fused CAZymes are proposed. Furthermore, the potential to harness CBMs for industrial applications, especially in enzymatic pretreatment of the recalcitrant lignocellulose, is evaluated. It is envisaged that the ideas outlined herein will aid in the engineering and production of novel CBM-fused enzymes to facilitate efficient degradation of lignocellulosic biomass to easily fermentable sugars for production of value-added products, including biofuels.
Collapse
Affiliation(s)
- Qicheng Shi
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - Ahmed M Abdel-Hamid
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, IL 61801, USA
| | - Zhanying Sun
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanfen Cheng
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China.
| | - Tao Tu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Isaac Cann
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, IL 61801, USA; Department of Animal Science, University of Illinois at Urbana-Champaign, IL 61801, USA; Department of Microbiology, University of Illinois at Urbana-Champaign, IL 61801, USA; Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, IL 61801, USA; Center for East Asian and Pacific Studies, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Bin Yao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Weiyun Zhu
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
7
|
Goulet A, Mahony J, Cambillau C, van Sinderen D. Exploring Structural Diversity among Adhesion Devices Encoded by Lactococcal P335 Phages with AlphaFold2. Microorganisms 2022; 10:2278. [PMID: 36422348 PMCID: PMC9692632 DOI: 10.3390/microorganisms10112278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 01/16/2024] Open
Abstract
Bacteriophages, or phages, are the most abundant biological entities on Earth. They possess molecular nanodevices to package and store their genome, as well as to introduce it into the cytoplasm of their bacterial prey. Successful phage infection commences with specific recognition of, and adhesion to, a suitable host cell surface. Adhesion devices of siphophages infecting Gram-positive bacteria are very diverse and remain, for the majority, poorly understood. These assemblies often comprise long, flexible, and multi-domain proteins, which limit their structural analyses by experimental approaches. The protein structure prediction program AlphaFold2 is exquisitely adapted to unveil structural and functional details of such molecular machineries. Here, we present structure predictions of adhesion devices from siphophages belonging to the P335 group infecting Lactococcus spp., one of the most extensively applied lactic acid bacteria in dairy fermentations. The predictions of representative adhesion devices from types I-IV P335 phages illustrate their very diverse topology. Adhesion devices from types III and IV phages share a common topology with that of Skunavirus p2, with a receptor binding protein anchored to the virion by a distal tail protein loop. This suggests that they exhibit an activation mechanism similar to that of phage p2 prior to host binding.
Collapse
Affiliation(s)
- Adeline Goulet
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie, Bioénergies et Biotechnologie (IM2B), Aix-Marseille Université—CNRS, UMR 7255, 13288 Marseille, France
| | - Jennifer Mahony
- School of Microbiology, University College Cork, T12 YN60 Cork, Ireland
| | - Christian Cambillau
- School of Microbiology, University College Cork, T12 YN60 Cork, Ireland
- AlphaGraphix, 24 Carrer d’Amont, 66210 Formiguères, France
| | | |
Collapse
|
8
|
Goulet A, Cambillau C. Present Impact of AlphaFold2 Revolution on Structural Biology, and an Illustration With the Structure Prediction of the Bacteriophage J-1 Host Adhesion Device. Front Mol Biosci 2022; 9:907452. [PMID: 35615740 PMCID: PMC9124777 DOI: 10.3389/fmolb.2022.907452] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/21/2022] [Indexed: 12/26/2022] Open
Abstract
In 2021, the release of AlphaFold2 - the DeepMind's machine-learning protein structure prediction program - revolutionized structural biology. Results of the CASP14 contest were an immense surprise as AlphaFold2 successfully predicted 3D structures of nearly all submitted protein sequences. The AlphaFold2 craze has rapidly spread the life science community since structural biologists as well as untrained biologists have now the possibility to obtain high-confidence protein structures. This revolution is opening new avenues to address challenging biological questions. Moreover, AlphaFold2 is imposing itself as an essential step of any structural biology project, and requires us to revisit our structural biology workflows. On one hand, AlphaFold2 synergizes with experimental methods including X-ray crystallography and cryo-electron microscopy. On the other hand, it is, to date, the only method enabling structural analyses of large and flexible assemblies resistant to experimental approaches. We illustrate this valuable application of AlphaFold2 with the structure prediction of the whole host adhesion device from the Lactobacillus casei bacteriophage J-1. With the ongoing improvement of AlphaFold2 algorithms and notebooks, there is no doubt that AlphaFold2-driven biological stories will increasingly be reported, which questions the future directions of experimental structural biology.
Collapse
Affiliation(s)
- Adeline Goulet
- Laboratoire D’Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie, Aix-Marseille Université—CNRS, Marseille, France
| | - Christian Cambillau
- Laboratoire D’Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie, Aix-Marseille Université—CNRS, Marseille, France
- School of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
9
|
Ward EM, Kizer ME, Imperiali B. Strategies and Tactics for the Development of Selective Glycan-Binding Proteins. ACS Chem Biol 2021; 16:1795-1813. [PMID: 33497192 PMCID: PMC9200409 DOI: 10.1021/acschembio.0c00880] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The influences of glycans impact all biological processes, disease states, and pathogenic interactions. Glycan-binding proteins (GBPs), such as lectins, are decisive tools for interrogating glycan structure and function because of their ease of use and ability to selectively bind defined carbohydrate epitopes and glycosidic linkages. GBP reagents are prominent tools for basic research, clinical diagnostics, therapeutics, and biotechnological applications. However, the study of glycans is hindered by the lack of specific and selective protein reagents to cover the massive diversity of carbohydrate structures that exist in nature. In addition, existing GBP reagents often suffer from low affinity or broad specificity, complicating data interpretation. There have been numerous efforts to expand the GBP toolkit beyond those identified from natural sources through protein engineering, to improve the properties of existing GBPs or to engineer novel specificities and potential applications. This review details the current scope of proteins that bind carbohydrates and the engineering methods that have been applied to enhance the affinity, selectivity, and specificity of binders.
Collapse
Affiliation(s)
- Elizabeth M. Ward
- Department of Biology, Massachusetts Institute of Technology, 31 Ames St, Cambridge, MA 02142, USA
- Microbiology Graduate Program, Massachusetts Institute of Technology, 31 Ames St, Cambridge, MA 02142, USA
| | - Megan E. Kizer
- Department of Biology, Massachusetts Institute of Technology, 31 Ames St, Cambridge, MA 02142, USA
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA
| | - Barbara Imperiali
- Department of Biology, Massachusetts Institute of Technology, 31 Ames St, Cambridge, MA 02142, USA
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA
| |
Collapse
|
10
|
Fernandez-Julia PJ, Munoz-Munoz J, van Sinderen D. A comprehensive review on the impact of β-glucan metabolism by Bacteroides and Bifidobacterium species as members of the gut microbiota. Int J Biol Macromol 2021; 181:877-889. [PMID: 33864864 DOI: 10.1016/j.ijbiomac.2021.04.069] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 04/01/2021] [Accepted: 04/10/2021] [Indexed: 12/16/2022]
Abstract
β-glucans are polysaccharides which can be obtained from different sources, and which have been described as potential prebiotics. The beneficial effects associated with β-glucan intake are that they reduce energy intake, lower cholesterol levels and support the immune system. Nevertheless, the mechanism(s) of action underpinning these health effects related to β-glucans are still unclear, and the precise impact of β-glucans on the gut microbiota has been subject to debate and revision. In this review, we summarize the most recent advances involving structurally different types of β-glucans as fermentable substrates for Bacteroidetes (mainly Bacteroides) and Bifidobacterium species as glycan degraders. Bacteroides is one of the most abundant bacterial components of the human gut microbiota, while bifidobacteria are widely employed as a probiotic ingredient. Both are generalist glycan degraders capable of using a wide range of substrates: Bacteroides spp. are specialized as primary degraders in the metabolism of complex carbohydrates, whereas Bifidobacterium spp. more commonly metabolize smaller glycans, in particular oligosaccharides, sometimes through syntrophic interactions with Bacteroides spp., in which they act as secondary degraders.
Collapse
Affiliation(s)
- Pedro J Fernandez-Julia
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST, Tyne & Wear, England, United Kingdom
| | - Jose Munoz-Munoz
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST, Tyne & Wear, England, United Kingdom.
| | - Douwe van Sinderen
- School of Microbiology & APC Microbiome Ireland, University College Cork, Ireland University College Cork, Cork, Ireland.
| |
Collapse
|
11
|
Liu J, Sun D, Zhu J, Liu C, Liu W. Carbohydrate-binding modules targeting branched polysaccharides: overcoming side-chain recalcitrance in a non-catalytic approach. BIORESOUR BIOPROCESS 2021; 8:28. [PMID: 38650221 PMCID: PMC10992016 DOI: 10.1186/s40643-021-00381-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 04/07/2021] [Indexed: 12/25/2022] Open
Abstract
Extensive decoration of backbones is a major factor resulting in resistance of enzymatic conversion in hemicellulose and other branched polysaccharides. Employing debranching enzymes is the main strategy to overcome this kind of recalcitrance at present. A carbohydrate-binding module (CBM) is a contiguous amino acid sequence that can promote the binding of enzymes to various carbohydrates, thereby facilitating enzymatic hydrolysis. According to previous studies, CBMs can be classified into four types based on their preference in ligand type, where Type III and IV CBMs prefer to branched polysaccharides than the linear and thus are able to specifically enhance the hydrolysis of substrates containing side chains. With a role in dominating the hydrolysis of branched substrates, Type III and IV CBMs could represent a non-catalytic approach in overcoming side-chain recalcitrance.
Collapse
Affiliation(s)
- Jiawen Liu
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, No. 101, Shanghai Road, Tongshan New District, Xuzhou, 221116, Jiangsu, China
| | - Di Sun
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, No. 101, Shanghai Road, Tongshan New District, Xuzhou, 221116, Jiangsu, China
| | - Jingrong Zhu
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, No. 101, Shanghai Road, Tongshan New District, Xuzhou, 221116, Jiangsu, China
| | - Cong Liu
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, No. 101, Shanghai Road, Tongshan New District, Xuzhou, 221116, Jiangsu, China.
| | - Weijie Liu
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, No. 101, Shanghai Road, Tongshan New District, Xuzhou, 221116, Jiangsu, China.
| |
Collapse
|
12
|
Multimodularity of a GH10 Xylanase Found in the Termite Gut Metagenome. Appl Environ Microbiol 2021; 87:AEM.01714-20. [PMID: 33187992 PMCID: PMC7848910 DOI: 10.1128/aem.01714-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/03/2020] [Indexed: 01/01/2023] Open
Abstract
Xylan is the major hemicellulosic polysaccharide in cereals and contributes to the recalcitrance of the plant cell wall toward degradation. Bacteroidetes, one of the main phyla in rumen and human gut microbiota, have been shown to encode polysaccharide utilization loci dedicated to the degradation of xylan. Here, we present the biochemical characterization of a xylanase encoded by a bacteroidetes strain isolated from the termite gut metagenome. The functional screening of a Pseudacanthotermes militaris termite gut metagenomic library revealed an array of xylan-degrading enzymes, including P. militaris 25 (Pm25), a multimodular glycoside hydrolase family 10 (GH10). Sequence analysis showed details of the unusual domain organization of this enzyme. It consists of one catalytic domain, which is intercalated by two carbohydrate binding modules (CBMs) from family 4. The genes upstream of the genes encoding Pm25 are susC-susD-unk, suggesting Pm25 is a Xyn10C-like enzyme belonging to a polysaccharide utilization locus. The majority of Xyn10C-like enzymes shared the same interrupted domain architecture and were vastly distributed in different xylan utilization loci found in gut Bacteroidetes, indicating the importance of this enzyme in glycan acquisition for gut microbiota. To understand its unusual multimodularity and the possible role of the CBMs, a detailed characterization of the full-length Pm25 and truncated variants was performed. Results revealed that the GH10 catalytic module is specific toward the hydrolysis of xylan. Ligand binding results indicate that the GH10 module and the CBMs act independently, whereas the tandem CBM4s act synergistically with each other and improve enzymatic activity when assayed on insoluble polysaccharides. In addition, we show that the UNK protein upstream of Pm25 is able to bind arabinoxylan. Altogether, these findings contribute to a better understanding of the potential role of Xyn10C-like proteins in xylan utilization systems of gut bacteria. IMPORTANCE Xylan is the major hemicellulosic polysaccharide in cereals and contributes to the recalcitrance of the plant cell wall toward degradation. Members of the Bacteroidetes, one of the main phyla in rumen and human gut microbiota, have been shown to encode polysaccharide utilization loci dedicated to the degradation of xylan. Here, we present the biochemical characterization of a xylanase encoded by a Bacteroidetes strain isolated from the termite gut metagenome. This xylanase is a multimodular enzyme, the sequence of which is interrupted by the insertion of two CBMs from family 4. Our results show that this enzyme resembles homologues that were shown to be important for xylan degradation in rumen or human diet and show that the CBM insertion in the middle of the sequence seems to be a common feature in xylan utilization systems. This study shed light on our understanding of xylan degradation and plant cell wall deconstruction, which can be applied to several applications in food, feed, and bioeconomy.
Collapse
|
13
|
McGregor NGS, Turkenburg JP, Mørkeberg Krogh KBR, Nielsen JE, Artola M, Stubbs KA, Overkleeft HS, Davies GJ. Structure of a GH51 α-L-arabinofuranosidase from Meripilus giganteus: conserved substrate recognition from bacteria to fungi. Acta Crystallogr D Struct Biol 2020; 76:1124-1133. [PMID: 33135683 PMCID: PMC7604909 DOI: 10.1107/s205979832001253x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/14/2020] [Indexed: 03/17/2023] Open
Abstract
α-L-Arabinofuranosidases from glycoside hydrolase family 51 use a stereochemically retaining hydrolytic mechanism to liberate nonreducing terminal α-L-arabinofuranose residues from plant polysaccharides such as arabinoxylan and arabinan. To date, more than ten fungal GH51 α-L-arabinofuranosidases have been functionally characterized, yet no structure of a fungal GH51 enzyme has been solved. In contrast, seven bacterial GH51 enzyme structures, with low sequence similarity to the fungal GH51 enzymes, have been determined. Here, the crystallization and structural characterization of MgGH51, an industrially relevant GH51 α-L-arabinofuranosidase cloned from Meripilus giganteus, are reported. Three crystal forms were grown in different crystallization conditions. The unliganded structure was solved using sulfur SAD data collected from a single crystal using the I23 in vacuo diffraction beamline at Diamond Light Source. Crystal soaks with arabinose, 1,4-dideoxy-1,4-imino-L-arabinitol and two cyclophellitol-derived arabinose mimics reveal a conserved catalytic site and conformational itinerary between fungal and bacterial GH51 α-L-arabinofuranosidases.
Collapse
Affiliation(s)
- Nicholas G. S. McGregor
- York Structural Biology Laboratory, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Johan P. Turkenburg
- York Structural Biology Laboratory, University of York, Heslington, York YO10 5DD, United Kingdom
| | | | - Jens Erik Nielsen
- Protein Biochemistry and Stability, Novozymes A/S, Krogshøjvej 36, 2880 Bagsvaerd, Denmark
| | - Marta Artola
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, The Netherlands
| | - Keith A. Stubbs
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | - Herman S. Overkleeft
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, The Netherlands
| | - Gideon J. Davies
- York Structural Biology Laboratory, University of York, Heslington, York YO10 5DD, United Kingdom
| |
Collapse
|
14
|
Plattner M, Shneider MM, Arbatsky NP, Shashkov AS, Chizhov AO, Nazarov S, Prokhorov NS, Taylor NMI, Buth SA, Gambino M, Gencay YE, Brøndsted L, Kutter EM, Knirel YA, Leiman PG. Structure and Function of the Branched Receptor-Binding Complex of Bacteriophage CBA120. J Mol Biol 2019; 431:3718-3739. [PMID: 31325442 DOI: 10.1016/j.jmb.2019.07.022] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 07/10/2019] [Accepted: 07/10/2019] [Indexed: 01/21/2023]
Abstract
Bacteriophages recognize their host cells with the help of tail fiber and tailspike proteins that bind, cleave, or modify certain structures on the cell surface. The spectrum of ligands to which the tail fibers and tailspikes can bind is the primary determinant of the host range. Bacteriophages with multiple tailspike/tail fibers are thought to have a wider host range than their less endowed relatives but the function of these proteins remains poorly understood. Here, we describe the structure, function, and substrate specificity of three tailspike proteins of bacteriophage CBA120-TSP2, TSP3 and TSP4 (orf211 through orf213, respectively). We show that tailspikes TSP2, TSP3 and TSP4 are hydrolases that digest the O157, O77, and O78 Escherichia coli O-antigens, respectively. We demonstrate that recognition of the E. coli O157:H7 host by CBA120 involves binding to and digesting the O157 O-antigen by TSP2. We report the crystal structure of TSP2 in complex with a repeating unit of the O157 O-antigen. We demonstrate that according to the specificity of its tailspikes TSP2, TSP3, and TSP4, CBA120 can infect E. coli O157, O77, and O78, respectively. We also show that CBA120 infects Salmonella enterica serovar Minnesota, and this host range expansion is likely due to the function of TSP1. Finally, we describe the assembly pathway and the architecture of the TSP1-TSP2-TSP3-TSP4 branched complex in CBA120 and its related ViI-like phages.
Collapse
Affiliation(s)
- Michel Plattner
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555-0647, USA; École Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| | - Mikhail M Shneider
- Laboratory of Molecular Bioengineering, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya St., 117997 Moscow, Russia
| | - Nikolay P Arbatsky
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alexander S Shashkov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alexander O Chizhov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Sergey Nazarov
- École Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| | - Nikolai S Prokhorov
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555-0647, USA
| | - Nicholas M I Taylor
- Structural Biology of Molecular Machines Group, Protein Structure & Function Programme, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen 2200, Denmark
| | - Sergey A Buth
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555-0647, USA
| | - Michela Gambino
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg C, Denmark
| | - Yilmaz Emre Gencay
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg C, Denmark
| | - Lone Brøndsted
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg C, Denmark
| | | | - Yuriy A Knirel
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Petr G Leiman
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555-0647, USA.
| |
Collapse
|
15
|
Furtado GP, Lourenzoni MR, Fuzo CA, Fonseca-Maldonado R, Guazzaroni ME, Ribeiro LF, Ward RJ. Engineering the affinity of a family 11 carbohydrate binding module to improve binding of branched over unbranched polysaccharides. Int J Biol Macromol 2018; 120:2509-2516. [DOI: 10.1016/j.ijbiomac.2018.09.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/04/2018] [Accepted: 09/04/2018] [Indexed: 01/19/2023]
|
16
|
Newmister SA, Li S, Garcia-Borràs M, Sanders JN, Yang S, Lowell AN, Yu F, Smith JL, Williams RM, Houk KN, Sherman DH. Structural basis of the Cope rearrangement and cyclization in hapalindole biogenesis. Nat Chem Biol 2018; 14:345-351. [PMID: 29531360 PMCID: PMC5880276 DOI: 10.1038/s41589-018-0003-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 01/17/2018] [Indexed: 11/09/2022]
Abstract
Hapalindole alkaloids are a structurally diverse class of cyanobacterial natural products defined by their varied polycyclic ring systems and diverse biological activities. These complex metabolites are generated from a common biosynthetic intermediate by the Stig cyclases in three mechanistic steps: a rare Cope rearrangement, 6-exo-trig cyclization, and electrophilic aromatic substitution. Here we report the structure of HpiC1, a Stig cyclase that catalyzes the formation of 12-epi-hapalindole U in vitro. The 1.5-Å structure revealed a dimeric assembly with two calcium ions per monomer and with the active sites located at the distal ends of the protein dimer. Mutational analysis and computational methods uncovered key residues for an acid-catalyzed [3,3]-sigmatropic rearrangement, as well as specific determinants that control the position of terminal electrophilic aromatic substitution, leading to a switch from hapalindole to fischerindole alkaloids.
Collapse
Affiliation(s)
- Sean A Newmister
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Shasha Li
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Marc Garcia-Borràs
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jacob N Sanders
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Song Yang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Andrew N Lowell
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Fengan Yu
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Janet L Smith
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Robert M Williams
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA.
- University of Colorado Cancer Center, Aurora, CO, USA.
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA.
| | - David H Sherman
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA.
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA.
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA.
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
17
|
Wang H, Chen Y, Huang C, Diao M, Zhou Y. Insight into the function of the key residues in the binding clefts of the substrate with CBM4-2 of xylanase Xyn10A by molecular modeling and free energy calculation. COMPUT THEOR CHEM 2017. [DOI: 10.1016/j.comptc.2017.03.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Armenta S, Moreno-Mendieta S, Sánchez-Cuapio Z, Sánchez S, Rodríguez-Sanoja R. Advances in molecular engineering of carbohydrate-binding modules. Proteins 2017; 85:1602-1617. [PMID: 28547780 DOI: 10.1002/prot.25327] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/04/2017] [Accepted: 05/20/2017] [Indexed: 11/06/2022]
Abstract
Carbohydrate-binding modules (CBMs) are non-catalytic domains that are generally appended to carbohydrate-active enzymes. CBMs have a broadly conserved structure that allows recognition of a notable variety of carbohydrates, in both their soluble and insoluble forms, as well as in their alpha and beta conformations and with different types of bonds or substitutions. This versatility suggests a high functional plasticity that is not yet clearly understood, in spite of the important number of studies relating protein structure and function. Several studies have explored the flexibility of these systems by changing or improving their specificity toward substrates of interest. In this review, we examine the molecular strategies used to identify CBMs with novel or improved characteristics. The impact of the spatial arrangement of the functional amino acids of CBMs is discussed in terms of unexpected new functions that are not related to the original biological roles of the enzymes. Proteins 2017; 85:1602-1617. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Silvia Armenta
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito Mario de la Cueva s/n Ciudad Universitaria, Ciudad de México, 04510, México
| | - Silvia Moreno-Mendieta
- CONACYT, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito Mario de la Cueva s/n Ciudad Universitaria, Ciudad de México, 04510, México
| | - Zaira Sánchez-Cuapio
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito Mario de la Cueva s/n Ciudad Universitaria, Ciudad de México, 04510, México
| | - Sergio Sánchez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito Mario de la Cueva s/n Ciudad Universitaria, Ciudad de México, 04510, México
| | - Romina Rodríguez-Sanoja
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito Mario de la Cueva s/n Ciudad Universitaria, Ciudad de México, 04510, México
| |
Collapse
|
19
|
Oksanen E, Chen JCH, Fisher SZ. Neutron Crystallography for the Study of Hydrogen Bonds in Macromolecules. Molecules 2017; 22:molecules22040596. [PMID: 28387738 PMCID: PMC6154725 DOI: 10.3390/molecules22040596] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 03/29/2017] [Accepted: 04/01/2017] [Indexed: 11/21/2022] Open
Abstract
The hydrogen bond (H bond) is one of the most important interactions that form the foundation of secondary and tertiary protein structure. Beyond holding protein structures together, H bonds are also intimately involved in solvent coordination, ligand binding, and enzyme catalysis. The H bond by definition involves the light atom, H, and it is very difficult to study directly, especially with X-ray crystallographic techniques, due to the poor scattering power of H atoms. Neutron protein crystallography provides a powerful, complementary tool that can give unambiguous information to structural biologists on solvent organization and coordination, the electrostatics of ligand binding, the protonation states of amino acid side chains and catalytic water species. The method is complementary to X-ray crystallography and the dynamic data obtainable with NMR spectroscopy. Also, as it gives explicit H atom positions, it can be very valuable to computational chemistry where exact knowledge of protonation and solvent orientation can make a large difference in modeling. This article gives general information about neutron crystallography and shows specific examples of how the method has contributed to structural biology, structure-based drug design; and the understanding of fundamental questions of reaction mechanisms.
Collapse
Affiliation(s)
- Esko Oksanen
- Science Directorate, European Spallation Source ERIC, Tunavägen 24, 22100 Lund, Sweden.
- Department of Biochemistry and Structural Biology, Lund University, Sölvegatan 39, 22362 Lund, Sweden.
| | - Julian C-H Chen
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | - Suzanne Zoë Fisher
- Science Directorate, European Spallation Source ERIC, Tunavägen 24, 22100 Lund, Sweden.
- Department of Biology, Lund University, Sölvegatan 35, 22362 Lund, Sweden.
| |
Collapse
|
20
|
Polysaccharide of Dendrobium huoshanense activates macrophages via toll-like receptor 4-mediated signaling pathways. Carbohydr Polym 2016; 146:292-300. [DOI: 10.1016/j.carbpol.2016.03.059] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 03/16/2016] [Accepted: 03/20/2016] [Indexed: 12/22/2022]
|
21
|
Characterization of a high-affinity sialic acid-specific CBM40 from Clostridium perfringens and engineering of a divalent form. Biochem J 2016; 473:2109-18. [DOI: 10.1042/bcj20160340] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 05/16/2016] [Indexed: 11/17/2022]
Abstract
CBMs (carbohydrate-binding modules) are a class of polypeptides usually associated with carbohydrate-active enzymatic sites. We have characterized a new member of the CBM40 family, coded from a section of the gene NanI from Clostridium perfringens. Glycan arrays revealed its preference towards α(2,3)-linked sialosides, which was confirmed and quantified by calorimetric studies. The CBM40 binds to α(2,3)-sialyl-lactose with a Kd of ∼30 μM, the highest affinity value for this class of proteins. Inspired by lectins' structure and their arrangement as multimeric proteins, we have engineered a dimeric form of the CBM, and using SPR (surface plasmon resonance) we have observed 6–11-fold binding increases due to the avidity affect. The structures of the CBM, resolved by X-ray crystallography, in complex with α(2,3)- or α(2,6)-sialyl-lactose explain its binding specificity and unusually strong binding.
Collapse
|
22
|
Pattathil S, Avci U, Zhang T, Cardenas CL, Hahn MG. Immunological Approaches to Biomass Characterization and Utilization. Front Bioeng Biotechnol 2015; 3:173. [PMID: 26579515 PMCID: PMC4623462 DOI: 10.3389/fbioe.2015.00173] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 10/12/2015] [Indexed: 11/13/2022] Open
Abstract
Plant biomass is the major renewable feedstock resource for sustainable generation of alternative transportation fuels to replace fossil carbon-derived fuels. Lignocellulosic cell walls are the principal component of plant biomass. Hence, a detailed understanding of plant cell wall structure and biosynthesis is an important aspect of bioenergy research. Cell walls are dynamic in their composition and structure, varying considerably among different organs, cells, and developmental stages of plants. Hence, tools are needed that are highly efficient and broadly applicable at various levels of plant biomass-based bioenergy research. The use of plant cell wall glycan-directed probes has seen increasing use over the past decade as an excellent approach for the detailed characterization of cell walls. Large collections of such probes directed against most major cell wall glycans are currently available worldwide. The largest and most diverse set of such probes consists of cell wall glycan-directed monoclonal antibodies (McAbs). These McAbs can be used as immunological probes to comprehensively monitor the overall presence, extractability, and distribution patterns among cell types of most major cell wall glycan epitopes using two mutually complementary immunological approaches, glycome profiling (an in vitro platform) and immunolocalization (an in situ platform). Significant progress has been made recently in the overall understanding of plant biomass structure, composition, and modifications with the application of these immunological approaches. This review focuses on such advances made in plant biomass analyses across diverse areas of bioenergy research.
Collapse
Affiliation(s)
- Sivakumar Pattathil
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
- Oak Ridge National Laboratory, BioEnergy Science Center (BESC), Oak Ridge, TN, USA
| | - Utku Avci
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
- Oak Ridge National Laboratory, BioEnergy Science Center (BESC), Oak Ridge, TN, USA
| | - Tiantian Zhang
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Claudia L. Cardenas
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Michael G. Hahn
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
- Oak Ridge National Laboratory, BioEnergy Science Center (BESC), Oak Ridge, TN, USA
| |
Collapse
|
23
|
Fisher SZ, von Schantz L, Håkansson M, Logan DT, Ohlin M. Neutron crystallographic studies reveal hydrogen bond and water-mediated interactions between a carbohydrate-binding module and its bound carbohydrate ligand. Biochemistry 2015; 54:6435-8. [PMID: 26451738 DOI: 10.1021/acs.biochem.5b01058] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Carbohydrate-binding modules (CBMs) are key components of many carbohydrate-modifying enzymes. CBMs affect the activity of these enzymes by modulating bonding and catalysis. To further characterize and study CBM-ligand binding interactions, neutron crystallographic studies of an engineered family 4-type CBM in complex with a branched xyloglucan ligand were conducted. The first neutron crystal structure of a CBM-ligand complex reported here shows numerous atomic details of hydrogen bonding and water-mediated interactions and reveals the charged state of key binding cleft amino acid side chains.
Collapse
Affiliation(s)
- S Zoë Fisher
- European Spallation Source , S-221 00 Lund, Sweden
| | - Laura von Schantz
- Department of Immunotechnology, Lund University , Medicon Village, S-223 81 Lund, Sweden
| | - Maria Håkansson
- SARomics Biostructures AB , Medicon Village, S-223 81 Lund, Sweden
| | - Derek T Logan
- SARomics Biostructures AB , Medicon Village, S-223 81 Lund, Sweden.,Department of Biochemistry and Structural Biology, Lund University , S-221 00 Lund, Sweden
| | - Mats Ohlin
- Department of Immunotechnology, Lund University , Medicon Village, S-223 81 Lund, Sweden
| |
Collapse
|
24
|
Paës G, von Schantz L, Ohlin M. Bioinspired assemblies of plant cell wall polymers unravel the affinity properties of carbohydrate-binding modules. SOFT MATTER 2015; 11:6586-94. [PMID: 26189625 DOI: 10.1039/c5sm01157d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Lignocellulose-acting enzymes play a central role in the biorefinery of plant biomass to make fuels, chemicals and materials. These enzymes are often appended to carbohydrate binding modules (CBMs) that promote substrate targeting. When used in plant materials, which are complex assemblies of polymers, the binding properties of CBMs can be difficult to understand and predict, thus limiting the efficiency of enzymes. In order to gain more information on the binding properties of CBMs, some bioinspired model assemblies that contain some of the polymers and covalent interactions found in the plant cell walls have been designed. The mobility of three engineered CBMs has been investigated by FRAP in these assemblies, while varying the parameters related to the polymer concentration, the physical state of assemblies and the oligomerization state of CBMs. The features controlling the mobility of the CBMs in the assemblies have been quantified and hierarchized. We demonstrate that the parameters can have additional or opposite effects on mobility, depending on the CBM tested. We also find evidence of a relationship between the mobility of CBMs and their binding strength. Overall, bioinspired assemblies are able to reveal the unique features of affinity of CBMs. In particular, the results show that oligomerization of CBMs and the presence of ferulic acid motifs in the assemblies play an important role in the binding affinity of CBMs. Thus we propose that these features should be finely tuned when CBMs are used in plant cell walls to optimise bioprocesses.
Collapse
Affiliation(s)
- Gabriel Paës
- INRA, UMR0614 Fractionnement des AgroRessources et Environnement, 2 esplanade Roland-Garros, 51100 Reims, France.
| | | | | |
Collapse
|
25
|
Ohlin M, von Schantz L, Schrader TE, Ostermann A, Logan DT, Fisher SZ. Crystallization, neutron data collection, initial structure refinement and analysis of a xyloglucan heptamer bound to an engineered carbohydrate-binding module from xylanase. Acta Crystallogr F Struct Biol Commun 2015; 71:1072-7. [PMID: 26249702 PMCID: PMC4528944 DOI: 10.1107/s2053230x15011383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 06/11/2015] [Indexed: 11/10/2022] Open
Abstract
Carbohydrate-binding modules (CBMs) are discrete parts of carbohydrate-hydrolyzing enzymes that bind specific types of carbohydrates. Ultra high-resolution X-ray crystallographic studies of CBMs have helped to decipher the basis for specificity in carbohydrate-protein interactions. However, additional studies are needed to better understand which structural determinants confer which carbohydrate-binding properties. To address these issues, neutron crystallographic studies were initiated on one experimentally engineered CBM derived from a xylanase, X-2 L110F, a protein that is able to bind several different plant carbohydrates such as xylan, β-glucan and xyloglucan. This protein evolved from a CBM present in xylanase Xyn10A of Rhodothermus marinus. The protein was complexed with a branched xyloglucan heptasaccharide. Large single crystals of hydrogenous protein (∼1.6 mm(3)) were grown at room temperature and subjected to H/D exchange. Both neutron and X-ray diffraction data sets were collected to 1.6 Å resolution. Joint neutron and X-ray refinement using phenix.refine showed significant density for residues involved in carbohydrate binding and revealed the details of a hydrogen-bonded water network around the binding site. This is the first report of a neutron structure of a CBM and will add to the understanding of protein-carbohydrate binding interactions.
Collapse
Affiliation(s)
- Mats Ohlin
- Department of Immunotechnology, Lund University, Medicon Village, Building 406, 223 81 Lund, Sweden
| | - Laura von Schantz
- Department of Immunotechnology, Lund University, Medicon Village, Building 406, 223 81 Lund, Sweden
| | - Tobias E. Schrader
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstrasse 1, 85747 Garching, Germany
| | - Andreas Ostermann
- Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, Lichtenbergstrasse 1, 85748 Garching, Germany
| | - Derek T. Logan
- Department of Chemistry, Lund University, PO Box 124, 221 00 Lund, Sweden
| | - S. Zoë Fisher
- Scientific Activities Division, European Spallation Source, Tunavägen 24, 221 00 Lund, Sweden
| |
Collapse
|
26
|
von Schantz L, Schagerlöf H, Nordberg Karlsson E, Ohlin M. Characterization of the substitution pattern of cellulose derivatives using carbohydrate-binding modules. BMC Biotechnol 2014; 14:113. [PMID: 25540113 PMCID: PMC4302574 DOI: 10.1186/s12896-014-0113-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 12/18/2014] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Derivatized celluloses, such as methylcellulose (MC) and hydroxypropyl methylcellulose (HPMC), are of pharmaceutical importance and extensively employed in tablet matrices. Each batch of derivatized cellulose is thoroughly characterized before utilized in tablet formulations as batch-to-batch differences can affect drug release. The substitution pattern of the derivatized cellulose polymers, i.e. the mode on which the substituent groups are dispersed along the cellulose backbone, can vary from batch-to-batch and is a factor that can influence drug release. RESULTS In the present study an analytical approach for the characterization of the substitution pattern of derivatized celluloses is presented, which is based on the use of carbohydrate-binding modules (CBMs) and affinity electrophoresis. CBM4-2 from Rhodothermus marinus xylanase 10A is capable of distinguishing between batches of derivatized cellulose with different substitution patterns. This is demonstrated by a higher migration retardation of the CBM in acrylamide gels containing batches of MC and HPMC with a more heterogeneous distribution pattern. CONCLUSIONS We conclude that CBMs have the potential to characterize the substitution pattern of cellulose derivatives and anticipate that with use of CBMs with a very selective recognition capacity it will be possible to more extensively characterize and standardize important carbohydrates used for instance in tablet formulation.
Collapse
|
27
|
von Schantz L, Håkansson M, Logan DT, Nordberg-Karlsson E, Ohlin M. Carbohydrate binding module recognition of xyloglucan defined by polar contacts with branching xyloses and CH-Π interactions. Proteins 2014; 82:3466-75. [PMID: 25302425 DOI: 10.1002/prot.24700] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Revised: 09/03/2014] [Accepted: 09/19/2014] [Indexed: 12/13/2022]
Abstract
Engineering of novel carbohydrate-binding proteins that can be utilized in various biochemical and biotechnical applications would benefit from a deeper understanding of the biochemical interactions that determine protein-carbohydrate specificity. In an effort to understand further the basis for specificity we present the crystal structure of the multi-specific carbohydrate-binding module (CBM) X-2 L110F bound to a branched oligomer of xyloglucan (XXXG). X-2 L110F is an engineered CBM that can recognize xyloglucan, xylans and β-glucans. The structural observations of the present study compared with previously reported structures of X-2 L110F in complex with linear oligomers, show that the π-surface of a phenylalanine, F110, allows for interactions with hydrogen atoms on both linear (xylopentaose and cellopentaose) and branched ligands (XXXG). Furthermore, X-2 L110F is shown to have a relatively flexible binding cleft, as illustrated in binding to XXXG. This branched ligand requires a set of reorientations of protein side chains Q72, N31, and R142, although these residues have previously been determined as important for binding to xylose oligomers by mediating polar contacts. The loss of these polar contacts is compensated for in binding to XXXG by polar interactions mediated by other protein residues, T74, R115, and Y149, which interact mainly with the branching xyloses of the xyloglucan oligomer. Taken together, the present study illustrates in structural detail how CH-π interactions can influence binding specificity and that flexibility is a key feature for the multi-specificity displayed by X-2 L110F, allowing for the accommodation of branched ligands.
Collapse
Affiliation(s)
- Laura von Schantz
- Department of Immunotechnology, Lund University, Medicon Village, SE-223 81 Lund, Sweden
| | | | | | | | | |
Collapse
|
28
|
Modenutti C, Gauto D, Radusky L, Blanco J, Turjanski A, Hajos S, Marti M. Using crystallographic water properties for the analysis and prediction of lectin-carbohydrate complex structures. Glycobiology 2014; 25:181-96. [DOI: 10.1093/glycob/cwu102] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
29
|
Gauto DF, Petruk AA, Modenutti CP, Blanco JI, Di Lella S, Martí MA. Solvent structure improves docking prediction in lectin-carbohydrate complexes. Glycobiology 2012; 23:241-58. [PMID: 23089616 DOI: 10.1093/glycob/cws147] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Recognition and complex formation between proteins and carbohydrates is a key issue in many important biological processes. Determination of the three-dimensional structure of such complexes is thus most relevant, but particularly challenging because of their usually low binding affinity. In silico docking methods have a long-standing tradition in predicting protein-ligand complexes, and allow a potentially fast exploration of a number of possible protein-carbohydrate complex structures. However, determining which of these predicted complexes represents the correct structure is not always straightforward. In this work, we present a modification of the scoring function provided by AutoDock4, a widely used docking software, on the basis of analysis of the solvent structure adjacent to the protein surface, as derived from molecular dynamics simulations, that allows the definition and characterization of regions with higher water occupancy than the bulk solvent, called water sites. They mimic the interaction held between the carbohydrate -OH groups and the protein. We used this information for an improved docking method in relation to its capacity to correctly predict the protein-carbohydrate complexes for a number of tested proteins, whose ligands range in size from mono- to tetrasaccharide. Our results show that the presented method significantly improves the docking predictions. The resulting solvent-structure-biased docking protocol, therefore, appears as a powerful tool for the design and optimization of development of glycomimetic drugs, while providing new insights into protein-carbohydrate interactions. Moreover, the achieved improvement also underscores the relevance of the solvent structure to the protein carbohydrate recognition process.
Collapse
Affiliation(s)
- Diego F Gauto
- Departamento de Química Inorgánica, Analítica y Química Física, CONICET, Ciudad Universitaria, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
30
|
Broeker NK, Gohlke U, Müller JJ, Uetrecht C, Heinemann U, Seckler R, Barbirz S. Single amino acid exchange in bacteriophage HK620 tailspike protein results in thousand-fold increase of its oligosaccharide affinity. Glycobiology 2012; 23:59-68. [PMID: 22923442 DOI: 10.1093/glycob/cws126] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Bacteriophage HK620 recognizes and cleaves the O-antigen polysaccharide of Escherichia coli serogroup O18A1 with its tailspike protein (TSP). HK620TSP binds hexasaccharide fragments with low affinity, but single amino acid exchanges generated a set of high-affinity mutants with submicromolar dissociation constants. Isothermal titration calorimetry showed that only small amounts of heat were released upon complex formation via a large number of direct and solvent-mediated hydrogen bonds between carbohydrate and protein. At room temperature, association was both enthalpy- and entropy-driven emphasizing major solvent rearrangements upon complex formation. Crystal structure analysis showed identical protein and sugar conformers in the TSP complexes regardless of their hexasaccharide affinity. Only in one case, a TSP mutant bound a different hexasaccharide conformer. The extended sugar binding site could be dissected in two regions: first, a hydrophobic pocket at the reducing end with minor affinity contributions. Access to this site could be blocked by a single aspartate to asparagine exchange without major loss in hexasaccharide affinity. Second, a region where the specific exchange of glutamate for glutamine created a site for an additional water molecule. Side-chain rearrangements upon sugar binding led to desolvation and additional hydrogen bonding which define this region of the binding site as the high-affinity scaffold.
Collapse
|