1
|
Litschko C, Di Domenico V, Schulze J, Li S, Ovchinnikova OG, Voskuilen T, Bethe A, Cifuente JO, Marina A, Budde I, Mast TA, Sulewska M, Berger M, Buettner FFR, Lowary TL, Whitfield C, Codée JDC, Schubert M, Guerin ME, Fiebig T. Transition transferases prime bacterial capsule polymerization. Nat Chem Biol 2025; 21:120-130. [PMID: 38951648 PMCID: PMC11666461 DOI: 10.1038/s41589-024-01664-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 06/04/2024] [Indexed: 07/03/2024]
Abstract
Capsules are long-chain carbohydrate polymers that envelop the surfaces of many bacteria, protecting them from host immune responses. Capsule biosynthesis enzymes are potential drug targets and valuable biotechnological tools for generating vaccine antigens. Despite their importance, it remains unknown how structurally variable capsule polymers of Gram-negative pathogens are linked to the conserved glycolipid anchoring these virulence factors to the bacterial membrane. Using Actinobacillus pleuropneumoniae as an example, we demonstrate that CpsA and CpsC generate a poly(glycerol-3-phosphate) linker to connect the glycolipid with capsules containing poly(galactosylglycerol-phosphate) backbones. We reconstruct the entire capsule biosynthesis pathway in A. pleuropneumoniae serotypes 3 and 7, solve the X-ray crystal structure of the capsule polymerase CpsD, identify its tetratricopeptide repeat domain as essential for elongating poly(glycerol-3-phosphate) and show that CpsA and CpsC stimulate CpsD to produce longer polymers. We identify the CpsA and CpsC product as a wall teichoic acid homolog, demonstrating similarity between the biosynthesis of Gram-positive wall teichoic acid and Gram-negative capsules.
Collapse
Affiliation(s)
- Christa Litschko
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
- German Center for Infection Research, Partner Site Hannover-Braunschweig, Hannover, Germany
| | - Valerio Di Domenico
- Structural Glycobiology Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo, Spain
- Structural Glycobiology Laboratory, Department of Structural and Molecular Biology; Molecular Biology Institute of Barcelona, Spanish National Research Council, Barcelona Science Park, Tower R, Barcelona, Spain
| | - Julia Schulze
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Sizhe Li
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Olga G Ovchinnikova
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Thijs Voskuilen
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Andrea Bethe
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Javier O Cifuente
- Structural Glycobiology Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo, Spain
- Structural Glycobiology Laboratory, Center for Cooperative Research in Biosciences, Basque Research and Technology Alliance, Bizkaia Technology Park, Derio, Spain
| | - Alberto Marina
- Structural Glycobiology Laboratory, Center for Cooperative Research in Biosciences, Basque Research and Technology Alliance, Bizkaia Technology Park, Derio, Spain
| | - Insa Budde
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Tim A Mast
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Małgorzata Sulewska
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Monika Berger
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Falk F R Buettner
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
- Proteomics, Institute of Theoretical Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Todd L Lowary
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Chris Whitfield
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Jeroen D C Codée
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Mario Schubert
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria
- Department of Biology, Chemistry and Pharmacy, Free University of Berlin, Berlin, Germany
| | - Marcelo E Guerin
- Structural Glycobiology Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo, Spain.
- Structural Glycobiology Laboratory, Department of Structural and Molecular Biology; Molecular Biology Institute of Barcelona, Spanish National Research Council, Barcelona Science Park, Tower R, Barcelona, Spain.
- Structural Glycobiology Laboratory, Center for Cooperative Research in Biosciences, Basque Research and Technology Alliance, Bizkaia Technology Park, Derio, Spain.
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| | - Timm Fiebig
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany.
- German Center for Infection Research, Partner Site Hannover-Braunschweig, Hannover, Germany.
| |
Collapse
|
2
|
Sulewska M, Berger M, Damerow M, Schwarzer D, Buettner FFR, Bethe A, Taft MH, Bakker H, Mühlenhoff M, Gerardy-Schahn R, Priem B, Fiebig T. Extending the enzymatic toolbox for heparosan polymerization, depolymerization, and detection. Carbohydr Polym 2023; 319:121182. [PMID: 37567694 DOI: 10.1016/j.carbpol.2023.121182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 08/13/2023]
Abstract
Heparosan is an acidic polysaccharide expressed as a capsule polymer by pathogenic and commensal bacteria, e.g. by E. coli K5. As a precursor in the biosynthesis of heparan sulfate and heparin, heparosan has a high biocompatibility and is thus of interest for pharmaceutical applications. However, due to its low immunogenicity, developing antibodies against heparosan and detecting the polymer in biological samples has been challenging. In this study, we exploited the enzyme repertoire of E. coli K5 and the E. coli K5-specific bacteriophage ΦK5B for the controlled synthesis and depolymerization of heparosan. A fluorescently labeled heparosan nonamer was used as a priming acceptor to study the elongation mechanism of the E. coli K5 heparosan polymerases KfiA and KfiC. We could demonstrate that the enzymes act in a distributive manner, producing labeled heparosan of low dispersity. The enzymatically synthesized heparosan was a useful tool to identify the tailspike protein KflB of ΦK5B as heparosan lyase and to characterize its endolytic depolymerization mechanism. Most importantly, using site-directed mutagenesis and rational construct design, we generated an inactive version of KflB for the detection of heparosan in ELISA-based assays, on blots, and on bacterial and mammalian cells.
Collapse
Affiliation(s)
- Małgorzata Sulewska
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany; Centre de Recherche sur les Macromolécules Végétales, Groupe Chimie et Biotechnologie des Oligosaccharides, 601 rue de la Chimie, BP 53X, 38041 Grenoble, Cedex 09, France.
| | - Monika Berger
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany.
| | - Manuela Damerow
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - David Schwarzer
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany.
| | - Falk F R Buettner
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany.
| | - Andrea Bethe
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany.
| | - Manuel H Taft
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany.
| | - Hans Bakker
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany.
| | - Martina Mühlenhoff
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany.
| | - Rita Gerardy-Schahn
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany.
| | - Bernard Priem
- Centre de Recherche sur les Macromolécules Végétales, Groupe Chimie et Biotechnologie des Oligosaccharides, 601 rue de la Chimie, BP 53X, 38041 Grenoble, Cedex 09, France.
| | - Timm Fiebig
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
3
|
Cifuente JO, Schulze J, Bethe A, Di Domenico V, Litschko C, Budde I, Eidenberger L, Thiesler H, Ramón Roth I, Berger M, Claus H, D'Angelo C, Marina A, Gerardy-Schahn R, Schubert M, Guerin ME, Fiebig T. A multi-enzyme machine polymerizes the Haemophilus influenzae type b capsule. Nat Chem Biol 2023; 19:865-877. [PMID: 37277468 PMCID: PMC10299916 DOI: 10.1038/s41589-023-01324-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 03/31/2023] [Indexed: 06/07/2023]
Abstract
Bacterial capsules have critical roles in host-pathogen interactions. They provide a protective envelope against host recognition, leading to immune evasion and bacterial survival. Here we define the capsule biosynthesis pathway of Haemophilus influenzae serotype b (Hib), a Gram-negative bacterium that causes severe infections in infants and children. Reconstitution of this pathway enabled the fermentation-free production of Hib vaccine antigens starting from widely available precursors and detailed characterization of the enzymatic machinery. The X-ray crystal structure of the capsule polymerase Bcs3 reveals a multi-enzyme machine adopting a basket-like shape that creates a protected environment for the synthesis of the complex Hib polymer. This architecture is commonly exploited for surface glycan synthesis by both Gram-negative and Gram-positive pathogens. Supported by biochemical studies and comprehensive 2D nuclear magnetic resonance, our data explain how the ribofuranosyltransferase CriT, the phosphatase CrpP, the ribitol-phosphate transferase CroT and a polymer-binding domain function as a unique multi-enzyme assembly.
Collapse
Affiliation(s)
- Javier O Cifuente
- Structural Glycobiology Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo, Spain
- Structural Glycobiology Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - Julia Schulze
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Andrea Bethe
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Valerio Di Domenico
- Structural Glycobiology Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo, Spain
| | - Christa Litschko
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Insa Budde
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Lukas Eidenberger
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Hauke Thiesler
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Isabel Ramón Roth
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Monika Berger
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Heike Claus
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Cecilia D'Angelo
- Structural Glycobiology Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo, Spain
- Structural Glycobiology Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - Alberto Marina
- Structural Glycobiology Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - Rita Gerardy-Schahn
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Mario Schubert
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria
| | - Marcelo E Guerin
- Structural Glycobiology Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo, Spain.
- Structural Glycobiology Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain.
- Ikerbasque Basque Foundation for Science, Bilbao, Spain.
| | - Timm Fiebig
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
4
|
Del Bino L, Østerlid KE, Wu DY, Nonne F, Romano MR, Codée J, Adamo R. Synthetic Glycans to Improve Current Glycoconjugate Vaccines and Fight Antimicrobial Resistance. Chem Rev 2022; 122:15672-15716. [PMID: 35608633 PMCID: PMC9614730 DOI: 10.1021/acs.chemrev.2c00021] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Antimicrobial resistance (AMR) is emerging as the next potential pandemic. Different microorganisms, including the bacteria Acinetobacter baumannii, Clostridioides difficile, Escherichia coli, Enterococcus faecium, Klebsiella pneumoniae, Neisseria gonorrhoeae, Pseudomonas aeruginosa, non-typhoidal Salmonella, and Staphylococcus aureus, and the fungus Candida auris, have been identified by the WHO and CDC as urgent or serious AMR threats. Others, such as group A and B Streptococci, are classified as concerning threats. Glycoconjugate vaccines have been demonstrated to be an efficacious and cost-effective measure to combat infections against Haemophilus influenzae, Neisseria meningitis, Streptococcus pneumoniae, and, more recently, Salmonella typhi. Recent times have seen enormous progress in methodologies for the assembly of complex glycans and glycoconjugates, with developments in synthetic, chemoenzymatic, and glycoengineering methodologies. This review analyzes the advancement of glycoconjugate vaccines based on synthetic carbohydrates to improve existing vaccines and identify novel candidates to combat AMR. Through this literature survey we built an overview of structure-immunogenicity relationships from available data and identify gaps and areas for further research to better exploit the peculiar role of carbohydrates as vaccine targets and create the next generation of synthetic carbohydrate-based vaccines.
Collapse
Affiliation(s)
| | - Kitt Emilie Østerlid
- Leiden
Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| | - Dung-Yeh Wu
- Leiden
Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| | | | | | - Jeroen Codée
- Leiden
Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| | | |
Collapse
|
5
|
Sajad M, Kumar R, Thakur SC. History in Perspective: The Prime Pathological Players and Role of Phytochemicals in Alzheimer’s Disease. IBRO Neurosci Rep 2022; 12:377-389. [PMID: 35586776 PMCID: PMC9108734 DOI: 10.1016/j.ibneur.2022.04.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 04/25/2022] [Indexed: 11/01/2022] Open
Abstract
Alzheimer's disease is a steadily progressive, irreversible neurological disorder that is most frequently categorized under the umbrella term "neurodegeneration". Several attempts are underway to clarify the pathogenic mechanisms, identify the aetiologies, and determine a pathway by which the therapeutic steps can be implemented. Oxidative stress is one of the pathogenic processes, which is commonly believed to be associated with neurodegenerative diseases. Accumulation of extracellular amyloid-β protein (Aβ), hyperphosphorylation of tau, initiation of neurometabolic reactions characterized by the loss of neuronal function and synaptic failure, and decreased or lost learning capability and memory function are the most central neuropathological characteristics of AD. According to the amyloid cascade hypothesis, the enhanced deposition of Aβ deposits and neurofibrillary tangles due to hyperphosphorylation of Tau activates the cascade reactions in the brain. These reactions affect the synaptic activity and activation of microglia, which results in neuroinflammation due to enhanced immune function. Plant-based phytochemicals have also been used long ago against several diseases. Phytoconstituents play a significant neuroprotective property by preventing the pathophysiology of the disease. In this review, we have discussed the formation and crosstalk between amyloid and tau pathologies as well as the effect of neuroinflammation on the progression of AD. We have specifically focused on the formation of NFT, β-amyloids, inflammation, and pathophysiology of AD and the role of phytochemicals in the prevention of AD. AD is an insidious, slowly progressive, and neurodegenerative disorder. Common symptoms are memory loss, difficulty in recalling, and understanding. β-amyloids and Neurofibrillary tangles are the main factors in AD pathogenesis. Activated microglia and oxidative stress have different effects on AD progression. Phytochemicals show a key role against AD by inhibiting several pathways.
Collapse
|
6
|
Engle KA, Amos RA, Yang JY, Glushka J, Atmodjo M, Tan L, Huang C, Moremen KW, Mohnen D. Multiple Arabidopsis galacturonosyltransferases synthesize polymeric homogalacturonan by oligosaccharide acceptor-dependent or de novo synthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:1441-1456. [PMID: 34908202 PMCID: PMC8976717 DOI: 10.1111/tpj.15640] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 12/06/2021] [Accepted: 12/09/2021] [Indexed: 05/31/2023]
Abstract
Homogalacturonan (HG), the most abundant pectic glycan, functions as a cell wall structural and signaling molecule essential for plant growth, development and response to pathogens. HG exists as a component of pectic homoglycans, heteroglycans and glycoconjugates. HG is synthesized by members of the GALACTURONOSYLTRANSFERASE (GAUT) family. UDP-GalA-dependent homogalacturonan:galacturonosyltransferase (HG:GalAT) activity has previously been demonstrated for GAUTs 1, 4 and 11, as well as the GAUT1:GAUT7 complex. Here, we show that GAUTs 10, 13 and 14 are also HG:GalATs and that GAUTs 1, 10, 11, 13, 14 and 1:7 synthesize polymeric HG in vitro. Comparison of the in vitro HG:GalAT specific activities of the heterologously-expressed proteins demonstrates GAUTs 10 and 11 with the lowest, GAUT1 and GAUT13 with moderate, and GAUT14 and the GAUT1:GAUT7 complex with the highest HG:GalAT activity. GAUT13 and GAUT14 are also shown to de novo synthesize (initiate) HG synthesis in the absence of exogenous HG acceptors, an activity previously demonstrated for GAUT1:GAUT7. The rate of de novo HG synthesis by GAUT13 and GAUT14 is similar to their acceptor dependent HG synthesis, in contrast to GAUT1:GAUT7 for which de novo synthesis occurred at much lower rates than acceptor-dependent synthesis. The results suggest a unique role for de novo HG synthesis by GAUTs 13 and 14. The reducing end of GAUT13-de novo-synthesized HG has covalently attached UDP, indicating that UDP-GalA serves as both a donor and acceptor substrate during de novo HG synthesis. The functional significance of unique GAUT HG:GalAT catalytic properties in the synthesis of different pectin glycan or glycoconjugate structures is discussed.
Collapse
Affiliation(s)
- Kristen A. Engle
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602
| | - Robert A. Amos
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Jeong-Yeh Yang
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - John Glushka
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Melani Atmodjo
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Li Tan
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Chin Huang
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Kelley W. Moremen
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Debra Mohnen
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| |
Collapse
|
7
|
Sheikhi Moghaddam L, Adegbite A, McCarthy PC. Investigation of bioluminescence-based assays for determination of kinetic parameters for the bifunctional Neisseria meningitidis serogroup W capsule polymerase. BMC Res Notes 2021; 14:417. [PMID: 34794506 PMCID: PMC8600345 DOI: 10.1186/s13104-021-05831-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/03/2021] [Indexed: 12/02/2022] Open
Abstract
Objective Neisseria meningitidis is a Gram-negative bacterium that causes meningitis. N. meningitidis serogroup W (NmW) capsule polymerase synthesizes capsular polysaccharide of this serogroup. This enzyme could be a tool for meningococcal glycoconjugate vaccine development. Our long-term goal is to control activity of the NmW capsule polymerase for production of defined carbohydrates for vaccines. The enzyme lacks a simple, high-throughput activity assay. Here, we describe the use of high-throughput bioluminescence assays (CMP-Glo and UDP-Glo by Promega) to investigate NmW capsule polymerase activity. These assays detect free nucleotides produced during transfer of sugar from UDP-Galactose and CMP-Sialic Acid to an acceptor. Kinetic studies using NmW hydrolyzed polysaccharide (PS) acceptor are described as well as preliminary work with a sialic acid trimer (DP3) acceptor. Results In CMP-Glo kinetic studies, with constant donor (80 µM) and varied NmW hydrolyzed polysaccharide (0–2000 µg/mL), a Km of 629.2 ± 101.4 µg/mL and a Vmax of 0.8965 ± 0.05823 µM/min was obtained. Using UDP-Glo, Km and Vmax values of 13.84 ± 9.675 µM and 0.6205 ± 0.1331 µM/min were obtained with varied CMP-NeuNAc (0–80 µM) and constant acceptor (400 µg/mL) and UDP-Gal (80 µM). This is the first report of using bioluminescence assays for NmW kinetics. Supplementary Information The online version contains supplementary material available at 10.1186/s13104-021-05831-1.
Collapse
Affiliation(s)
- Laleh Sheikhi Moghaddam
- Bioenvironmental Sciences Program, Morgan State University, 1700 East Cold Spring Lane, Baltimore, MD, 21251, USA.,Department of Chemistry, Morgan State University, 1700 East Cold Spring Lane, Baltimore, MD, 21251, USA
| | - Ayobami Adegbite
- Bioenvironmental Sciences Program, Morgan State University, 1700 East Cold Spring Lane, Baltimore, MD, 21251, USA.,Department of Chemistry, Morgan State University, 1700 East Cold Spring Lane, Baltimore, MD, 21251, USA
| | - Pumtiwitt C McCarthy
- Department of Chemistry, Morgan State University, 1700 East Cold Spring Lane, Baltimore, MD, 21251, USA.
| |
Collapse
|
8
|
Pietri GP, Tontini M, Brogioni B, Oldrini D, Robakiewicz S, Henriques P, Calloni I, Abramova V, Santini L, Malić S, Miklić K, Lisnic B, Bertuzzi S, Unione L, Balducci E, de Ruyck J, Romano MR, Jimenez-Barbero J, Bouckaert J, Jonjic S, Rovis TL, Adamo R. Elucidating the Structural and Minimal Protective Epitope of the Serogroup X Meningococcal Capsular Polysaccharide. Front Mol Biosci 2021; 8:745360. [PMID: 34722634 PMCID: PMC8551719 DOI: 10.3389/fmolb.2021.745360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/02/2021] [Indexed: 11/13/2022] Open
Abstract
Despite the considerable progress toward the eradication of meningococcal disease with the introduction of glycoconjugate vaccines, previously unremarkable serogroup X has emerged in recent years, recording several outbreaks throughout the African continent. Different serogroup X polysaccharide-based vaccines have been tested in preclinical trials, establishing the principles for further improvement. To elucidate the antigenic determinants of the MenX capsular polysaccharide, we generated a monoclonal antibody, and its bactericidal nature was confirmed using the rabbit serum bactericidal assay. The antibody was tested by the inhibition enzyme-linked immunosorbent assay and surface plasmon resonance against a set of oligosaccharide fragments of different lengths. The epitope was shown to be contained within five to six α-(1–4) phosphodiester mannosamine repeating units. The molecular interactions between the protective monoclonal antibody and the MenX capsular polysaccharide fragment were further detailed at the atomic level by saturation transfer difference nuclear magnetic resonance (NMR) spectroscopy. The NMR results were used for validation of the in silico docking analysis between the X-ray crystal structure of the antibody (Fab fragment) and the modeled hexamer oligosaccharide. The antibody recognizes the MenX fragment by binding all six repeating units of the oligosaccharide via hydrogen bonding, salt bridges, and hydrophobic interactions. In vivo studies demonstrated that conjugates containing five to six repeating units can produce high functional antibody levels. These results provide an insight into the molecular basis of MenX vaccine-induced protection and highlight the requirements for the epitope-based vaccine design.
Collapse
Affiliation(s)
- Gian Pietro Pietri
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | | | | | | | - Stefania Robakiewicz
- Unité de Glycobiologie Structurale et Fonctionnelle, Université de Lille, Villeneuve D'Ascq, France
| | | | - Ilaria Calloni
- Chemical Glycobiology Lab CIC BioGUNE Technology Park, Derio, Spain
| | - Vera Abramova
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | | | - Suzana Malić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Karmela Miklić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Berislav Lisnic
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Sara Bertuzzi
- Chemical Glycobiology Lab CIC BioGUNE Technology Park, Derio, Spain
| | - Luca Unione
- Chemical Glycobiology Lab CIC BioGUNE Technology Park, Derio, Spain
| | | | - Jérôme de Ruyck
- Unité de Glycobiologie Structurale et Fonctionnelle, Université de Lille, Villeneuve D'Ascq, France
| | | | - Jesus Jimenez-Barbero
- Chemical Glycobiology Lab CIC BioGUNE Technology Park, Derio, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain.,Department of Organic Chemistry II, University of the Basque Country, Universidad Del País Vasco/Euskal Herriko Unibertsitatea, Leioa, Spain
| | - Julie Bouckaert
- Unité de Glycobiologie Structurale et Fonctionnelle, Université de Lille, Villeneuve D'Ascq, France
| | - Stipan Jonjic
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Tihana Lenac Rovis
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | | |
Collapse
|
9
|
Adegbite A, McCarthy PC. Recent and Future Advances in the Chemoenzymatic Synthesis of Homogeneous Glycans for Bacterial Glycoconjugate Vaccine Development. Vaccines (Basel) 2021; 9:1021. [PMID: 34579258 PMCID: PMC8473158 DOI: 10.3390/vaccines9091021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 12/02/2022] Open
Abstract
Vaccines are important in preventing disease outbreaks and controlling the spread of disease in a population. A variety of vaccines exist, including subunit, recombinant, and conjugate vaccines. Glycoconjugate vaccines have been an important tool to fight against diseases caused by a number of bacteria. Glycoconjugate vaccines are often heterogeneous. Vaccines of the future are becoming more rationally designed to have a defined oligosaccharide chain length and position of conjugation. Homogenous vaccines could play an important role in assessing the relationship between vaccine structure and immune response. This review focuses on recent advances in the chemoenzymatic production of defined bacterial oligosaccharides for vaccine development with a focus on Neisseria meningitidis and selected WHO-prioritized antibacterial resistant-pathogens. We also provide some perspective on future advances in the chemoenzymatic synthesis of well-defined oligosaccharides.
Collapse
Affiliation(s)
- Ayobami Adegbite
- Bioenvironmental Sciences Program, Morgan State University, Baltimore, MD 21251, USA;
- Department of Chemistry, Morgan State University, Baltimore, MD 21251, USA
| | | |
Collapse
|
10
|
Litschko C, Budde I, Berger M, Bethe A, Schulze J, Alcala Orozco EA, Mahour R, Goettig P, Führing JI, Rexer T, Gerardy-Schahn R, Schubert M, Fiebig T. Mix-and-Match System for the Enzymatic Synthesis of Enantiopure Glycerol-3-Phosphate-Containing Capsule Polymer Backbones from Actinobacillus pleuropneumoniae, Neisseria meningitidis, and Bibersteinia trehalosi. mBio 2021; 12:e0089721. [PMID: 34076489 PMCID: PMC8262930 DOI: 10.1128/mbio.00897-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 04/12/2021] [Indexed: 01/19/2023] Open
Abstract
Capsule polymers are crucial virulence factors of pathogenic bacteria and are used as antigens in glycoconjugate vaccine formulations. Some Gram-negative pathogens express poly(glycosylglycerol phosphate) capsule polymers that resemble Gram-positive wall teichoic acids and are synthesized by TagF-like capsule polymerases. So far, the biotechnological use of these enzymes for vaccine developmental studies was restricted by the unavailability of enantiopure CDP-glycerol, one of the donor substrates required for polymer assembly. Here, we use CTP:glycerol-phosphate cytidylyltransferases (GCTs) and TagF-like polymerases to synthesize the poly(glycosylglycerol phosphate) capsule polymer backbones of the porcine pathogen Actinobacillus pleuropneumoniae, serotypes 3 and 7 (App3 and App7). GCT activity was confirmed by high-performance liquid chromatography, and polymers were analyzed using comprehensive nuclear magnetic resonance studies. Solid-phase synthesis protocols were established to allow potential scale-up of polymer production. In addition, one-pot reactions exploiting glycerol-kinase allowed us to start the reaction from inexpensive, widely available substrates. Finally, this study highlights that multidomain TagF-like polymerases can be transformed by mutagenesis of active site residues into single-action transferases, which in turn can act in trans to build-up structurally new polymers. Overall, our protocols provide enantiopure, nature-identical capsule polymer backbones from App2, App3, App7, App9, and App11, Neisseria meningitidis serogroup H, and Bibersteinia trehalosi serotypes T3 and T15. IMPORTANCE Economic synthesis platforms for the production of animal vaccines could help reduce the overuse and misuse of antibiotics in animal husbandry, which contributes greatly to the increase of antibiotic resistance. Here, we describe a highly versatile, easy-to-use mix-and-match toolbox for the generation of glycerol-phosphate-containing capsule polymers that can serve as antigens in glycoconjugate vaccines against Actinobacillus pleuropneumoniae and Bibersteinia trehalosi, two pathogens causing considerable economic loss in the swine, sheep, and cattle industries. We have established scalable protocols for the exploitation of a versatile enzymatic cascade with modular architecture, starting with the preparative-scale production of enantiopure CDP-glycerol, a precursor for a multitude of bacterial surface structures. Thereby, our approach not only allows the synthesis of capsule polymers but might also be exploitable for the (chemo)enzymatic synthesis of other glycerol-phosphate-containing structures such as Gram-positive wall teichoic acids or lipoteichoic acids.
Collapse
Affiliation(s)
- Christa Litschko
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Insa Budde
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Monika Berger
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Andrea Bethe
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Julia Schulze
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - E. Alberto Alcala Orozco
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Magdeburg, Germany
| | - Reza Mahour
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Magdeburg, Germany
| | - Peter Goettig
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Jana Indra Führing
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
- Fraunhofer International Consortium for Anti-Infective Research (iCAIR), Hannover, Germany
| | - Thomas Rexer
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Magdeburg, Germany
| | - Rita Gerardy-Schahn
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Mario Schubert
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Timm Fiebig
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| |
Collapse
|
11
|
Berti F, Romano MR, Micoli F, Adamo R. Carbohydrate based meningococcal vaccines: past and present overview. Glycoconj J 2021; 38:401-409. [PMID: 33905086 PMCID: PMC8076658 DOI: 10.1007/s10719-021-09990-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 02/25/2021] [Accepted: 02/28/2021] [Indexed: 12/28/2022]
Abstract
Neisseria meningitidis is a major cause of bacterial meningitidis worldwide. Children less than five years and adolescents are particularly affected. Nearly all invasive strains are surrounded by a polysaccharide capsule, based on which, 12 N. meningitidis serogroups are differentiated. Six of them, A, B, C, W, X, and Y, cause the vast majority of infections in humans. Mono- and multi-valent carbohydrate-based vaccines against meningococcal infections have been licensed or are currently in clinical development. In this mini-review, an overview of the past and present approaches for producing meningococcal glycoconjugate vaccines is provided.
Collapse
|
12
|
Litschko C, Budde I, Berger M, Fiebig T. Exploitation of Capsule Polymerases for Enzymatic Synthesis of Polysaccharide Antigens Used in Glycoconjugate Vaccines. Methods Mol Biol 2021; 2183:313-330. [PMID: 32959251 DOI: 10.1007/978-1-0716-0795-4_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The exploitation of recombinant enzymes for the synthesis of complex carbohydrates is getting increasing attention. Unfortunately, the analysis of the resulting products often requires advanced methods like nuclear magnetic resonance spectroscopy and mass spectrometry. Here, we use the capsule polymerases Cps4B and Cps11D from Actinobacillus pleuropneumoniae serotypes 4 and 11, respectively, as examples for the in vitro synthesis of capsule polymers similar to those used in glycoconjugate vaccine formulations. We demonstrate how substrate turnover in an enzymatic reaction can be analyzed by HPLC-based anion exchange chromatography and provide the protocol for separation and detection of UV-active polymer. Moreover, we describe how UV-inactive polymer can be separated and visualized using polyacrylamide gel electrophoresis followed by combined alcian blue-silver staining.
Collapse
Affiliation(s)
- Christa Litschko
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Insa Budde
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Monika Berger
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Timm Fiebig
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
13
|
Budde I, Litschko C, Führing JI, Gerardy-Schahn R, Schubert M, Fiebig T. An enzyme-based protocol for cell-free synthesis of nature-identical capsular oligosaccharides from Actinobacillus pleuropneumoniae serotype 1. J Biol Chem 2020; 295:5771-5784. [PMID: 32152227 PMCID: PMC7186170 DOI: 10.1074/jbc.ra120.012961] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/09/2020] [Indexed: 11/06/2022] Open
Abstract
Actinobacillus pleuropneumoniae (App) is the etiological agent of acute porcine pneumonia and responsible for severe economic losses worldwide. The capsule polymer of App serotype 1 (App1) consists of [4)-GlcNAc-β(1,6)-Gal-α-1-(PO4-] repeating units that are O-acetylated at O-6 of the GlcNAc. It is a major virulence factor and was used in previous studies in the successful generation of an experimental glycoconjugate vaccine. However, the application of glycoconjugate vaccines in the animal health sector is limited, presumably because of the high costs associated with harvesting the polymer from pathogen culture. Consequently, here we exploited the capsule polymerase Cps1B of App1 as an in vitro synthesis tool and an alternative for capsule polymer provision. Cps1B consists of two catalytic domains, as well as a domain rich in tetratricopeptide repeats (TPRs). We compared the elongation mechanism of Cps1B with that of a ΔTPR truncation (Cps1B-ΔTPR). Interestingly, the product profiles displayed by Cps1B suggested processive elongation of the nascent polymer, whereas Cps1B-ΔTPR appeared to work in a more distributive manner. The dispersity of the synthesized products could be reduced by generating single-action transferases and immobilizing them on individual columns, separating the two catalytic activities. Furthermore, we identified the O-acetyltransferase Cps1D of App1 and used it to modify the polymers produced by Cps1B. Two-dimensional NMR analyses of the products revealed O-acetylation levels identical to those of polymer harvested from App1 culture supernatants. In conclusion, we have established a protocol for the pathogen-free in vitro synthesis of tailored, nature-identical App1 capsule polymers.
Collapse
Affiliation(s)
- Insa Budde
- Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg Strasse 1, 30625 Hannover, Germany
| | - Christa Litschko
- Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg Strasse 1, 30625 Hannover, Germany
| | - Jana I Führing
- Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg Strasse 1, 30625 Hannover, Germany; Fraunhofer International Consortium for Anti-Infective Research (iCAIR), 30625 Hannover, Germany
| | - Rita Gerardy-Schahn
- Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg Strasse 1, 30625 Hannover, Germany; Fraunhofer International Consortium for Anti-Infective Research (iCAIR), 30625 Hannover, Germany
| | - Mario Schubert
- Department of Biosciences, University of Salzburg, 5020 Salzburg, Austria
| | - Timm Fiebig
- Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg Strasse 1, 30625 Hannover, Germany.
| |
Collapse
|
14
|
MacCalman TE, Phillips-Jones MK, Harding SE. Glycoconjugate vaccines: some observations on carrier and production methods. Biotechnol Genet Eng Rev 2020; 35:93-125. [PMID: 32048549 DOI: 10.1080/02648725.2019.1703614] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Glycoconjugate vaccines use protein carriers to improve the immune response to polysaccharide antigens. The protein component allows the vaccine to interact with T cells, providing a stronger and longer-lasting immune response than a polysaccharide interacting with B cells alone. Whilst in theory the mere presence of a protein component in a vaccine should be sufficient to improve vaccine efficacy, the extent of improvement varies. In the present review, a comparison of the performances of vaccines developed with and without a protein carrier are presented. The usefulness of analytical tools for macromolecular integrity assays, in particular nuclear magnetic resonance, circular dichroism, analytical ultracentrifugation and SEC coupled to multi-angle light scattering (MALS) is indicated. Although we focus mainly on bacterial capsular polysaccharide-protein vaccines, some consideration is also given to research on experimental cancer vaccines using zwitterionic polysaccharides which, unusually for polysaccharides, are able to invoke T-cell responses and have been used in the development of potential all-polysaccharide-based cancer vaccines.A general trend of improved immunogenicity for glycoconjugate vaccines is described. Since the immunogenicity of a vaccine will also depend on carrier protein type and the way in which it has been linked to polysaccharide, the effects of different carrier proteins and production methods are also reviewed. We suggest that, in general, there is no single best carrier for use in glycoconjugate vaccines. This indicates that the choice of carrier protein is optimally made on a case-by-case basis, based on what generates the best immune response and can be produced safely in each individual case.Abbreviations: AUC: analytical ultracentrifugation; BSA: bovine serum albumin; CD: circular dichroism spectroscopy; CPS: capsular polysaccharide; CRM197: Cross Reactive Material 197; DT: diphtheria toxoid; Hib: Haemophilius influenzae type b; MALS: multi-angle light scattering; Men: Neisseria menigitidis; MHC-II: major histocompatibility complex class II; NMR: nuclear magnetic resonance spectroscopy; OMP: outer membrane protein; PRP: polyribosyl ribitol phosphate; PSA: Polysaccharide A1; Sa: Salmonella; St.: Streptococcus; SEC: size exclusion chromatography; Sta: Staphylococcus; TT: tetanus toxoid; ZPS: zwitterionic polysaccharide(s).
Collapse
Affiliation(s)
- Thomas E MacCalman
- National Centre for Macromolecular Hydrodynamics, University of Nottingham, Nottingham, UK
| | - Mary K Phillips-Jones
- National Centre for Macromolecular Hydrodynamics, University of Nottingham, Nottingham, UK
| | - Stephen E Harding
- National Centre for Macromolecular Hydrodynamics, University of Nottingham, Nottingham, UK.,Kulturhistorisk Museum, University of Oslo, Oslo, Norway
| |
Collapse
|
15
|
Micoli F, Del Bino L, Alfini R, Carboni F, Romano MR, Adamo R. Glycoconjugate vaccines: current approaches towards faster vaccine design. Expert Rev Vaccines 2019; 18:881-895. [PMID: 31475596 DOI: 10.1080/14760584.2019.1657012] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Introduction: Over the last decades, glycoconjugate vaccines have been proven to be a successful strategy to prevent infectious diseases. Many diseases remain to be controlled, especially in developing countries, and emerging antibiotic-resistant bacteria present an alarming public-health threat. The increasing complexity of future vaccines, and the need to accelerate development processes have triggered the development of faster approaches to glycoconjugate vaccines design. Areas covered: This review provides an overview of recent progress in glycoconjugation technologies toward faster vaccine design. Expert opinion: Among the different emerging approaches, glycoengineering has the potential to combine glycan assembly and conjugation to carrier systems (such as proteins or outer membrane vesicles) in one step, resulting in a simplified manufacturing process and fewer analytical controls. Chemical and enzymatic strategies, and their automation can facilitate glycoepitope identification for vaccine design. Other approaches, such as the liposomal encapsulation of polysaccharides, potentially enable fast and easy combination of numerous antigens in the same formulation. Additional progress is envisaged in the near future, and some of these systems still need to be further validated in humans. In parallel, new strategies are needed to accelerate the vaccine development process, including the associated clinical trials, up to vaccine release onto the market.
Collapse
Affiliation(s)
- Francesca Micoli
- Technology Platform, GSK Vaccines Institute for Global Health s.r.l , Siena , Italy
| | | | - Renzo Alfini
- Technology Platform, GSK Vaccines Institute for Global Health s.r.l , Siena , Italy
| | | | | | | |
Collapse
|
16
|
Ming SA, Cottman-Thomas E, Black NC, Chen Y, Veeramachineni V, Peterson DC, Chen X, Tedaldi LM, Wagner GK, Cai C, Linhardt RJ, Vann WF. Interaction of Neisseria meningitidis Group X N-acetylglucosamine-1-phosphotransferase with its donor substrate. Glycobiology 2018; 28:100-107. [PMID: 29228283 DOI: 10.1093/glycob/cwx100] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/05/2017] [Indexed: 12/16/2022] Open
Abstract
Neisseria meningitidis Group X is an emerging cause of bacterial meningitis in Sub-Saharan Africa. The capsular polysaccharide of Group X is a homopolymer of N-acetylglucosamine α(1-4) phosphate and is a vaccine target for prevention of disease associated with this meningococcal serogroup. We have demonstrated previously that the formation of the polymer is catalyzed by a phosphotransferase which transfers N-acetylglucosamine-1-phosphate from UDP-N-acetylglucosamine to the 4-hydroxyl of the N-acetylglucosamine on the nonreducing end of the growing chain. In this study, we use substrate analogs of UDP-GlcNAc to define the enzyme/donor substrate interactions critical for catalysis. Our kinetic analysis of the phosphotransferase reaction is consistent with a sequential mechanism of substrate addition and product release. The use of novel uracil modified analogs designed by Wagner et al. enabled us to assess whether the CsxA-catalyzed reaction is consistent with a donor dependent conformational change. As expected with this model for glycosyltransferases, UDP-GlcNAc analogs with bulky uracil modifications are not substrates but are inhibitors. An analog with a smaller iodo uracil substitution is a substrate and a less potent inhibitor. Moreover, our survey of analogs with modifications on the N-acetylglucosamine residue of the sugar nucleotide donor highlights the importance of substituents at C2 and C4 of the sugar residue. The hydroxyl group at C4 and the structure of the acyl group at C2 are very important for specificity and substrate interactions during the polymerization reaction. While most analogs modified at C2 were inhibitors, acetamido analogs were also substrates suggesting the importance of the carbonyl group.
Collapse
Affiliation(s)
- Shonoi A Ming
- Laboratory of Bacterial Polysaccharides, FDA, Silver Spring, MD 20993, USA
| | | | - Natalee C Black
- Laboratory of Bacterial Polysaccharides, FDA, Silver Spring, MD 20993, USA
| | - Yi Chen
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | | | - Dwight C Peterson
- Laboratory of Bacterial Polysaccharides, FDA, Silver Spring, MD 20993, USA
| | - Xi Chen
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | | | - Gerd K Wagner
- Department of Chemistry, King's College, London SE 11DB, UK
| | - Chao Cai
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Robert J Linhardt
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Willie F Vann
- Laboratory of Bacterial Polysaccharides, FDA, Silver Spring, MD 20993, USA
| |
Collapse
|
17
|
Amos RA, Pattathil S, Yang JY, Atmodjo MA, Urbanowicz BR, Moremen KW, Mohnen D. A two-phase model for the non-processive biosynthesis of homogalacturonan polysaccharides by the GAUT1:GAUT7 complex. J Biol Chem 2018; 293:19047-19063. [PMID: 30327429 DOI: 10.1074/jbc.ra118.004463] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 10/08/2018] [Indexed: 11/06/2022] Open
Abstract
Homogalacturonan (HG) is a pectic glycan in the plant cell wall that contributes to plant growth and development and cell wall structure and function, and interacts with other glycans and proteoglycans in the wall. HG is synthesized by the galacturonosyltransferase (GAUT) gene family. Two members of this family, GAUT1 and GAUT7, form a heteromeric enzyme complex in Arabidopsis thaliana Here, we established a heterologous GAUT expression system in HEK293 cells and show that co-expression of recombinant GAUT1 with GAUT7 results in the production of a soluble GAUT1:GAUT7 complex that catalyzes elongation of HG products in vitro The reaction rates, progress curves, and product distributions exhibited major differences dependent upon small changes in the degree of polymerization (DP) of the oligosaccharide acceptor. GAUT1:GAUT7 displayed >45-fold increased catalytic efficiency with DP11 acceptors relative to DP7 acceptors. Although GAUT1:GAUT7 synthesized high-molecular-weight polymeric HG (>100 kDa) in a substrate concentration-dependent manner typical of distributive (nonprocessive) glycosyltransferases with DP11 acceptors, reactions primed with short-chain acceptors resulted in a bimodal product distribution of glycan products that has previously been reported as evidence for a processive model of GT elongation. As an alternative to the processive glycosyltransfer model, a two-phase distributive elongation model is proposed in which a slow phase, which includes the de novo initiation of HG and elongation of short-chain acceptors, is distinguished from a phase of rapid elongation of intermediate- and long-chain acceptors. Upon reaching a critical chain length of DP11, GAUT1:GAUT7 elongates HG to high-molecular-weight products.
Collapse
Affiliation(s)
- Robert A Amos
- From the Complex Carbohydrate Research Center and.,the Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | | | | | - Melani A Atmodjo
- From the Complex Carbohydrate Research Center and.,the Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | | | - Kelley W Moremen
- From the Complex Carbohydrate Research Center and.,the Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Debra Mohnen
- From the Complex Carbohydrate Research Center and .,the Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| |
Collapse
|
18
|
Sharyan A, Gonzalez C, Ukaegbu O, Powell K, McCarthy PC. Determination of the binding affinities of Neisseria meningitidis serogroup W capsule polymerase with two nucleotide sugar substrates. BMC Res Notes 2018; 11:482. [PMID: 30012207 PMCID: PMC6048754 DOI: 10.1186/s13104-018-3596-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 07/12/2018] [Indexed: 01/22/2023] Open
Abstract
Objective Meningococcal meningitis is a public health burden. Immunization strategies have reduced global incidence of the disease. Glycoconjugate vaccines are the most effective type of vaccine to combat most causes of meningococcal meningitis. These vaccines contain capsular polysaccharide fragments from disease-causing serogroups of Neisseria meningitidis that are chemically attached to a carrier protein. The enzymes responsible for capsular polysaccharide synthesis can serve as tools to make these critical vaccine components. One such enzyme is the N. meningitidis serogroup W capsule polymerase. This enzyme is responsible for creating the galactose-sialic acid containing capsular polysaccharide of this serogroup. Our aim in this study was to determine the binding affinities of nucleotide sugar donors CMP-sialic acid and UDP-galactose using a coupled transferase assay to inform future work to modulate polysaccharide synthesis by this enzyme. Results We determined a Km of 66.8 µM for CMP-sialic acid and a Km for UDP-galactose of 3.9 µM. These values are lower than reported values for other retaining galactosyltransferases and inverting sialyltransferases respectively. There were difficulties obtaining reliable data for galactosyltransferase activity. An alternate strategy is needed to assess kinetic parameters of the separate transferase activities for this enzyme. Electronic supplementary material The online version of this article (10.1186/s13104-018-3596-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Abeer Sharyan
- Department of Chemistry, Morgan State University, 1700 East Cold Spring Lane, Baltimore, MD, 21251, USA
| | - Cendy Gonzalez
- Department of Biology, Morgan State University, 1700 East Cold Spring Lane, Baltimore, MD, 21251, USA
| | - Ophelia Ukaegbu
- Department of Chemistry, Morgan State University, 1700 East Cold Spring Lane, Baltimore, MD, 21251, USA
| | - Kayla Powell
- Department of Chemistry, Morgan State University, 1700 East Cold Spring Lane, Baltimore, MD, 21251, USA
| | - Pumtiwitt C McCarthy
- Department of Chemistry, Morgan State University, 1700 East Cold Spring Lane, Baltimore, MD, 21251, USA.
| |
Collapse
|
19
|
Litschko C, Oldrini D, Budde I, Berger M, Meens J, Gerardy-Schahn R, Berti F, Schubert M, Fiebig T. A New Family of Capsule Polymerases Generates Teichoic Acid-Like Capsule Polymers in Gram-Negative Pathogens. mBio 2018; 9:e00641-18. [PMID: 29844111 PMCID: PMC5974469 DOI: 10.1128/mbio.00641-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 05/02/2018] [Indexed: 02/07/2023] Open
Abstract
Group 2 capsule polymers represent crucial virulence factors of Gram-negative pathogenic bacteria. They are synthesized by enzymes called capsule polymerases. In this report, we describe a new family of polymerases that combine glycosyltransferase and hexose- and polyol-phosphate transferase activity to generate complex poly(oligosaccharide phosphate) and poly(glycosylpolyol phosphate) polymers, the latter of which display similarity to wall teichoic acid (WTA), a cell wall component of Gram-positive bacteria. Using modeling and multiple-sequence alignment, we showed homology between the predicted polymerase domains and WTA type I biosynthesis enzymes, creating a link between Gram-negative and Gram-positive cell wall biosynthesis processes. The polymerases of the new family are highly abundant and found in a variety of capsule-expressing pathogens such as Neisseria meningitidis, Actinobacillus pleuropneumoniae, Haemophilus influenzae, Bibersteinia trehalosi, and Escherichia coli with both human and animal hosts. Five representative candidates were purified, their activities were confirmed using nuclear magnetic resonance (NMR) spectroscopy, and their predicted folds were validated by site-directed mutagenesis.IMPORTANCE Bacterial capsules play an important role in the interaction between a pathogen and the immune system of its host. During the last decade, capsule polymerases have become attractive tools for the production of capsule polymers applied as antigens in glycoconjugate vaccine formulations. Conventional production of glycoconjugate vaccines requires the cultivation of the pathogen and thus the highest biosafety standards, leading to tremendous costs. With regard to animal husbandry, where vaccines could avoid the extensive use of antibiotics, conventional production is not sufficiently cost-effective. In contrast, enzymatic synthesis of capsule polymers is pathogen-free and fast, offers high stereo- and regioselectivity, and works with high efficacy. The new capsule polymerase family described here vastly increases the toolbox of enzymes available for biotechnology purposes. Representatives are abundantly found in human pathogens but also in animal pathogens, paving the way for the exploitation of polymerases for the development of a new generation of vaccines for animal husbandry.
Collapse
Affiliation(s)
- Christa Litschko
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | | | - Insa Budde
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Monika Berger
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Jochen Meens
- Institute for Microbiology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Rita Gerardy-Schahn
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | | | - Mario Schubert
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Timm Fiebig
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| |
Collapse
|
20
|
Ghimire S, McCarthy PC. Capture of Pb 2+ and Cu 2+ Metal Cations by Neisseria meningitidis-type Capsular Polysaccharides. Biomolecules 2018; 8:E23. [PMID: 29734757 PMCID: PMC6023028 DOI: 10.3390/biom8020023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/02/2018] [Accepted: 05/02/2018] [Indexed: 12/14/2022] Open
Abstract
Heavy metal pollution of water is a significant environmental and public health concern. Current biological strategies for heavy metal removal from water are performed using microbial biopolymers, including polysaccharides, that are already fully formed. This creates limitations in adapting polysaccharides to increase binding affinity for specific metals. We propose that altering the specificity of polysaccharide-producing enzymes could be beneficial to improving metal capture by modified polysaccharides. We assess binding of Cu2+ and Pb2+ metal cations to Neisseria meningitidis-type polysaccharides. All concentrations of metal cations tested were able to completely bind to colominic acid. This polymer is equivalent to the capsular polysaccharide of N. meningitidis serogroup B comprised of a homopolymer of negatively charged sialic acid. There was slightly less binding observed with N. meningitidis serogroup W, which contains repeating units of the neutral sugar galactose and sialic acid. Our work represents the first assessment of the metal-binding properties of these capsular polysaccharides. Future work will seek to optimize metal-binding with Neisseria meningitidis serogroup W polysaccharide.
Collapse
Affiliation(s)
- Sujan Ghimire
- Department of Chemistry, Morgan State University, Baltimore, MD 21251, USA.
| | | |
Collapse
|
21
|
Christodoulides M, Heckels J. Novel approaches to Neisseria meningitidis vaccine design. Pathog Dis 2018; 75:3078540. [PMID: 28369428 DOI: 10.1093/femspd/ftx033] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/20/2017] [Indexed: 12/30/2022] Open
Abstract
A range of vaccines is available for preventing life-threatening diseases caused by infection with Neisseria meningitidis (meningococcus, Men). Capsule polysaccharide (CPS)-conjugate vaccines are successful prophylactics for serogroup MenA, MenC, MenW and MenY infections, and outer membrane vesicle (OMV) vaccines have been used successfully for controlling clonal serogroup MenB infections. MenB vaccines based on recombinant proteins identified by reverse vaccinology (Bexsero™) and proteomics (Trumenba™) approaches have recently been licensed and Bexsero™ has been introduced into the UK infant immunisation programme. In this review, we chart the development of these licensed vaccines. In addition, we discuss the plethora of novel vaccinology approaches that have been applied to the meningococcus with varying success in pre-clinical studies, but which provide technological platforms for application to other pathogens. These strategies include modifying CPS, lipooligosaccharide and OMV; the use of recombinant proteins; structural vaccinology approaches of designing synthetic peptide/mimetope vaccines, DNA vaccines and engineered proteins; epitope presentation on biological and synthetic particles; through vaccination with live-attenuated pathogen(s), or with heterologous bacteria expressing vaccine antigens, or to competitive occupation of the nasopharyngeal niche by commensal bacterial spp. After close to a century of vaccine research, it is possible that meningococcal disease may be added, shortly, to the list of diseases to have been eradicated worldwide by rigorous vaccination campaigns.
Collapse
|
22
|
Oldrini D, Fiebig T, Romano MR, Proietti D, Berger M, Tontini M, De Ricco R, Santini L, Morelli L, Lay L, Gerardy-Schahn R, Berti F, Adamo R. Combined Chemical Synthesis and Tailored Enzymatic Elongation Provide Fully Synthetic and Conjugation-Ready Neisseria meningitidis Serogroup X Vaccine Antigens. ACS Chem Biol 2018; 13:984-994. [PMID: 29481045 DOI: 10.1021/acschembio.7b01057] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Studies on the polymerization mode of Neisseria meningitidis serogroup X capsular polymerase CsxA recently identified a truncated construct that can be immobilized and used for length controlled on-column production of oligosaccharides. Here, we combined the use of a synthetic acceptor bearing an appendix for carrier protein conjugation and the on-column process to a novel chemo-enzymatic strategy. After protein coupling of the size optimized oligosaccharide produced by the one-pot elongation procedure, we obtained a more homogeneous glycoconjugate compared to the one previously described starting from the natural polysaccharide. Mice immunized with the conjugated fully synthetic oligomer elicited functional antibodies comparable to controls immunized with the current benchmark MenX glycoconjugates prepared from the natural capsule polymer or from fragments of it enzymatically elongated. This pathogen-free technology allows the fast total in vitro construction of predefined bacterial polysaccharide fragments. Compared to conventional synthetic protocols, the procedure is more expeditious and drastically reduces the number of purification steps to achieve the oligomers. Furthermore, the presence of a linker for conjugation in the synthetic acceptor minimizes manipulations on the enzymatically produced glycan prior to protein conjugation. This approach enriches the methods for fast construction of complex bacterial carbohydrates.
Collapse
Affiliation(s)
| | - Timm Fiebig
- Institute of Clinical Biochemistry, Hannover Medical School, 30625 Hannover, Germany
| | | | | | - Monika Berger
- Institute of Clinical Biochemistry, Hannover Medical School, 30625 Hannover, Germany
| | | | | | | | - Laura Morelli
- University of Milan, Department of Chemistry, via Golgi 19, 20133, Milan, Italy
| | - Luigi Lay
- University of Milan, Department of Chemistry, via Golgi 19, 20133, Milan, Italy
| | - Rita Gerardy-Schahn
- Institute of Clinical Biochemistry, Hannover Medical School, 30625 Hannover, Germany
| | | | | |
Collapse
|
23
|
Meningococcal Vaccines: Current Status and Emerging Strategies. Vaccines (Basel) 2018; 6:vaccines6010012. [PMID: 29495347 PMCID: PMC5874653 DOI: 10.3390/vaccines6010012] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 02/21/2018] [Accepted: 02/23/2018] [Indexed: 12/13/2022] Open
Abstract
Neisseria meningitidis causes most cases of bacterial meningitis. Meningococcal meningitis is a public health burden to both developed and developing countries throughout the world. There are a number of vaccines (polysaccharide-based, glycoconjugate, protein-based and combined conjugate vaccines) that are approved to target five of the six disease-causing serogroups of the pathogen. Immunization strategies have been effective at helping to decrease the global incidence of meningococcal meningitis. Researchers continue to enhance these efforts through discovery of new antigen targets that may lead to a broadly protective vaccine and development of new methods of homogenous vaccine production. This review describes current meningococcal vaccines and discusses some recent research discoveries that may transform vaccine development against N. meningitidis in the future.
Collapse
|
24
|
Fiebig T, Litschko C, Freiberger F, Bethe A, Berger M, Gerardy-Schahn R. Efficient solid-phase synthesis of meningococcal capsular oligosaccharides enables simple and fast chemoenzymatic vaccine production. J Biol Chem 2017; 293:953-962. [PMID: 29187601 DOI: 10.1074/jbc.ra117.000488] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 11/28/2017] [Indexed: 12/22/2022] Open
Abstract
Neisseria meningitidis serogroups A and X are among the leading causes of bacterial meningitis in the African meningitis belt. Glycoconjugate vaccines, consisting of an antigenic carrier protein coupled to the capsular polysaccharide of the bacterial pathogen, are the most effective strategy for prevention of meningococcal disease. However, the distribution of effective glycoconjugate vaccines in this region is limited by the high cost of cultivating pathogens and purification of their capsular polysaccharides. Moreover, chemical approaches to synthesize oligosaccharide antigens have proven challenging. In the current study, we present a chemoenzymatic approach for generating tailored oligosaccharide fractions ready for activation and coupling to the carrier protein. In a first step, the elongation modes of recombinant capsular polymerases from Neisseria meningitidis serogroups A (CsaB) and X (CsxA) were characterized. We observed that CsaB is a distributive enzyme, and CsxA is a processive enzyme. Sequence comparison of these two stealth family proteins revealed a C-terminal extension in CsxA, which conferred processivity because of the existence of a second product-binding site. Deletion of the C-terminal domain converted CsxA into a distributive enzyme, allowing facile control of product length by adjusting the ratio of donor to acceptor sugars. Solid-phase fixation of the engineered capsular polymerases enabled rapid production of capsular polysaccharides with high yield and purity. In summary, the tools developed here provide critical steps toward reducing the cost of conjugate vaccine production, which will increase access in regions with the greatest need. Our work also facilitates efforts to study the relationship between oligosaccharide size and antigenicity.
Collapse
Affiliation(s)
- Timm Fiebig
- From the Institute of Clinical Biochemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Christa Litschko
- From the Institute of Clinical Biochemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Friedrich Freiberger
- From the Institute of Clinical Biochemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Andrea Bethe
- From the Institute of Clinical Biochemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Monika Berger
- From the Institute of Clinical Biochemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Rita Gerardy-Schahn
- From the Institute of Clinical Biochemistry, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
25
|
Abstract
Since 2004, when the first synthetic glycoconjugate vaccine against the pneumonia and meningitis causing bacterium Haemophilus influenza type b (Hib) approved for human use in Cuba was reported, 34 million doses of the synthetic vaccine have been already distributed in several countries under the commercial name of Quimi-Hib. However, despite the success of this product, no other synthetic glycoconjugate vaccine has been licensed in the following 13 years. As well as avoiding the need to handle pathogens, synthetic glycoconjugates offer clear advantages in terms of product characterization and the possibility to understand the parameters influencing immunogenicity. Nevertheless, large scale application of synthetic sugars has been perceived as challenging because of manufacturing costs and process complexity compared to natural polysaccharides. Chemoenzymatic approaches, one-pot protocols, and automated solid-phase synthesis are rendering carbohydrate production considerably more attractive for industrialization. Here we identify three areas where chemical approaches can advance this progress: (i) chemical or enzymatic methods enabling the delivery of the minimal polysaccharide portion responsible for an effective immune response; (ii) site-selective chemical or enzymatic conjugation strategies for the exploration of the conjugation point in immune responses against carbohydrate-based vaccines, and the consistent preparation of more homogeneous products; (iii) multicomponent constructs targeting receptors responsible for immune response modulation in order to control its quality and magnitude. We discuss how synthesis of bacterial oligosaccharides is useful toward understanding the polysaccharide portion responsible for immunogenicity, and for developing robust and consistent alternatives to natural heterogeneous polysaccharides. The synthesis of sugar analogues can lead to the identification of hydrolytically more stable versions of oligosaccharide antigens. The study of bacterial polysaccharide biosynthesis aids the development of in vitro hazard-free oligosaccharide production. Novel site-selective conjugation methods contribute toward deciphering the role of conjugation sites in the immunogenicity of glycoconjugates and prove to be particularly useful when glycans are conjugated to protein serving as carrier and antigen. The orthogonal incorporation of two different carbohydrate haptens enables the reduction of vaccine components. Finally, coordinated conjugation of glycans and small molecule immunopotentiators supports simplification of vaccine formulation and localization of adjuvant. Synergistic advancement of these areas, combined with competitive manufacturing processes, will contribute to a better understanding of the features guiding the immunological activity of glycoconjugates and, ultimately, to the design of improved, safer vaccines.
Collapse
|
26
|
An efficient cell free enzyme-based total synthesis of a meningococcal vaccine candidate. NPJ Vaccines 2016; 1:16017. [PMID: 29263856 PMCID: PMC5707881 DOI: 10.1038/npjvaccines.2016.17] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 07/14/2016] [Accepted: 08/03/2016] [Indexed: 11/14/2022] Open
Abstract
Invasive meningococcal disease (IMD) is a global health problem and vaccination has proven the most effective way of disease control. Neisseria meningitidis serogroup X (NmX) is an emerging threat in the African sub-Saharan meningitis belt, but no vaccine is available today. Leading vaccines against Nm are glycoconjugates, in which capsular polysaccharides isolated from large-scale pathogen cultures are conjugated to adjuvant proteins. Though safe and efficacious even in infants, high costs and biohazard associated with the production limit abundant application of glycoconjugate vaccines particularly in the most afflicted nations. An existing NmX vaccine candidate (CPSXn-CRM197) produced by established protocols from NmX capsule polysaccharide (CPSX) has been shown to elicit high bactericidal immunoglobulin G titres in mice. Here we describe the scalable in vitro synthesis of CPSXiv from chemically pure precursors by the use of recombinant NmX capsule polymerase. Application of the described coupling chemistry gives CPSXiv-CRM197, which in mouse vaccination experiments behaves identical to the benchmark CPSXn-CRM197. Excluding any biohazards, this novel process represents a paradigm shift in vaccine production and a premise towards vaccine manufacturing in emerging economies.
Collapse
|
27
|
Abstract
Neisseria meningitidis, a devastating pathogen exclusive to humans, expresses capsular polysaccharides that are the major meningococcal virulence determinants and the basis for successful meningococcal vaccines. With rare exceptions, the expression of capsule (serogroups A, B, C, W, X, Y) is required for systemic invasive meningococcal disease. Changes in capsule expression or structure (e.g. hypo- or hyper-encapsulation, capsule "switching", acetylation) can influence immunologic diagnostic assays or lead to immune escape. The loss or down-regulation of capsule is also critical in meningococcal biology facilitating meningococcal attachment, microcolony formation and the carriage state at human mucosal surfaces. Encapsulated meningococci contain a cps locus with promoters located in an intergenic region between the biosynthesis and the conserved capsule transport operons. The cps intergenic region is transcriptionally regulated (and thus the amount of capsule expressed) by IS element insertion, by a two-component system, MisR/MisS and through sequence changes that result in post-transcriptional RNA thermoregulation. Reversible on-off phase variation of capsule expression is controlled by slipped strand mispairing of homo-polymeric tracts and by precise insertion and excision of IS elements (e.g. IS1301) in the biosynthesis operon. Capsule structure can be altered by phase-variable expression of capsular polymer modification enzymes or "switched" through transformation and homologous recombination of different polymerases. Understanding the complex regulation of meningococcal capsule has important implications for meningococcal biology, pathogenesis, diagnostics, current and future vaccine development and vaccine strategies.
Collapse
Affiliation(s)
- Yih-Ling Tzeng
- a Department of Medicine , Emory University School of Medicine, Woodruff Health Sciences Center , Atlanta , GA , USA
| | - Jennifer Thomas
- a Department of Medicine , Emory University School of Medicine, Woodruff Health Sciences Center , Atlanta , GA , USA
| | - David S Stephens
- a Department of Medicine , Emory University School of Medicine, Woodruff Health Sciences Center , Atlanta , GA , USA
| |
Collapse
|
28
|
Bröker M, Berti F, Costantino P. Factors contributing to the immunogenicity of meningococcal conjugate vaccines. Hum Vaccin Immunother 2016; 12:1808-24. [PMID: 26934310 PMCID: PMC4964817 DOI: 10.1080/21645515.2016.1153206] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Various glycoprotein conjugate vaccines have been developed for the prevention of invasive meningococcal disease, having significant advantages over pure polysaccharide vaccines. One of the most important features of the conjugate vaccines is the induction of a T-cell dependent immune response, which enables both the induction of immune memory and a booster response after repeated immunization. The nature of the carrier protein to which the polysaccharides are chemically linked, is often regarded as the main component of the vaccine in determining its immunogenicity. However, other factors can have a significant impact on the vaccine's profile. In this review, we explore the physico-chemical properties of meningococcal conjugate vaccines, which can significantly contribute to the vaccine's immunogenicity. We demonstrate that the carrier is not the sole determining factor of the vaccine's profile, but, moreover, that the conjugate vaccine's immunogenicity is the result of multiple physico-chemical structures and characteristics.
Collapse
|
29
|
Litschko C, Romano MR, Pinto V, Claus H, Vogel U, Berti F, Gerardy-Schahn R, Fiebig T. The capsule polymerase CslB of Neisseria meningitidis serogroup L catalyzes the synthesis of a complex trimeric repeating unit comprising glycosidic and phosphodiester linkages. J Biol Chem 2015; 290:24355-66. [PMID: 26286750 DOI: 10.1074/jbc.m115.678094] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Indexed: 11/06/2022] Open
Abstract
Neisseria meningitidis is a human pathogen causing bacterial meningitis and sepsis. The capsular polysaccharide surrounding N. meningitidis is a major virulence factor. The capsular polysaccharide consists of polyhexosamine phosphates in N. meningitidis serogroups A and X. The capsule polymerases (CPs) of these serogroups are members of the Stealth protein family comprising d-hexose-1-phosphate transferases from bacterial and protozoan pathogens. CslA, one of two putative CPs of the pathophysiologically less relevant N. meningitidis serogroup L, is one of the smallest known Stealth proteins and caught our attention for structure-function analyses. Because the N. meningitidis serogroup L capsule polymer consists of a trimeric repeating unit ([→3)-β-d-GlcNAc-(1→3)-β-d-GlcNAc-(1→3)-α-d-GlcNAc-(1→OPO3→]n), we speculated that the two predicted CPs (CslA and CslB) work together in polymer production. Consequently, both enzymes were cloned, overexpressed, and purified as recombinant proteins. Contrary to our expectation, enzymatic testing identified CslB to be sufficient to catalyze the synthesis of the complex trimeric N. meningitidis serogroup L capsule polymer repeating unit. No polymerase activity was detected for CslA, although the enzyme facilitated the hydrolysis of UDP-GlcNAc. Bioinformatics analyses identified two glycosyltransferase (GT) domains in CslB. The N-terminal domain modeled with 100% confidence onto a number of GT-A folded proteins, whereas the C-terminal domain modeled with 100% confidence onto TagF, a GT-B folded teichoic acid polymerase from Staphylococcus epidermidis. Amino acid positions known to have critical catalytic functions in the template proteins were conserved in CslB, and their point mutation abolished enzyme activity. CslB represents an enzyme of so far unique complexity regarding both the catalyzed reaction and enzyme architecture.
Collapse
Affiliation(s)
- Christa Litschko
- From the Institute for Cellular Chemistry, Hannover Medical School, Carl-Neuberg Strasse 1, 30625 Hannover, Germany
| | | | - Vittoria Pinto
- Research, GSK Vaccines, Via Fiorentina 1, 53100 Siena, Italy, and
| | - Heike Claus
- the Institute for Hygiene and Microbiology, University of Würzburg, 97080 Würzburg, Germany
| | - Ulrich Vogel
- the Institute for Hygiene and Microbiology, University of Würzburg, 97080 Würzburg, Germany
| | - Francesco Berti
- Research, GSK Vaccines, Via Fiorentina 1, 53100 Siena, Italy, and
| | - Rita Gerardy-Schahn
- From the Institute for Cellular Chemistry, Hannover Medical School, Carl-Neuberg Strasse 1, 30625 Hannover, Germany
| | - Timm Fiebig
- From the Institute for Cellular Chemistry, Hannover Medical School, Carl-Neuberg Strasse 1, 30625 Hannover, Germany,
| |
Collapse
|
30
|
Gasparini R, Panatto D, Bragazzi NL, Lai PL, Bechini A, Levi M, Durando P, Amicizia D. How the Knowledge of Interactions between Meningococcus and the Human Immune System Has Been Used to Prepare Effective Neisseria meningitidis Vaccines. J Immunol Res 2015; 2015:189153. [PMID: 26351643 PMCID: PMC4553322 DOI: 10.1155/2015/189153] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 06/09/2015] [Indexed: 01/17/2023] Open
Abstract
In the last decades, tremendous advancement in dissecting the mechanisms of pathogenicity of Neisseria meningitidis at a molecular level has been achieved, exploiting converging approaches of different disciplines, ranging from pathology to microbiology, immunology, and omics sciences (such as genomics and proteomics). Here, we review the molecular biology of the infectious agent and, in particular, its interactions with the immune system, focusing on both the innate and the adaptive responses. Meningococci exploit different mechanisms and complex machineries in order to subvert the immune system and to avoid being killed. Capsular polysaccharide and lipooligosaccharide glycan composition, in particular, play a major role in circumventing immune response. The understanding of these mechanisms has opened new horizons in the field of vaccinology. Nowadays different licensed meningococcal vaccines are available and used: conjugate meningococcal C vaccines, tetravalent conjugate vaccines, an affordable conjugate vaccine against the N. menigitidis serogroup A, and universal vaccines based on multiple antigens each one with a different and peculiar function against meningococcal group B strains.
Collapse
Affiliation(s)
- R. Gasparini
- Department of Health Sciences, University of Genoa, Via Pastore 1, 16132 Genoa, Italy
| | - D. Panatto
- Department of Health Sciences, University of Genoa, Via Pastore 1, 16132 Genoa, Italy
| | - N. L. Bragazzi
- Department of Health Sciences, University of Genoa, Via Pastore 1, 16132 Genoa, Italy
| | - P. L. Lai
- Department of Health Sciences, University of Genoa, Via Pastore 1, 16132 Genoa, Italy
| | - A. Bechini
- Department of Health Sciences, University of Florence, Viale G.B. Morgagni 48, 50134 Florence, Italy
| | - M. Levi
- Department of Health Sciences, University of Florence, Viale G.B. Morgagni 48, 50134 Florence, Italy
| | - P. Durando
- Department of Health Sciences, University of Genoa, Via Pastore 1, 16132 Genoa, Italy
| | - D. Amicizia
- Department of Health Sciences, University of Genoa, Via Pastore 1, 16132 Genoa, Italy
| |
Collapse
|
31
|
Liston SD, Clarke BR, Greenfield LK, Richards MR, Lowary TL, Whitfield C. Domain interactions control complex formation and polymerase specificity in the biosynthesis of the Escherichia coli O9a antigen. J Biol Chem 2014; 290:1075-85. [PMID: 25422321 DOI: 10.1074/jbc.m114.622480] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Escherichia coli O9a O-polysaccharide (O-PS) is a prototype for bacterial glycan synthesis and export by an ATP-binding cassette transporter-dependent pathway. The O9a O-PS possesses a tetrasaccharide repeat unit comprising two α-(1→2)- and two α-(1→3)-linked mannose residues and is extended on a polyisoprenoid lipid carrier by the action of a polymerase (WbdA) containing two glycosyltransferase active sites. The N-terminal domain of WbdA possesses α-(1→2)-mannosyltransferase activity, and we demonstrate in this study that the C-terminal domain is an α-(1→3)-mannosyltransferase. Previous studies established that the size of the O9a polysaccharide is determined by the chain-terminating dual kinase/methyltransferase (WbdD) that is tethered to the membrane and recruits WbdA into an active enzyme complex by protein-protein interactions. Here, we used bacterial two-hybrid analysis to identify a surface-exposed α-helix in the C-terminal mannosyltransferase domain of WbdA as the site of interaction with WbdD. However, the C-terminal domain was unable to interact with WbdD in the absence of its N-terminal partner. Through deletion analysis, we demonstrated that the α-(1→2)-mannosyltransferase activity of the N-terminal domain is regulated by the activity of the C-terminal α-(1→3)-mannosyltransferase. In mutants where the C-terminal catalytic site was deleted but the WbdD-interaction site remained, the N-terminal mannosyltransferase became an unrestricted polymerase, creating a novel polymer comprising only α-(1→2)-linked mannose residues. The WbdD protein therefore orchestrates critical localization and coordination of activities involved in chain extension and termination. Complex domain interactions are needed to position the polymerase components appropriately for assembly into a functional complex located at the cytoplasmic membrane.
Collapse
Affiliation(s)
- Sean D Liston
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1 and
| | - Bradley R Clarke
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1 and
| | - Laura K Greenfield
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1 and
| | - Michele R Richards
- the Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Todd L Lowary
- the Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Chris Whitfield
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1 and
| |
Collapse
|
32
|
Fiebig T, Freiberger F, Pinto V, Romano MR, Black A, Litschko C, Bethe A, Yashunsky D, Adamo R, Nikolaev A, Berti F, Gerardy-Schahn R. Molecular cloning and functional characterization of components of the capsule biosynthesis complex of Neisseria meningitidis serogroup A: toward in vitro vaccine production. J Biol Chem 2014; 289:19395-407. [PMID: 24849599 DOI: 10.1074/jbc.m114.575142] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human pathogen Neisseria meningitidis (Nm) is a leading cause of bacterial meningitis and sepsis globally. A major virulence factor of Nm is the capsular polysaccharide (CPS), which in Nm serogroup A consists of N-acetyl-mannosamine-1-phosphate units linked together by phosphodiester linkages [ → 6)-α-D-ManNAc-(1 → OPO3 (-)→]n. Acetylation in O-3 (to a minor extent in O-4) position results in immunologically active polymer. In the capsule gene cluster (cps) of Nm, region A contains the genetic information for CPSA biosynthesis. Thereby the open reading frames csaA, -B, and -C are thought to encode the UDP-N-acetyl-D-glucosamine-2-epimerase, poly-ManNAc-1-phosphate-transferase, and O-acetyltransferase, respectively. With the aim to use a minimal number of recombinant enzymes to produce immunologically active CPSA, we cloned the genes csaA, csaB, and csaC and functionally characterized the purified recombinant proteins. If recombinant CsaA and CsaB were combined in one reaction tube, priming CPSA-oligosaccharides were efficiently elongated with UDP-GlcNAc as the donor substrate, confirming that CsaA is the functional UDP-N-acetyl-D-glucosamine-2-epimerase and CsaB the functional poly-ManNAc-1-phosphate-transferase. Subsequently, CsaB was shown to transfer ManNAc-1P onto O-6 of the non-reducing end sugar of priming oligosaccharides, to prefer non-O-acetylated over O-acetylated primers, and to efficiently elongate the dimer of ManNAc-1-phosphate. The in vitro synthesized CPSA was purified, O-acetylated with recombinant CsaC, and proven to be identical to the natural CPSA by (1)H NMR, (31)P NMR, and immunoblotting. If all three enzymes and their substrates were combined in a one-pot reaction, nature identical CPSA was obtained. These data provide the basis for the development of novel vaccine production protocols.
Collapse
Affiliation(s)
- Timm Fiebig
- From the Institute for Cellular Chemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Friedrich Freiberger
- From the Institute for Cellular Chemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Vittoria Pinto
- Novartis Vaccines, Research, Via Fiorentina 1, 53100 Siena, Italy
| | | | - Alan Black
- College of Life Sciences, University of Dundee, Dundee, DD1 5EH, Scotland, United Kingdom, and
| | - Christa Litschko
- From the Institute for Cellular Chemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Andrea Bethe
- From the Institute for Cellular Chemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Dmitry Yashunsky
- the Institute of Biomedical Chemistry, Russian Academy of Medical Sciences, Pogodinskaya Street 10, Moscow 119832, Russian Federation
| | - Roberto Adamo
- Novartis Vaccines, Research, Via Fiorentina 1, 53100 Siena, Italy
| | - Andrei Nikolaev
- College of Life Sciences, University of Dundee, Dundee, DD1 5EH, Scotland, United Kingdom, and
| | - Francesco Berti
- Novartis Vaccines, Research, Via Fiorentina 1, 53100 Siena, Italy,
| | - Rita Gerardy-Schahn
- From the Institute for Cellular Chemistry, Hannover Medical School, 30625 Hannover, Germany,
| |
Collapse
|
33
|
Engineering the product profile of a polysialyltransferase. Nat Chem Biol 2014; 10:437-42. [PMID: 24727899 DOI: 10.1038/nchembio.1501] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Accepted: 02/24/2014] [Indexed: 01/08/2023]
Abstract
Oligo- and polysaccharides have myriad applications as therapeutic reagents from glycoconjugate vaccines to matrices for tissue engineering. Polysaccharide length may vary over several orders of magnitude and is a critical determinant of both their physical properties and biological activities. Therefore, the tailored synthesis of oligo- and polysaccharides of defined size is a major goal for glycoengineering. By mutagenesis and screening of a bacterial polysialyltransferase (polyST), we identified a single-residue switch that controls the size distribution of polymeric products. Specific substitutions at this site yielded distributive enzymes that synthesize polysaccharides with narrow size distribution ideal for glycoengineering applications. Mechanistic investigation revealed that the wild-type enzyme has an extended binding site that accommodates at least 20 residues of the growing polymer; changes in affinity along this binding site allow fine-tuning of the enzyme's product distribution.
Collapse
|