1
|
Lu D, Wang W, Li X, Wang L, Guo Y, Zhu C, Wang X, Lian B, Bai J, Zhang Q. Identification and characterization of a PL35 GAGs lyase with 4-O-sulfated N-acetylgalactosamine (A-type)-rich structures producing property. Int J Biol Macromol 2024; 266:131283. [PMID: 38561119 DOI: 10.1016/j.ijbiomac.2024.131283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/18/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
Glycosaminoglycan (GAG) lyases are important tools for investigating the structure of GAGs and preparing low-molecular-weight GAGs. The PL35 family, a recently established polysaccharide lyase family, should be further investigated. In this study, we discovered a new GAG lyase, CHa1, which belongs to the PL35 family. When expressed heterologously in Escherichia coli (BL21), CHa1 exhibited high expression levels and solubility. The optimal activity was observed in Tris-HCl buffer (pH 7.0) or sodium phosphate buffer (pH 8.0) at 30 °C. The specific activities towards HA, CSA, CSC, CSD, CSE, and HS were 3.81, 13.03, 36.47, 18.46, 6.46, and 0.50 U/mg protein, respectively. CHa1 digests substrate chains randomly that acting as an endolytic lyase and shows a significant preference for GlcA-containing structures, prefers larger oligosaccharides (≥UDP8) and can generate a series of oligosaccharides composed mainly of the A unit when digesting CSA. These oligosaccharides include ΔC-A, ΔC-A-A, ΔC-A-A-A, ΔC-A-A-A-A, and ΔC-A-A-A-A-A. The residues Tyr257 and His421 play crucial roles in the catalytic process, and Ser211, Asn212, Asn213, Trp214, Gln216, Lys360, Arg460 and Gln462 may participate in the binding process of CHa1. This study on CHa1 contributes to our understanding of the PL35 family and provides valuable tools for investigating the structure of GAGs.
Collapse
Affiliation(s)
- Danrong Lu
- School of Life Science and Technology, Shandong Second Medical University, 7166 Baotong West Street, Weifang 261053, China
| | - Wenwen Wang
- School of Life Science and Technology, Shandong Second Medical University, 7166 Baotong West Street, Weifang 261053, China
| | - Xiaoyun Li
- School of Life Science and Technology, Shandong Second Medical University, 7166 Baotong West Street, Weifang 261053, China
| | - Luping Wang
- School of Life Science and Technology, Shandong Second Medical University, 7166 Baotong West Street, Weifang 261053, China
| | - Yankai Guo
- School of Life Science and Technology, Shandong Second Medical University, 7166 Baotong West Street, Weifang 261053, China
| | - Changjian Zhu
- School of Life Science and Technology, Shandong Second Medical University, 7166 Baotong West Street, Weifang 261053, China
| | - Xiaohui Wang
- School of Life Science and Technology, Shandong Second Medical University, 7166 Baotong West Street, Weifang 261053, China
| | - Bo Lian
- School of Life Science and Technology, Shandong Second Medical University, 7166 Baotong West Street, Weifang 261053, China
| | - Jingkun Bai
- School of Life Science and Technology, Shandong Second Medical University, 7166 Baotong West Street, Weifang 261053, China.
| | - Qingdong Zhang
- School of Life Science and Technology, Shandong Second Medical University, 7166 Baotong West Street, Weifang 261053, China.
| |
Collapse
|
2
|
Zhou W, Hong J, Han J, Cai F, Tang Q, Yu Q, Li G, Ma S, Liu X, Huo S, Chen K, Zhu F. Silkworm glycosaminoglycans bind to Bombyx mori nuclear polyhedrosis virus and facilitate its entry. Int J Biol Macromol 2023; 253:127352. [PMID: 37838120 DOI: 10.1016/j.ijbiomac.2023.127352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/29/2023] [Accepted: 10/04/2023] [Indexed: 10/16/2023]
Abstract
Interacting with cell surface attachment factors or receptors is the first step for virus infection. Glycans cover a thick layer on eukaryotic cells and are potential targets of various viruses. Bombyx mori nuclear polyhedrosis viruses (BmNPV) is a baculovirus that causes huge economic loss to the sericulture industry but the mechanism of infection is unclear. Looking for potential host receptors for the virus is an important task. In this study, we investigated the role of glycosaminoglycan (GAG) modifications, including heparan sulfate (HS) and chondroitin sulfate (CS), during BmNPV infection. Enzymatic removal of cell surface HS and CS effectively inhibited BmNPV infection and replication. Exogenous HS and CS can directly bind to BmNPV virion in solution and act as neutralizers for viral infection. Furthermore, the expression of enzymes involved in GAG biosynthesis was upregulated in the BmNPV susceptible silkworm after virus administration, but down-regulated in the resistant strain after virus treatment, suggesting that BmNPV was able to utilize host cell machinery to promote the biosynthesis of GAGs. This study demonstrated HS and CS as important attachment factors that facilitate the viral entry process, and targeting HS and CS can be an effective means of inhibiting BmNPV infection.
Collapse
Affiliation(s)
- Weiwei Zhou
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Jindie Hong
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Jinying Han
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Fuchuan Cai
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Qi Tang
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Qian Yu
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Guohui Li
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Shangshang Ma
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Xiaoyong Liu
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Shuhao Huo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Keping Chen
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Feifei Zhu
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
3
|
Tian Z, Guo X, Michaud JP, Zha M, Zhu L, Liu X, Liu X. The gut microbiome of Helicoverpa armigera enhances immune response to baculovirus infection via suppression of Duox-mediated reactive oxygen species. PEST MANAGEMENT SCIENCE 2023; 79:3611-3621. [PMID: 37184157 DOI: 10.1002/ps.7546] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/16/2023]
Abstract
BACKGROUND Baculoviruses such as Helicoverpa armigera nucleopolyhedrovirus (HearNPV) infect their lepidopteran hosts via the larval midgut where they interact with host immune responses and gut microbiota. Here we demonstrate that gut microbiota proliferating in response to HearNPV infection promote larval immune responses which impede the infection process. RESULTS The microbial load of the larval midgut increased following HearNPV infection, due primarily to increases in Enterococcus spp., whereas most other bacterial genera declined, with Firmicutes replacing Proteobacteria as the dominant phylum. Injection of abdominal prolegs of infected larvae with H2 O2 promoted viral infection, diminished microbial abundance, and accelerated larval death, mimicking the effects of HearNPV infection, which up-regulated dual oxidase (Duox) expression, increasing H2 O2 levels in the midgut. Knockdown of Duox with RNAi reduced H2 O2 production in the guts of infected larvae, increased bacterial loads, decreased viral replication, and improved larval survival. Germ-free larvae were more susceptible to HearNPV than control larvae, exhibiting greater expression of Duox, higher levels of H2 O2 , and lower survival. Replenishment of gut bacteria in germ-free larvae restored the base-line immunity to HearNPV observed in normal larvae. Enterococcus spp., Levilactobacillus brevis, and Lactobacillus sp. bacteria were isolated and implicated in immunity restoration via replenishment in germ-free larvae. CONCLUSION These findings illuminate how gut microbiota play important roles in larval defense against oral baculovirus infection, and suggest novel avenues of investigation to enhance the efficacy of baculoviruses and improve control of lepidopteran pests. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhiqiang Tian
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xi Guo
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - J P Michaud
- Department of Entomology, Kansas State University, Agricultural Research Center-Hays, Hays, KS, USA
| | - Meng Zha
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Lin Zhu
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xiaoming Liu
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xiaoxia Liu
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
4
|
Liu L, Yu H, Wang D. Genomic and biological characteristics of an alphabaculovirus isolated from Trabala vishnou gigantina. Virus Res 2022; 308:198630. [PMID: 34788643 DOI: 10.1016/j.virusres.2021.198630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/02/2021] [Accepted: 10/29/2021] [Indexed: 11/30/2022]
Abstract
The oak lappet moth, Trabala vishnou gigantina is a forest insect pest that damages broad-leaf trees severely. Trabala vishnou gigantina nucleopolyhedrovirus (TrviNPV) has been isolated from a naturally infected T. vishnou gigantina larva and investigated for its biology and the potential to be a biological control agent against its insect host. TrviNPV was characterized by electron microscope of occlusion bodies (OBs), genomic sequencing and field control efficacy. TrviNPV OBs exhibited an irregular polyhedral shape varying in size from 0.99 to 3.99 μm with multiple nucleocapsids per virion. The genome of this virus was 165 657 bp in length with 40.33% GC content and encoded 146 putative ORFs including the 38 baculovirus core genes. TrviNPV is a group II alphabaculovirus that encodes F protein and lacks the gp64 gene specific to group I alphabaculoviruses. Phylogeny and Kimura-2 parameter analysis revealed TrviNPV to be a novel species and closest to ArdiNPV, EupsNPV and OrleNPV. Bioassays and field trials in a shrubland revealed that TrviNPV was virulent and effective to control T. vishnou gigantina in arid semi-desert region. This work firstly reported the whole genome of TrviNPV as well as its biological characters for a possibility to develop this virus as bio-pesticide in the future.
Collapse
Affiliation(s)
- Long Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Huan Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Dun Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
5
|
Gauthier J, Boulain H, van Vugt JJFA, Baudry L, Persyn E, Aury JM, Noel B, Bretaudeau A, Legeai F, Warris S, Chebbi MA, Dubreuil G, Duvic B, Kremer N, Gayral P, Musset K, Josse T, Bigot D, Bressac C, Moreau S, Periquet G, Harry M, Montagné N, Boulogne I, Sabeti-Azad M, Maïbèche M, Chertemps T, Hilliou F, Siaussat D, Amselem J, Luyten I, Capdevielle-Dulac C, Labadie K, Merlin BL, Barbe V, de Boer JG, Marbouty M, Cônsoli FL, Dupas S, Hua-Van A, Le Goff G, Bézier A, Jacquin-Joly E, Whitfield JB, Vet LEM, Smid HM, Kaiser L, Koszul R, Huguet E, Herniou EA, Drezen JM. Chromosomal scale assembly of parasitic wasp genome reveals symbiotic virus colonization. Commun Biol 2021; 4:104. [PMID: 33483589 PMCID: PMC7822920 DOI: 10.1038/s42003-020-01623-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/10/2020] [Indexed: 02/06/2023] Open
Abstract
Endogenous viruses form an important proportion of eukaryote genomes and a source of novel functions. How large DNA viruses integrated into a genome evolve when they confer a benefit to their host, however, remains unknown. Bracoviruses are essential for the parasitism success of parasitoid wasps, into whose genomes they integrated ~103 million years ago. Here we show, from the assembly of a parasitoid wasp genome at a chromosomal scale, that bracovirus genes colonized all ten chromosomes of Cotesia congregata. Most form clusters of genes involved in particle production or parasitism success. Genomic comparison with another wasp, Microplitis demolitor, revealed that these clusters were already established ~53 mya and thus belong to remarkably stable genomic structures, the architectures of which are evolutionary constrained. Transcriptomic analyses highlight temporal synchronization of viral gene expression without resulting in immune gene induction, suggesting that no conflicts remain between ancient symbiotic partners when benefits to them converge.
Collapse
Affiliation(s)
- Jérémy Gauthier
- Institut de Recherche sur la Biologie de l’Insecte, UMR 7261 CNRS-Université de Tours, Faculté des Sciences et Techniques, Parc de Grandmont, 37200 Tours, France ,grid.466902.f0000 0001 2248 6951Geneva Natural History Museum, 1208 Geneva, Switzerland
| | - Hélène Boulain
- Institut de Recherche sur la Biologie de l’Insecte, UMR 7261 CNRS-Université de Tours, Faculté des Sciences et Techniques, Parc de Grandmont, 37200 Tours, France ,grid.418656.80000 0001 1551 0562EAWAG, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Joke J. F. A. van Vugt
- grid.418375.c0000 0001 1013 0288Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
| | - Lyam Baudry
- Institut Pasteur, Unité Régulation Spatiale des Génomes, UMR 3525, CNRS, Paris, 75015 France ,grid.462844.80000 0001 2308 1657Sorbonne Université, Collège Doctoral, 75005 Paris, France
| | - Emma Persyn
- grid.462350.6Sorbonne Université, INRAE, CNRS, IRD, UPEC, Univ. de Paris, Institute of Ecology and Environmental Science of Paris (iEES-Paris), 75005 Paris, France
| | - Jean-Marc Aury
- grid.8390.20000 0001 2180 5818Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057 Evry, France
| | - Benjamin Noel
- grid.8390.20000 0001 2180 5818Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057 Evry, France
| | - Anthony Bretaudeau
- grid.410368.80000 0001 2191 9284IGEPP, INRAE, Institut Agro, Univ Rennes, 35000 Rennes, France ,grid.420225.30000 0001 2298 7270Univ Rennes, Inria, CNRS, IRISA, 35000 Rennes, France
| | - Fabrice Legeai
- grid.410368.80000 0001 2191 9284IGEPP, INRAE, Institut Agro, Univ Rennes, 35000 Rennes, France ,grid.420225.30000 0001 2298 7270Univ Rennes, Inria, CNRS, IRISA, 35000 Rennes, France
| | - Sven Warris
- grid.4818.50000 0001 0791 5666Applied Bioinformatics, Wageningen University & Research, Wageningen, The Netherlands
| | - Mohamed A. Chebbi
- Institut de Recherche sur la Biologie de l’Insecte, UMR 7261 CNRS-Université de Tours, Faculté des Sciences et Techniques, Parc de Grandmont, 37200 Tours, France
| | - Géraldine Dubreuil
- Institut de Recherche sur la Biologie de l’Insecte, UMR 7261 CNRS-Université de Tours, Faculté des Sciences et Techniques, Parc de Grandmont, 37200 Tours, France
| | - Bernard Duvic
- grid.503158.aUniversité Montpellier, INRAE, DGIMI, 34095 Montpellier, France
| | - Natacha Kremer
- grid.462854.90000 0004 0386 3493Laboratoire de Biométrie et Biologie Evolutive Université de Lyon, Université Claude Bernard Lyon 1, CNRS, UMR 5558, 43 bd du 11 novembre 1918, bat. G. Mendel, 69622 Villeurbanne Cedex, France
| | - Philippe Gayral
- Institut de Recherche sur la Biologie de l’Insecte, UMR 7261 CNRS-Université de Tours, Faculté des Sciences et Techniques, Parc de Grandmont, 37200 Tours, France
| | - Karine Musset
- Institut de Recherche sur la Biologie de l’Insecte, UMR 7261 CNRS-Université de Tours, Faculté des Sciences et Techniques, Parc de Grandmont, 37200 Tours, France
| | - Thibaut Josse
- Institut de Recherche sur la Biologie de l’Insecte, UMR 7261 CNRS-Université de Tours, Faculté des Sciences et Techniques, Parc de Grandmont, 37200 Tours, France
| | - Diane Bigot
- Institut de Recherche sur la Biologie de l’Insecte, UMR 7261 CNRS-Université de Tours, Faculté des Sciences et Techniques, Parc de Grandmont, 37200 Tours, France
| | - Christophe Bressac
- Institut de Recherche sur la Biologie de l’Insecte, UMR 7261 CNRS-Université de Tours, Faculté des Sciences et Techniques, Parc de Grandmont, 37200 Tours, France
| | - Sébastien Moreau
- Institut de Recherche sur la Biologie de l’Insecte, UMR 7261 CNRS-Université de Tours, Faculté des Sciences et Techniques, Parc de Grandmont, 37200 Tours, France
| | - Georges Periquet
- Institut de Recherche sur la Biologie de l’Insecte, UMR 7261 CNRS-Université de Tours, Faculté des Sciences et Techniques, Parc de Grandmont, 37200 Tours, France
| | - Myriam Harry
- grid.460789.40000 0004 4910 6535Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198 Gif-sur-Yvette, France
| | - Nicolas Montagné
- grid.462350.6Sorbonne Université, INRAE, CNRS, IRD, UPEC, Univ. de Paris, Institute of Ecology and Environmental Science of Paris (iEES-Paris), 75005 Paris, France
| | - Isabelle Boulogne
- grid.462350.6Sorbonne Université, INRAE, CNRS, IRD, UPEC, Univ. de Paris, Institute of Ecology and Environmental Science of Paris (iEES-Paris), 75005 Paris, France
| | - Mahnaz Sabeti-Azad
- grid.462350.6Sorbonne Université, INRAE, CNRS, IRD, UPEC, Univ. de Paris, Institute of Ecology and Environmental Science of Paris (iEES-Paris), 75005 Paris, France
| | - Martine Maïbèche
- grid.462350.6Sorbonne Université, INRAE, CNRS, IRD, UPEC, Univ. de Paris, Institute of Ecology and Environmental Science of Paris (iEES-Paris), 75005 Paris, France
| | - Thomas Chertemps
- grid.462350.6Sorbonne Université, INRAE, CNRS, IRD, UPEC, Univ. de Paris, Institute of Ecology and Environmental Science of Paris (iEES-Paris), 75005 Paris, France
| | - Frédérique Hilliou
- grid.435437.20000 0004 0385 8766Université Côte d’Azur, INRAE, CNRS, ISA, 06903 Sophia-Antipolis, France
| | - David Siaussat
- grid.462350.6Sorbonne Université, INRAE, CNRS, IRD, UPEC, Univ. de Paris, Institute of Ecology and Environmental Science of Paris (iEES-Paris), 75005 Paris, France
| | - Joëlle Amselem
- grid.507621.7Université Paris-Saclay, INRAE, URGI, 78026 Versailles, France
| | - Isabelle Luyten
- grid.507621.7Université Paris-Saclay, INRAE, URGI, 78026 Versailles, France
| | - Claire Capdevielle-Dulac
- grid.460789.40000 0004 4910 6535Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198 Gif-sur-Yvette, France
| | - Karine Labadie
- grid.8390.20000 0001 2180 5818Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057 Evry, France
| | - Bruna Laís Merlin
- grid.11899.380000 0004 1937 0722Insect Interactions Laboratory, Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Piracicaba, São Paulo 13418-900 Brazil
| | - Valérie Barbe
- grid.8390.20000 0001 2180 5818Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057 Evry, France
| | - Jetske G. de Boer
- grid.418375.c0000 0001 1013 0288Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands ,grid.4818.50000 0001 0791 5666Laboratory of Entomology, Wageningen University, P.O. Box 16, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands ,grid.4830.f0000 0004 0407 1981Evolutionary Genetics, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Martial Marbouty
- Institut Pasteur, Unité Régulation Spatiale des Génomes, UMR 3525, CNRS, Paris, 75015 France
| | - Fernando Luis Cônsoli
- grid.11899.380000 0004 1937 0722Insect Interactions Laboratory, Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Piracicaba, São Paulo 13418-900 Brazil
| | - Stéphane Dupas
- grid.460789.40000 0004 4910 6535Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198 Gif-sur-Yvette, France
| | - Aurélie Hua-Van
- grid.460789.40000 0004 4910 6535Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198 Gif-sur-Yvette, France
| | - Gaelle Le Goff
- grid.435437.20000 0004 0385 8766Université Côte d’Azur, INRAE, CNRS, ISA, 06903 Sophia-Antipolis, France
| | - Annie Bézier
- Institut de Recherche sur la Biologie de l’Insecte, UMR 7261 CNRS-Université de Tours, Faculté des Sciences et Techniques, Parc de Grandmont, 37200 Tours, France
| | - Emmanuelle Jacquin-Joly
- grid.462350.6Sorbonne Université, INRAE, CNRS, IRD, UPEC, Univ. de Paris, Institute of Ecology and Environmental Science of Paris (iEES-Paris), 75005 Paris, France
| | - James B. Whitfield
- Department of Entomology, 320 Morrill Hall, 505 South Goodwin Avenue, University of Illinois, Urbana, IL 61801 USA
| | - Louise E. M. Vet
- grid.418375.c0000 0001 1013 0288Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands ,grid.4818.50000 0001 0791 5666Laboratory of Entomology, Wageningen University, P.O. Box 16, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Hans M. Smid
- grid.4818.50000 0001 0791 5666Laboratory of Entomology, Wageningen University, P.O. Box 16, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Laure Kaiser
- grid.460789.40000 0004 4910 6535Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198 Gif-sur-Yvette, France
| | - Romain Koszul
- Institut Pasteur, Unité Régulation Spatiale des Génomes, UMR 3525, CNRS, Paris, 75015 France
| | - Elisabeth Huguet
- Institut de Recherche sur la Biologie de l’Insecte, UMR 7261 CNRS-Université de Tours, Faculté des Sciences et Techniques, Parc de Grandmont, 37200 Tours, France
| | - Elisabeth A. Herniou
- Institut de Recherche sur la Biologie de l’Insecte, UMR 7261 CNRS-Université de Tours, Faculté des Sciences et Techniques, Parc de Grandmont, 37200 Tours, France
| | - Jean-Michel Drezen
- Institut de Recherche sur la Biologie de l’Insecte, UMR 7261 CNRS-Université de Tours, Faculté des Sciences et Techniques, Parc de Grandmont, 37200 Tours, France
| |
Collapse
|
6
|
Wang W, Shi L, Qin Y, Li F. Research and Application of Chondroitin Sulfate/Dermatan Sulfate-Degrading Enzymes. Front Cell Dev Biol 2021; 8:560442. [PMID: 33425887 PMCID: PMC7793863 DOI: 10.3389/fcell.2020.560442] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 11/05/2020] [Indexed: 01/11/2023] Open
Abstract
Chondroitin sulfate (CS) and dermatan sulfate (DS) are widely distributed on the cell surface and in the extracellular matrix in the form of proteoglycan, where they participate in various biological processes. The diverse functions of CS/DS can be mainly attributed to their high structural variability. However, their structural complexity creates a big challenge for structural and functional studies of CS/DS. CS/DS-degrading enzymes with different specific activities are irreplaceable tools that could be used to solve this problem. Depending on the site of action, CS/DS-degrading enzymes can be classified as glycosidic bond-cleaving enzymes and sulfatases from animals and microorganisms. As discussed in this review, a few of the identified enzymes, particularly those from bacteria, have wildly applied to the basic studies and applications of CS/DS, such as disaccharide composition analysis, the preparation of bioactive oligosaccharides, oligosaccharide sequencing, and potential medical application, but these do not fulfill all of the needs in terms of the structural complexity of CS/DS.
Collapse
Affiliation(s)
- Wenshuang Wang
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan, China
| | - Liran Shi
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan, China
| | - Yong Qin
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan, China
| | - Fuchuan Li
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan, China
| |
Collapse
|
7
|
Sosa-Gómez DR, Morgado FS, Corrêa RFT, Silva LA, Ardisson-Araújo DMP, Rodrigues BMP, Oliveira EE, Aguiar RWS, Ribeiro BM. Entomopathogenic Viruses in the Neotropics: Current Status and Recently Discovered Species. NEOTROPICAL ENTOMOLOGY 2020; 49:315-331. [PMID: 32358711 DOI: 10.1007/s13744-020-00770-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 03/03/2020] [Indexed: 06/11/2023]
Abstract
The market for biological control of insect pests in the world and in Brazil has grown in recent years due to the unwanted ecological and human health impacts of chemical insecticides. Therefore, research on biological control agents for pest management has also increased. For instance, insect viruses have been used to protect crops and forests around the world for decades. Among insect viruses, the baculoviruses are the most studied and used viral biocontrol agent. More than 700 species of insects have been found to be naturally infected by baculoviruses, with 90% isolated from lepidopteran insects. In this review, some basic aspects of baculovirus infection in vivo and in vitro infection, gene content, viral replication will be discussed. Furthermore, we provide examples of the use of insect viruses for biological pest control and recently characterized baculoviruses in Brazil.
Collapse
Affiliation(s)
- D R Sosa-Gómez
- Empresa Brasileira de Pesquisa Agropecuária, Embrapa Soja, Londrina, PR, Brasil
| | - F S Morgado
- Depto de Biologia Celular, Univ of Brasília, Brasília, DF, Brasil
| | - R F T Corrêa
- Depto de Biotecnologia, Univ Federal de Tocantins, Gurupi, TO, Brasil
| | - L A Silva
- Depto de Biologia Celular, Univ of Brasília, Brasília, DF, Brasil
| | - D M P Ardisson-Araújo
- Depto de Bioquímica e Biologia Molecular, Univ Federal de Santa Maria, Santa Maria, RS, Brasil
| | - B M P Rodrigues
- Depto de Biologia Celular, Univ of Brasília, Brasília, DF, Brasil
| | - E E Oliveira
- Depto de Entomologia, Univ Federal de Viçosa, Viçosa, MG, Brasil
| | - R W S Aguiar
- Depto de Biotecnologia, Univ Federal de Tocantins, Gurupi, TO, Brasil
| | - B M Ribeiro
- Depto de Biologia Celular, Univ of Brasília, Brasília, DF, Brasil.
| |
Collapse
|
8
|
Wang M, Hu Z. Cross-talking between baculoviruses and host insects towards a successful infection. Philos Trans R Soc Lond B Biol Sci 2020; 374:20180324. [PMID: 30967030 DOI: 10.1098/rstb.2018.0324] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Baculoviridae is a family of large DNA viruses that infect insects. They have been extensively used as safe and efficient biological agents for the control of insect pests. As a result of coevolution with their hosts, baculoviruses developed unique life cycles characterized by the production of two distinctive virion phenotypes, occlusion-derived virus and budded virus, which are responsible for mediating primary infection in insect midgut epithelia and spreading systemic infection within infected insects, respectively. In this article, advances associated with virus-host interactions during the baculovirus life cycle are reviewed. We mainly focus on how baculoviruses exploit versatile strategies to overcome diverse host barriers and establish successful infections. For example, in the midgut, baculoviruses encode enzymes to degrade peritrophic membranes and use a series of per os infectivity factors to initiate primary infection. A viral fibroblast growth factor is expressed to attract tracheoblasts that spread the virus for systemic infection. Baculoviruses use different strategies to suppress host defence systems, including apoptosis, melanization and RNA interference. Additionally, baculoviruses can manipulate host physiology and induce 'tree-top disease' for optimal virus replication and dispersal. These advances in our understanding of baculoviruses will greatly inform the development of more effective baculoviral pesticides. This article is part of the theme issue 'Biotic signalling sheds light on smart pest management'.
Collapse
Affiliation(s)
- Manli Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences , Wuhan 430071 , People's Republic of China
| | - Zhihong Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences , Wuhan 430071 , People's Republic of China
| |
Collapse
|
9
|
Hou D, Kuang W, Luo S, Zhang F, Zhou F, Chen T, Zhang Y, Wang H, Hu Z, Deng F, Wang M. Baculovirus ODV-E66 degrades larval peritrophic membrane to facilitate baculovirus oral infection. Virology 2019; 537:157-164. [PMID: 31493654 DOI: 10.1016/j.virol.2019.08.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/28/2019] [Accepted: 08/28/2019] [Indexed: 11/17/2022]
Abstract
ODV-E66 is a major envelope proteins of baculovirus occlusion derived virus (ODV) with chondroitinase activity. Here, we studied the roles of ODV-E66 during Helicoverpa armigera nucleopolyhedrovirus (HearNPV) primary infection. ODV-E66 is a late viral protein dispensable for BV production and ODV morphogenesis. Deletion of odv-e66 had a profound effect on HearNPV oral infectivity in 4th instar larvae with a 50% lethal concentration (LC50) value of 26 fold higher than that of the repaired virus, compared to in 3rd instar larvae. Calcofluor white, an agent which destroys the peritrophic membrane (PM), could rescue the oral infectivity of odv-e66 deleted HearNPV, implying the PM may be the target of ODV-E66. In vitro assays showed HearNPV ODV-E66 has chondroitinase activity. Electron microscopy demonstrated that odv-e66 deletion alleviated the damage to the PM caused by HearNPV infection. These data suggest an important role of ODV-E66 in the penetration of the PM during oral infection.
Collapse
Affiliation(s)
- Dianhai Hou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; School of Bioscience and Technology, Weifang Medical University, Weifang, 261053, China
| | - Wenhua Kuang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; Department of Forensic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Sijiani Luo
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Fenghua Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Fengqiao Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Tong Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yanfang Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Hualin Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Zhihong Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Fei Deng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Manli Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| |
Collapse
|
10
|
Wang J, Hou D, Wang Q, Kuang W, Zhang L, Li J, Shen S, Deng F, Wang H, Hu Z, Wang M. Genome analysis of a novel Group I alphabaculovirus obtained from Oxyplax ochracea. PLoS One 2018; 13:e0192279. [PMID: 29390020 PMCID: PMC5794183 DOI: 10.1371/journal.pone.0192279] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 01/18/2018] [Indexed: 02/03/2023] Open
Abstract
Oxyplax ochracea (Moore) is a pest that causes severe damage to a wide range of crops, forests and fruit trees. The complete genome sequence of Oxyplax ochracea nucleopolyhedrovirus (OxocNPV) was determined using a Roche 454 pyrosequencing system. OxocNPV has a double-stranded DNA (dsDNA) genome of 113,971 bp with a G+C content of 31.1%. One hundred and twenty-four putative open reading frames (ORFs) encoding proteins of >50 amino acids in length and with minimal overlapping were predicted, which covered 92% of the whole genome. Six baculoviral typical homologous regions (hrs) were identified. Phylogenetic analysis and gene parity plot analysis showed that OxocNPV belongs to clade “a” of Group I alphabaculoviruses, and it seems to be close to the most recent common ancestor of Group I alphabaculoviruses. Three unique ORFs (with no homologs in the National Center for Biotechnology Information database) were identified. Interestingly, OxocNPV lacks three auxiliary genes (lef7, ie-2 and pcna) related to viral DNA replication and RNA transcription. In addition, OxocNPV has significantly different sequences for several genes (including ie1 and odv-e66) in comparison with those of other baculoviruses. However, three dimensional structure prediction showed that OxocNPV ODV-E66 contain the conserved catalytic residues, implying that it might possess polysaccharide lyase activity as AcMNPV ODV-E66. All these unique features suggest that OxocNPV represents a novel species of the Group I alphabaculovirus lineage.
Collapse
Affiliation(s)
- Jun Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Dianhai Hou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- School of Bioscience and Technology, Weifang Medical University, Weifang, China
| | - Qianran Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Wenhua Kuang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Lei Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Jiang Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Shu Shen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Fei Deng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Hualin Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Zhihong Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Manli Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- * E-mail:
| |
Collapse
|
11
|
Lepetit D, Gillet B, Hughes S, Kraaijeveld K, Varaldi J. Genome Sequencing of the Behavior Manipulating Virus LbFV Reveals a Possible New Virus Family. Genome Biol Evol 2018; 8:3718-3739. [PMID: 28173110 PMCID: PMC5381508 DOI: 10.1093/gbe/evw277] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2016] [Indexed: 12/26/2022] Open
Abstract
Parasites are sometimes able to manipulate the behavior of their hosts. However, the molecular cues underlying this phenomenon are poorly documented. We previously reported that the parasitoid wasp Leptopilina boulardi which develops from Drosophila larvae is often infected by an inherited DNA virus. In addition to being maternally transmitted, the virus benefits from horizontal transmission in superparasitized larvae (Drosophila that have been parasitized several times). Interestingly, the virus forces infected females to lay eggs in already parasitized larvae, thus increasing the chance of being horizontally transmitted. In a first step towards the identification of virus genes responsible for the behavioral manipulation, we present here the genome sequence of the virus, called LbFV. The sequencing revealed that its genome contains an homologous repeat sequence (hrs) found in eight regions in the genome. The presence of this hrs may explain the genomic plasticity that we observed for this genome. The genome of LbFV encodes 108 ORFs, most of them having no homologs in public databases. The virus is however related to Hytrosaviridae, although distantly. LbFV may thus represent a member of a new virus family. Several genes of LbFV were captured from eukaryotes, including two anti-apoptotic genes. More surprisingly, we found that LbFV captured from an ancestral wasp a protein with a Jumonji domain. This gene was afterwards duplicated in the virus genome. We hypothesized that this gene may be involved in manipulating the expression of wasp genes, and possibly in manipulating its behavior.
Collapse
Affiliation(s)
- David Lepetit
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, France
| | - Benjamin Gillet
- Université de Lyon, CNRS, Ecole Normale Supérieure de Lyon, Université Lyon 1, Institut de Génomique Fonctionnelle de Lyon UMR 5242, France
| | - Sandrine Hughes
- Université de Lyon, CNRS, Ecole Normale Supérieure de Lyon, Université Lyon 1, Institut de Génomique Fonctionnelle de Lyon UMR 5242, France
| | - Ken Kraaijeveld
- Department of Ecological Science, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Julien Varaldi
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, France
| |
Collapse
|
12
|
Caveat emptor: for researchers, a rose will not smell sweet unless we know its composition. Biosci Rep 2017; 37:BSR20170078. [PMID: 28356486 PMCID: PMC5426283 DOI: 10.1042/bsr20170078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 03/28/2017] [Accepted: 03/29/2017] [Indexed: 11/17/2022] Open
Abstract
In a recent publication in Bioscience Reports "Contaminants in commercial preparations of 'purified' small leucine-rich proteoglycans may distort mechanistic studies", Brown et al. identified by mass spectrometry and immunoblotting that certain commercial preparations of the small leucine-rich proteoglycans (SLRPs) decorin and biglycan, in fact, contained a mix of several proteoglycans that also included fibromodulin and aggrecan. The preparations were thus not suitable to study specific activities of decorin or biglycan. Decorin and biglycan are widely studied SLRPs that are considered to have highly multi-functional effects on cells. Decorin is of interest as a transforming growth factor-β antagonist and is also finding use in tissue engineering materials. This Commentary discusses Brown et al.'s findings and general issues raised for researchers who work with commercially sourced purified proteoglycans.
Collapse
|
13
|
Xing D, Yang Q, Jiang L, Li Q, Xiao Y, Ye M, Xia Q. RNA-Seq Analyses for Two Silkworm Strains Reveals Insight into Their Susceptibility and Resistance to Beauveria bassiana Infection. Int J Mol Sci 2017; 18:E234. [PMID: 28208575 PMCID: PMC5343773 DOI: 10.3390/ijms18020234] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/11/2017] [Accepted: 01/13/2017] [Indexed: 11/17/2022] Open
Abstract
The silkworm Bombyx mori is an economically important species. White muscardine caused by Beauveria bassiana is the main fungal disease in sericulture, and understanding the silkworm responses to B. bassiana infection is of particular interest. Herein, we investigated the molecular mechanisms underlying these responses in two silkworm strains Haoyue (HY, sensitive to B. bassiana) and Kang 8 (K8, resistant to B. bassiana) using an RNA-seq approach. For each strain, three biological replicates for immersion treatment, two replicates for injection treatment and three untreated controls were collected to generate 16 libraries for sequencing. Differentially expressed genes (DEGs) between treated samples and untreated controls, and between the two silkworm strains, were identified. DEGs and the enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways of the two strains exhibited an obvious difference. Several genes encoding cuticle proteins, serine proteinase inhibitors (SPI) and antimicrobial peptides (AMP) and the drug metabolism pathway involved in toxin detoxification were considered to be related to the resistance of K8 to B. bassiana. These results revealed insight into the resistance and susceptibility of two silkworm strains against B. bassiana infection and provided a roadmap for silkworm molecular breeding to enhance its resistance to B. bassiana.
Collapse
Affiliation(s)
- Dongxu Xing
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China.
- Sericulture and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, China.
| | - Qiong Yang
- Sericulture and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, China.
| | - Liang Jiang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China.
| | - Qingrong Li
- Sericulture and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, China.
| | - Yang Xiao
- Sericulture and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, China.
| | - Mingqiang Ye
- Sericulture and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, China.
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China.
| |
Collapse
|
14
|
Hyaluronidase and Chondroitinase. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 925:75-87. [DOI: 10.1007/5584_2016_54] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
15
|
Shioiri T, Tsuchimoto J, Watanabe H, Sugiura N. Sequence determination of synthesized chondroitin sulfate dodecasaccharides. Glycobiology 2016; 26:592-606. [PMID: 26791444 DOI: 10.1093/glycob/cww008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 01/15/2016] [Indexed: 11/14/2022] Open
Abstract
Chondroitin sulfate (CS) is a linear acidic polysaccharide composed of repeating disaccharide units of glucuronic acid and N-acetyl-d-galactosamine. The polysaccharide is modified with sulfate groups at different positions by a variety of sulfotransferases. CS chains exhibit various biological and pathological functions by interacting with cytokines and growth factors and regulating their signal transduction. The fine structure of the CS chain defines its specific biological roles. However, structural analysis of CS has been restricted to disaccharide analysis, hampering the understanding of the structure-function relationship of CS chains. Here, we chemo-enzymatically synthesized CS dodecasaccharides having various sulfate modifications using a bioreactor system of bacterial chondroitin polymerase mutants and various CS sulfotransferases. We developed a sequencing method for CS chains using the CS dodecasaccharides. The method consists of (i) labeling a reducing end with 2-aminopyridine (PA), (ii) partial digestion of CS with testicular hyaluronidase, followed by separation of PA-conjugated oligosaccharides with different chain lengths, (iii) limited digestion of these oligosaccharides with chondroitin lyase AC II into disaccharides, followed by labeling with 2-aminobenzamide, (iv) CS disaccharide analysis using a dual-fluorescence HPLC system (reversed-phase ion-pair and ion-exchange chromatography), and (v) estimation of the composition by calculating individual disaccharide ratios. This CS chain sequencing allows characterization of CS-modifying enzymes and provides a useful tool toward understanding the structure-function relationship of CS chains.
Collapse
Affiliation(s)
- Tatsumasa Shioiri
- Institute for Molecular Science of Medicine, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195, Japan
| | - Jun Tsuchimoto
- Institute for Molecular Science of Medicine, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195, Japan
| | - Hideto Watanabe
- Institute for Molecular Science of Medicine, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195, Japan
| | - Nobuo Sugiura
- Institute for Molecular Science of Medicine, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195, Japan
| |
Collapse
|
16
|
Kale V, Friðjónsson Ó, Jónsson JÓ, Kristinsson HG, Ómarsdóttir S, Hreggviðsson GÓ. Chondroitin Lyase from a Marine Arthrobacter sp. MAT3885 for the Production of Chondroitin Sulfate Disaccharides. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2015; 17:479-492. [PMID: 25912370 DOI: 10.1007/s10126-015-9629-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 04/01/2015] [Indexed: 06/04/2023]
Abstract
Chondroitin sulfate (CS) saccharides from cartilage tissues have potential application in medicine or as dietary supplements due to their therapeutic bioactivities. Studies have shown that depolymerized CS saccharides may display enhanced bioactivity. The objective of this study was to isolate a CS-degrading enzyme for an efficient production of CS oligo- or disaccharides. CS-degrading bacteria from marine environments were enriched using in situ artificial support colonization containing CS from shark cartilage as substrate. Subsequently, an Arthrobacter species (strain MAT3885) efficiently degrading CS was isolated from a CS enrichment culture. The genomic DNA from strain MAT3885 was pyro-sequenced by using the 454 FLX sequencing technology. Following assembly and annotation, an orf, annotated as family 8 polysaccharide lyase genes, was identified, encoding an amino acid sequence with a similarity to CS lyases according to NCBI blastX. The gene, designated choA1, was cloned in Escherichia coli and expressed downstream of and in frame with the E. coli malE gene for obtaining a high yield of soluble recombinant protein. Applying a dual-tag system (MalE-Smt3-ChoA1), the MalE domain was separated from ChoA1 with proteolytic cleavage using Ulp1 protease. ChoA1 was defined as an AC-type enzyme as it degraded chondroitin sulfate A, C, and hyaluronic acid. The optimum activity of the enzyme was at pH 5.5-7.5 and 40 °C, running a 10-min reaction. The native enzyme was estimated to be a monomer. As the recombinant chondroitin sulfate lyase (designated as ChoA1R) degraded chondroitin sulfate efficiently compared to a benchmark enzyme, it may be used for the production of chondroitin sulfate disaccharides for the food industry or health-promoting products.
Collapse
Affiliation(s)
- Varsha Kale
- Matís, Vínlandsleið 12, 113, Reykjavík, Iceland
| | | | | | | | | | | |
Collapse
|
17
|
Cheng T, Fu B, Wu Y, Long R, Liu C, Xia Q. Transcriptome sequencing and positive selected genes analysis of Bombyx mandarina. PLoS One 2015; 10:e0122837. [PMID: 25806526 PMCID: PMC4373670 DOI: 10.1371/journal.pone.0122837] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 02/15/2015] [Indexed: 11/18/2022] Open
Abstract
The wild silkworm Bombyx mandarina is widely believed to be an ancestor of the domesticated silkworm, Bombyx mori. Silkworms are often used as a model for studying the mechanism of species domestication. Here, we performed transcriptome sequencing of the wild silkworm using an Illumina HiSeq2000 platform. We produced 100,004,078 high-quality reads and assembled them into 50,773 contigs with an N50 length of 1764 bp and a mean length of 941.62 bp. A total of 33,759 unigenes were identified, with 12,805 annotated in the Nr database, 8273 in the Pfam database, and 9093 in the Swiss-Prot database. Expression profile analysis found significant differential expression of 1308 unigenes between the middle silk gland (MSG) and posterior silk gland (PSG). Three sericin genes (sericin 1, sericin 2, and sericin 3) were expressed specifically in the MSG and three fibroin genes (fibroin-H, fibroin-L, and fibroin/P25) were expressed specifically in the PSG. In addition, 32,297 Single-nucleotide polymorphisms (SNPs) and 361 insertion-deletions (INDELs) were detected. Comparison with the domesticated silkworm p50/Dazao identified 5,295 orthologous genes, among which 400 might have experienced or to be experiencing positive selection by Ka/Ks analysis. These data and analyses presented here provide insights into silkworm domestication and an invaluable resource for wild silkworm genomics research.
Collapse
Affiliation(s)
- Tingcai Cheng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Bohua Fu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Yuqian Wu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Renwen Long
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Chun Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- * E-mail:
| |
Collapse
|
18
|
Abstract
Even after 20 years of granting orphan status for chondroitinase by US FDA, there is no visible outcome in terms of clinical use. The reasons are many. One of them could be lack of awareness regarding the biological application of the enzyme. The biological activity of chondroitinase is due to its ability to act on chondroitin sulfate proteoglycans (CSPGs). CSPGs are needed for normal functioning of the body. An increase or decrease in the level of CSPGs results in various pathological conditions. Chondroitinase is useful in conditions where there is an increase in the level of CSPGs, namely spinal cord injury, vitreous attachment and cancer. Over the last decade, various animal studies showed that chondroitinase could be a good drug candidate. Research focusing on developing a suitable carrier system for delivering chondroitinase needs to be carried out so that pharmacological activity observed in vitro and preclinical studies could be translated to clinical use. Further studies on distribution of chondroitinase as well need to be focused so that chondroitinase with desired attributes could be discovered. The present review article discusses about various biological applications of chondroitinase, drug delivery systems to deliver the enzyme and distribution of chondroitinase among microbes.
Collapse
Affiliation(s)
- Narayanan Kasinathan
- a Department of Pharmaceutical Biotechnology , Manipal College of Pharmaceutical Sciences, Manipal College of Pharmaceutical Sciences, Manipal University , Manipal , Karnataka , India
| | - Subrahmanyam M Volety
- a Department of Pharmaceutical Biotechnology , Manipal College of Pharmaceutical Sciences, Manipal College of Pharmaceutical Sciences, Manipal University , Manipal , Karnataka , India
| | - Venkata Rao Josyula
- a Department of Pharmaceutical Biotechnology , Manipal College of Pharmaceutical Sciences, Manipal College of Pharmaceutical Sciences, Manipal University , Manipal , Karnataka , India
| |
Collapse
|
19
|
Garron ML, Cygler M. Uronic polysaccharide degrading enzymes. Curr Opin Struct Biol 2014; 28:87-95. [PMID: 25156747 DOI: 10.1016/j.sbi.2014.07.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 07/24/2014] [Accepted: 07/30/2014] [Indexed: 12/13/2022]
Abstract
In the past several years progress has been made in the field of structure and function of polysaccharide lyases (PLs). The number of classified polysaccharide lyase families has increased to 23 and more detailed analysis has allowed the identification of more closely related subfamilies, leading to stronger correlation between each subfamily and a unique substrate. The number of as yet unclassified polysaccharide lyases has also increased and we expect that sequencing projects will allow many of these unclassified sequences to emerge as new families. The progress in structural analysis of PLs has led to having at least one representative structure for each of the families and for two unclassified enzymes. The newly determined structures have folds observed previously in other PL families and their catalytic mechanisms follow either metal-assisted or Tyr/His mechanisms characteristic for other PL enzymes. Comparison of PLs with glycoside hydrolases (GHs) shows several folds common to both classes but only for the β-helix fold is there strong indication of divergent evolution from a common ancestor. Analysis of bacterial genomes identified gene clusters containing multiple polysaccharide cleaving enzymes, the Polysaccharides Utilization Loci (PULs), and their gene complement suggests that they are organized to process completely a specific polysaccharide.
Collapse
Affiliation(s)
- Marie-Line Garron
- Aix-Marseille University, AFMB UMR7257, 163 Avenue de Luminy, 13288 Marseille, France; CNRS, AFMB UMR7257, 163 Avenue de Luminy, 13288 Marseille, France
| | - Miroslaw Cygler
- Department of Biochemistry, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada.
| |
Collapse
|
20
|
Bombyx mori nucleopolyhedrovirus ORF79 is a per os infectivity factor associated with the PIF complex. Virus Res 2014; 184:62-70. [PMID: 24583368 DOI: 10.1016/j.virusres.2014.02.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 02/13/2014] [Accepted: 02/13/2014] [Indexed: 11/23/2022]
Abstract
Bombyx mori nucleopolyhedrovirus (BmNPV) ORF79 (Bm79) encodes an occlusion-derived virus (ODV)-specific envelope protein, which is a homologue of the per os infectivity factor 4 (PIF4) of Autographa californica multiple nucleopolyhedrovirus (AcMNPV). To investigate the role of ORF79 in the BmNPV life cycle, a Bm79 knockout virus (vBm(Bm79KO)) was constructed through homologous recombination in Escherichia coli. Viral DNA replication, budded virus (BV) production and polyhedra formation were unaffected by the absence of BM79. However, results of the larval bioassay demonstrated that the Bm79 deletion resulted in a complete loss of per os infection. Immunofluorescence analysis showed that BM79 localized at the innernuclear membrane of infected cells through its N-terminal sorting motif (SM). Further bimolecular fluorescence protein complementation and co-immunoprecipitation assays demonstrated the interaction of BM79 with PIF1, PIF2, PIF3 and ODV-E66. Thus, BM79 plays an important role in per os infection and is associated with the viral PIF complex of BmNPV.
Collapse
|