1
|
Draft genome of the bluefin tuna blood fluke, Cardicola forsteri. PLoS One 2022; 17:e0276287. [PMID: 36240154 PMCID: PMC9565688 DOI: 10.1371/journal.pone.0276287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/03/2022] [Indexed: 11/12/2022] Open
Abstract
The blood fluke Cardicola forsteri (Trematoda: Aporocotylidae) is a pathogen of ranched bluefin tuna in Japan and Australia. Genomics of Cardicola spp. have thus far been limited to molecular phylogenetics of select gene sequences. In this study, sequencing of the C. forsteri genome was performed using Illumina short-read and Oxford Nanopore long-read technologies. The sequences were assembled de novo using a hybrid of short and long reads, which produced a high-quality contig-level assembly (N50 > 430 kb and L50 = 138). The assembly was also relatively complete and unfragmented, comprising 66% and 7.2% complete and fragmented metazoan Benchmarking Universal Single-Copy Orthologs (BUSCOs), respectively. A large portion (> 55%) of the genome was made up of intergenic repetitive elements, primarily long interspersed nuclear elements (LINEs), while protein-coding regions cover > 6%. Gene prediction identified 8,564 hypothetical polypeptides, > 77% of which are homologous to published sequences of other species. The identification of select putative proteins, including cathepsins, calpains, tetraspanins, and glycosyltransferases is discussed. This is the first genome assembly of any aporocotylid, a major step toward understanding of the biology of this family of fish blood flukes and their interactions within hosts.
Collapse
|
2
|
van Noort K, Nguyen DL, Kriechbaumer V, Hawes C, Hokke CH, Schots A, Wilbers RHP. Functional characterization of Schistosoma mansoni fucosyltransferases in Nicotiana benthamiana plants. Sci Rep 2020; 10:18528. [PMID: 33116178 PMCID: PMC7595089 DOI: 10.1038/s41598-020-74485-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 09/25/2020] [Indexed: 12/13/2022] Open
Abstract
Helminth parasites secrete a wide variety of immunomodulatory proteins and lipids to dampen host immune responses. Many of these immunomodulatory compounds are modified with complex sugar structures (or glycans), which play an important role at the host-parasite interface. As an example, the human blood fluke Schistosoma mansoni produces highly fucosylated glycan structures on glycoproteins and glycolipids. Up to 20 different S. mansoni fucosyltransferase (SmFucT) genes can be found in genome databases, but thus far only one enzyme has been functionally characterized. To unravel the synthesis of highly fucosylated N-glycans by S. mansoni, we examined the ability of ten selected SmFucTs to modify N-glycans upon transient expression in Nicotiana benthamiana plants. All enzymes were localized in the plant Golgi apparatus, which allowed us to identify the SmFucTs involved in core fucosylation and the synthesis of complex antennary glycan motifs. This knowledge provides a starting point for investigations into the role of specific fucosylated glycan motifs of schistosomes in parasite-host interactions. The functionally characterized SmFucTs can also be applied to synthesize complex N-glycan structures on recombinant proteins to study their contribution to immunomodulation. Furthermore, this plant expression system will fuel the development of helminth glycoproteins for pharmaceutical applications or novel anti-helminth vaccines.
Collapse
Affiliation(s)
- Kim van Noort
- Laboratory of Nematology, Plant Sciences Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Dieu-Linh Nguyen
- Department of Parasitology, Leiden University Medical Center, Albinusdreef, 2333 ZA, Leiden, The Netherlands
| | - Verena Kriechbaumer
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Chris Hawes
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Cornelis H Hokke
- Department of Parasitology, Leiden University Medical Center, Albinusdreef, 2333 ZA, Leiden, The Netherlands
| | - Arjen Schots
- Laboratory of Nematology, Plant Sciences Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Ruud H P Wilbers
- Laboratory of Nematology, Plant Sciences Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
| |
Collapse
|
3
|
Abstract
Many invertebrates are either parasites themselves or vectors involved in parasite transmission; thereby, the interactions of parasites with final or intermediate hosts are often mediated by glycans. Therefore, it is of interest to compare the glycan structures or motifs present across invertebrate species. While a typical vertebrate modification such as sialic acid is rare in lower animals, antennal and core modifications of N-glycans are highly varied and range from core fucose, galactosylated fucose, fucosylated galactose, methyl groups, glucuronic acid and sulphate through to addition of zwitterionic moieties (phosphorylcholine, phosphoethanolamine and aminoethylphosphonate). Only in some cases are the enzymatic bases and the biological function of these modifications known. We are indeed still in the phase of discovering invertebrate glycomes primarily using mass spectrometry, but molecular biology and microarraying techniques are complementary to the determination of novel glycan structures and their functions.
Collapse
|
4
|
Sardar MYR, Krishnamurthy VR, Park S, Mandhapati AR, Wever WJ, Park D, Cummings RD, Chaikof EL. Synthesis of Lewis X-O-Core-1 threonine: A building block for O-linked Lewis X glycopeptides. Carbohydr Res 2017; 452:47-53. [PMID: 29065342 PMCID: PMC5682196 DOI: 10.1016/j.carres.2017.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/07/2017] [Accepted: 10/07/2017] [Indexed: 01/05/2023]
Abstract
LewisX (LeX) is a branched trisaccharide Galβ1→4(Fucα1→3)GlcNAc that is expressed on many cell surface glycoproteins and plays critical roles in innate and adaptive immune responses. However, efficient synthesis of glycopeptides bearing LeX remains a major limitation for structure-function studies of the LeX determinant. Here we report a total synthesis of a LeX pentasaccharide 1 using a regioselective 1-benzenesulfinyl piperidine/triflic anhydride promoted [3 + 2] glycosylation. The presence of an Fmoc-threonine amino acid facilitates incorporation of the pentasaccharide in solid phase peptide synthesis, providing a route to diverse O-linked LeX glycopeptides. The described approach is broadly applicable to the synthesis of a variety of complex glycopeptides containing O-linked LeX or sialyl LewisX (sLeX).
Collapse
Affiliation(s)
- Mohammed Y R Sardar
- Department of Surgery, Center for Drug Discovery and Translational Research, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis Street, Suite 9F, Boston, MA 02215, USA; Wyss Institute of Biologically Inspired Engineering, Harvard University, 110 Francis Street, Suite 9F, Boston, MA 02115, USA
| | - Venkata R Krishnamurthy
- Department of Surgery, Center for Drug Discovery and Translational Research, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis Street, Suite 9F, Boston, MA 02215, USA; Wyss Institute of Biologically Inspired Engineering, Harvard University, 110 Francis Street, Suite 9F, Boston, MA 02115, USA
| | - Simon Park
- Department of Surgery, Center for Drug Discovery and Translational Research, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis Street, Suite 9F, Boston, MA 02215, USA; Wyss Institute of Biologically Inspired Engineering, Harvard University, 110 Francis Street, Suite 9F, Boston, MA 02115, USA
| | - Appi Reddy Mandhapati
- Department of Surgery, Center for Drug Discovery and Translational Research, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis Street, Suite 9F, Boston, MA 02215, USA; Wyss Institute of Biologically Inspired Engineering, Harvard University, 110 Francis Street, Suite 9F, Boston, MA 02115, USA
| | - Walter J Wever
- Department of Surgery, Center for Drug Discovery and Translational Research, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis Street, Suite 9F, Boston, MA 02215, USA; Wyss Institute of Biologically Inspired Engineering, Harvard University, 110 Francis Street, Suite 9F, Boston, MA 02115, USA
| | - Dayoung Park
- Department of Surgery, Center for Drug Discovery and Translational Research, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis Street, Suite 9F, Boston, MA 02215, USA; Wyss Institute of Biologically Inspired Engineering, Harvard University, 110 Francis Street, Suite 9F, Boston, MA 02115, USA
| | - Richard D Cummings
- Department of Surgery, Center for Drug Discovery and Translational Research, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis Street, Suite 9F, Boston, MA 02215, USA
| | - Elliot L Chaikof
- Department of Surgery, Center for Drug Discovery and Translational Research, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis Street, Suite 9F, Boston, MA 02215, USA; Wyss Institute of Biologically Inspired Engineering, Harvard University, 110 Francis Street, Suite 9F, Boston, MA 02115, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
5
|
Wang ZQ, Liu RD, Sun GG, Song YY, Jiang P, Zhang X, Cui J. Proteomic Analysis of Trichinella spiralis Adult Worm Excretory-Secretory Proteins Recognized by Sera of Patients with Early Trichinellosis. Front Microbiol 2017; 8:986. [PMID: 28620363 PMCID: PMC5449722 DOI: 10.3389/fmicb.2017.00986] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/16/2017] [Indexed: 11/28/2022] Open
Abstract
The most commonly used serodiagnostic antigens for trichinellosis are the excretory-secretory (ES) antigens from T. spiralis muscle larvae (ML), but the specific antibodies against the ML ES antigens are usually negative during early stage of Trichinella infection. The recent studies demonstrated that T. spiralis adult worm (AW) antigens were recognized by mouse or swine infection sera on Western blot as early as 7–15 days post-infection (dpi), the AW antigens might contain the early diagnostic markers for trichinellosis. The purpose of this study was to screen early diagnostic antigens in T. spiralis AW ES proteins recognized by sera of early patients with trichinellosis. T. spiralis AW were collected at 72 h post-infection (hpi), and their ES antigens were analyzed by SDS-PAGE and Western blot. Our results showed that 5 protein bands (55, 48–50, 45, 44, and 36 kDa) were recognized by sera of early patients with trichinellosis collected at 19 dpi, and were subjected to shotgun LC–MS/MS and bioinformatics analyses. A total of 185 proteins were identified from T. spiralis protein database, of which 116 (67.2%) proteins had molecular weights of 30∼60 kDa, and 125 (67.6%) proteins with pI 4–7. Bioinformatic analyses showed that the identified proteins have a wide diversity of biological functions (binding of nucleotides, proteins, ions, carbohydrates, and lipids; hydrolase, transferase, and oxidoreductase, etc.). Several enzymes (e.g., adult-specific DNase II, serine protease and serine protease inhibitor) could be the invasion-related proteins and early diagnostic markers for trichinellosis. Moreover, recombinant T. spiralis serine protease (rTsSP-ZH68) was expressed in E. coli and its antigenicity was analyzed by Western blot with the early infection sera. The rTsSP-ZH68 was recognized by sera of infected mice at 8–10 dpi and sera of early patients with trichinellosis at 19 dpi. T. spiralis AW proteins identified in this study, especially serine protease, are the promising early diagnostic antigens and vaccine candidates for trichinellosis.
Collapse
Affiliation(s)
- Zhong Q Wang
- Department of Parasitology, Medical College, Zhengzhou UniversityZhengzhou, China
| | - Ruo D Liu
- Department of Parasitology, Medical College, Zhengzhou UniversityZhengzhou, China
| | - Ge G Sun
- Department of Parasitology, Medical College, Zhengzhou UniversityZhengzhou, China
| | - Yan Y Song
- Department of Parasitology, Medical College, Zhengzhou UniversityZhengzhou, China
| | - Peng Jiang
- Department of Parasitology, Medical College, Zhengzhou UniversityZhengzhou, China
| | - Xi Zhang
- Department of Parasitology, Medical College, Zhengzhou UniversityZhengzhou, China
| | - Jing Cui
- Department of Parasitology, Medical College, Zhengzhou UniversityZhengzhou, China
| |
Collapse
|