1
|
Turk A, Čeh E, Calin GA, Kunej T. Multiple omics levels of chronic lymphocytic leukemia. Cell Death Discov 2024; 10:293. [PMID: 38906881 PMCID: PMC11192936 DOI: 10.1038/s41420-024-02068-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 06/23/2024] Open
Abstract
Chronic lymphocytic leukemia (CLL) is a lymphoproliferative malignancy characterized by the proliferation of functionally mature but incompetent B cells. It is the most prevalent type of leukemia in Western populations, accounting for approximately 25% of new leukemia cases. While recent advances, such as ibrutinib and venetoclax treatment have improved patient outlook, aggressive forms of CLL such as Richter transformation still pose a significant challenge. This discrepancy may be due to the heterogeneity of factors contributing to CLL development at multiple -omics levels. However, information on the omics of CLL is fragmented, hindering multi-omics-based research into potential treatment options. To address this, we aggregated and presented a selection of important aspects of various omics levels of the disease in this review. The purpose of the present literature analysis is to portray examples of CLL studies from different omics levels, including genomics, epigenomics, transcriptomics, epitranscriptomics, proteomics, epiproteomics, metabolomics, glycomics and lipidomics, as well as those identified by multi-omics approaches. The review includes the list of 102 CLL-associated genes with relevant genomics information. While single-omics studies yield substantial and useful data, they omit a significant level of complex biological interplay present in the disease. As multi-omics studies integrate several different layers of data, they may be better suited for complex diseases such as CLL and have thus far yielded promising results. Future multi-omics studies may assist clinicians in improved treatment choices based on CLL subtypes as well as allow the identification of novel biomarkers and targets for treatments.
Collapse
Grants
- P4-0220 Javna Agencija za Raziskovalno Dejavnost RS (Slovenian Research Agency)
- Dr. Calin is the Felix L. Haas Endowed Professor in Basic Science. Work in G.A.C.’s laboratory is supported by NCI grants 1R01 CA182905-01 and 1R01CA222007-01A1, NIGMS grant 1R01GM122775-01, DoD Idea Award W81XWH-21-1-0030, a Team DOD grant in Gastric Cancer W81XWH-21-1-0715, a Chronic Lymphocytic Leukemia Moonshot Flagship project, a CLL Global Research Foundation 2019 grant, a CLL Global Research Foundation 2020 grant, a CLL Global Research Foundation 2022 grant, The G. Harold & Leila Y. Mathers Foundation, two grants from Torrey Coast Foundation, an Institutional Research Grant and Development Grant associated with the Brain SPORE 2P50CA127001.
Collapse
Affiliation(s)
- Aleksander Turk
- Clinical Institute of Genomic Medicine, University Clinical Centre Ljubljana, Ljubljana, Slovenia
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Eva Čeh
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - George A Calin
- Department of Translational Molecular Pathology, Division of Pathology, MD Anderson Cancer Center, University of Texas, Houston, TX, 77030, USA.
| | - Tanja Kunej
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
2
|
Xu H, Su X, Zuo Q, Zhang L, Chu X. The Research of a Large-Scale Analysis Platform for MNS Blood Group Identification Based on Long-Read Sequencing. Transfus Med Rev 2024:150836. [PMID: 38851986 DOI: 10.1016/j.tmrv.2024.150836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/16/2024] [Accepted: 05/10/2024] [Indexed: 06/10/2024]
Abstract
The objective of this study was to devise a novel approach for determining MNS blood group utilizing long-read sequencing (LRS) and to identify intricate genome variations associated with this blood group system. In this study, a total of 60 blood samples were collected from randomly selected Chinese Han blood donors. The amplification of the full-length sequences of GYPA exon 2-7 (11 kb) and GYPB exon 2-6 (7 kb) was conducted on the blood samples obtained from these 60 donors. Subsequently, the sequencing of these amplified sequences was performed using the PacBio platform. The obtained sequencing data were then compared with the reference sequence of the human genome (GRCh38) utilizing the pbmm2 software, resulting in the acquisition of the haploid sequences of GYPA and GYPB. The serological typing prediction was conducted using the International Society of Blood Transfusion (ISBT) database, while the analysis of SNVs sites was performed using deepvariant v1.2.0 software and reference sequence alignment. A total of 60 samples yielded unambiguous high-quality haplotypes, which can serve as a standardized reference sequence for molecular biology typing of MNSs in the Chinese population. In a total of 60 serological samples, the LRS method successfully identified the M, N, S, and s blood group antigens by analyzing specific genetic variations (c.59, c.71, c.72 for GYPA, and c.143 for GYPB), which aligned with the results obtained through conventional serological techniques. 4 Mur samples that had been previously validated through serology and molecular biology were successfully confirmed, and complete haploid sequences were obtained. Notably, one of the Mur samples exhibited a novel breakpoint, GYP (B1-136-B ψ 137-212-A213-229-B230-366), thereby representing a newly identified subtype. Single molecule sequencing, which eliminates the necessity for PCR amplification, effectively encompasses GC and high repeat regions, enhancing accuracy in quantifying mutations with low abundance or frequency. By employing LRS analysis of the core region of GYPA and GYPB, diverse genotypes of MNS can be precisely and reliably identified in a single assay. This approach presents a comprehensive, expeditious, and precise novel method for the categorization and investigation of MNS blood group system.
Collapse
Affiliation(s)
- Hua Xu
- Shaanxi Blood Center, Xi'an, China.
| | | | | | | | | |
Collapse
|
3
|
Montalban B, Hinou H. Glycoblotting-Based Ovo-Sulphoglycomics Reveals Phosphorylated N-Glycans as a Possible Host Factor of AIV Prevalence in Waterfowls. ACS Infect Dis 2024; 10:650-661. [PMID: 38173147 PMCID: PMC10863614 DOI: 10.1021/acsinfecdis.3c00520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/27/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024]
Abstract
Sulfated N-glycans play a crucial role in the interaction between influenza A virus (IAV) and its host. These glycans have been found to enhance viral replication, highlighting their significance in IAV propagation. This study investigated the expression of acidic N-glycans, specifically sulfated and phosphorylated glycans, in the egg whites of 72 avian species belonging to the Order Anseriformes (waterfowls). We used the glycoblotting-based sulphoglycomics approach to elucidate the diversity of acidic N-glycans and infer their potential role in protecting embryos from infections. Family-specific variations in sulfated and phosphorylated N-glycan profiles were identified in waterfowl egg whites. Different waterfowl species exhibited distinct expressions of sulfated trans-Gal(+) and trans-Gal(-) N-glycan structures. Additionally, species-specific expression of phosphorylated N-glycans was observed. Furthermore, it was found that waterfowl species with high avian influenza virus (AIV) prevalence displayed a higher abundance of phosphorylated hybrid and high-mannose N-glycans on their egg whites. These findings shed light on the importance of phosphorylated and sulfated N-glycans in understanding the role of acidic glycans in IAV propagation.
Collapse
Affiliation(s)
- Bryan
M. Montalban
- Laboratory
of Advanced Chemical Biology, Graduate School of Life Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Hiroshi Hinou
- Laboratory
of Advanced Chemical Biology, Graduate School of Life Science, Hokkaido University, Sapporo 001-0021, Japan
- Frontier
Research Center for Advanced Material and Life Science, Faculty of
Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan
| |
Collapse
|
4
|
Chang LY, Sridharan D, Angata T. Quantitative Analysis of Siglec Ligands by Flow Cytometry. Curr Protoc 2023; 3:e949. [PMID: 38050649 DOI: 10.1002/cpz1.949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Siglecs (sialic acid-binding, immunoglobulin superfamily, lectins) are a family of transmembrane receptor-type glycan recognition proteins in vertebrates that are primarily expressed on leukocytes and regulate immune responses. Siglecs are involved in several diseases, such as cancer and neurodegenerative diseases. Most Siglecs suppress the activation of leukocytes by recognizing ligands containing sialic acid, a group of acidic sugars commonly found in vertebrate glycans, but rare among microbes. Siglec ligands are critical in the interaction between leukocytes and target cells. The abundance of the Siglec ligand is influenced by both the abundance of the glycoconjugate carrier (glycoprotein or glycolipid) and that of the terminal glycan epitope directly recognized by the Siglec. Therefore, a direct approach to evaluate the expression level of a Siglec ligand on cells of interest is to analyze the binding of recombinant Siglec protein to these cells. In this article, we describe a protocol for semi-quantitatively analyzing the expression level of Siglec ligands via flow cytometry using recombinant Siglec-Fc fusion protein. Support protocols describe how to remove sialic acids from the cell surface with sialidase under mild conditions to demonstrate the sialic acid dependence of Siglec binding, and the preparation of recombinant Siglec-Fc fusion proteins by transient transfection of mammalian cells. © 2023 Wiley Periodicals LLC. Basic Protocol: Quantitative analysis of Siglec ligands on mammalian cells via flow cytometry with recombinant Siglec-Fc fusion protein Support Protocol 1: Sialidase treatment of mammalian cells Support Protocol 2: Preparation of recombinant Siglec-Fc fusion protein via transient transfection of mammalian cells.
Collapse
Affiliation(s)
- Lan-Yi Chang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Deepa Sridharan
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Takashi Angata
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
5
|
Montalban BM, Hinou H. Glycoblotting enables seamless and straightforward workflow for MALDI-TOF/MS-based sulphoglycomics of N- and O-glycans. Proteomics 2023; 23:e2300012. [PMID: 37316936 DOI: 10.1002/pmic.202300012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/22/2023] [Accepted: 05/22/2023] [Indexed: 06/16/2023]
Abstract
Sulfated N- and O-glycans exist in trace levels which are challenging to detect, especially when abundant neutral and sialylated glycans are present. Current matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS)-based sulfoglycomics approaches effectively utilize permethylation to discriminate sulfated glycans from sialyl-glycans. And a charge-based separation to isolate the sulfated glycans from the rest of the permethylated neutral and sialyl-glycans. However, these approaches suffer from concomitant sample losses during cleanup steps. Herein, we describe Glycoblotting as a straightforward complementary method with seamless glycan purification, enrichment, methylation, and labeling on a single platform to address sulfated glycan enrichment, sialic acid methylation, and sample loss. Glycoblottings' on-bead chemoselective ligation of reducing sugars with hydrazide showed excellent recovery of sulfated glycans, allowing the detection of more sulfated glycan species. On-bead methyl esterification of sialic acid using 3-methyl-1-p-tolyltriazene (MTT) effectively discriminates sulfated glycans from sialyl-glycans. Furthermore, we have shown that using MTT as a methylating agent allowed us to simultaneously detect and differentiate sulfate from phosphate groups in isobaric N-glycan species. We believe that Glycoblotting will contribute significantly to the MALDI-TOF MS-based Sulphoglycomics workflow.
Collapse
Affiliation(s)
- Bryan M Montalban
- Laboratory of Advanced Chemical Biology, Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Hiroshi Hinou
- Laboratory of Advanced Chemical Biology, Graduate School of Life Science, Hokkaido University, Sapporo, Japan
- Faculty of Advanced Life Science, Frontier Research Center for Advanced Material and Life Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
6
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2017-2018. MASS SPECTROMETRY REVIEWS 2023; 42:227-431. [PMID: 34719822 DOI: 10.1002/mas.21721] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2018. Also included are papers that describe methods appropriate to glycan and glycoprotein analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, new methods, matrices, derivatization, MALDI imaging, fragmentation and the use of arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Most of the applications are presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and highlights the impact that MALDI imaging is having across a range of diciplines. MALDI is still an ideal technique for carbohydrate analysis and advancements in the technique and the range of applications continue steady progress.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
| |
Collapse
|
7
|
Zhang Z, Dong M, Zallot R, Blackburn GM, Wang N, Wang C, Chen L, Baumann P, Wu Z, Wang Z, Fan H, Roth C, Jin Y, He Y. Mechanistic and Structural Insights into the Specificity and Biological Functions of Bacterial Sulfoglycosidases. ACS Catal 2022. [DOI: 10.1021/acscatal.2c05405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Zhen Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, P. R. China
- School of Chemistry, Cardiff University, Cardiff CF10 3AT, U.K
| | - Mochen Dong
- School of Chemistry, Cardiff University, Cardiff CF10 3AT, U.K
| | - Rémi Zallot
- Institute of Life Sciences, Swansea University Medical School, Swansea SA2 8PP, U.K
| | - George Michael Blackburn
- School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, U.K
| | - Nini Wang
- Key Laboratory of Synthetic and Natural Functional Molecule, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, P. R. China
| | - Chengjian Wang
- Glycobiology and Glycotechnology Research Center, College of Food Science and Technology, Northwest University, Xi’an 710069, P. R. China
| | - Long Chen
- School of Chemistry, Cardiff University, Cardiff CF10 3AT, U.K
| | - Patrick Baumann
- School of Chemistry, Cardiff University, Cardiff CF10 3AT, U.K
| | - Zuyan Wu
- School of Chemistry, Cardiff University, Cardiff CF10 3AT, U.K
| | - Zhongfu Wang
- Glycobiology and Glycotechnology Research Center, College of Food Science and Technology, Northwest University, Xi’an 710069, P. R. China
| | - Haiming Fan
- Key Laboratory of Synthetic and Natural Functional Molecule, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, P. R. China
| | - Christian Roth
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Arnimallee 22, 14195 Berlin, German
| | - Yi Jin
- School of Chemistry, Cardiff University, Cardiff CF10 3AT, U.K
| | - Yuan He
- Key Laboratory of Synthetic and Natural Functional Molecule, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, P. R. China
| |
Collapse
|
8
|
Chang LY, Liang SY, Lu SC, Tseng HC, Tsai HY, Tang CJ, Sugata M, Chen YJ, Chen YJ, Wu SJ, Lin KI, Khoo KH, Angata T. Molecular Basis and Role of Siglec-7 Ligand Expression on Chronic Lymphocytic Leukemia B Cells. Front Immunol 2022; 13:840388. [PMID: 35711441 PMCID: PMC9195294 DOI: 10.3389/fimmu.2022.840388] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
Siglec-7 (sialic acid-binding immunoglobulin-like lectin 7) is an immune checkpoint-like glycan recognition protein on natural killer (NK) cells. Cancer cells often upregulate Siglec ligands to subvert immunosurveillance, but the molecular basis of Siglec ligands has been elusive. In this study, we investigated Siglec-7 ligands on chronic lymphocytic leukemia (CLL) B cells. CLL B cells express higher levels of Siglec-7 ligands compared with healthy donor B cells, and enzymatic removal of sialic acids or sialomucins makes them more sensitive to NK cell cytotoxicity. Gene knockout experiments have revealed that the sialyltransferase ST6GalNAc-IV is responsible for the biosynthesis of disialyl-T (Neu5Acα2-3Galβ1-3[Neu5Acα2-6]GalNAcα1-), which is the glycotope recognized by Siglec-7, and that CD162 and CD45 are the major carriers of this glycotope on CLL B cells. Analysis of public transcriptomic datasets indicated that the low expression of GCNT1 (encoding core 2 GlcNAc transferase, an enzyme that competes against ST6GalNAc-IV) and high expression of ST6GALNAC4 (encoding ST6GalNAc-IV) in CLL B cells, together enhancing the expression of the disialyl-T glycotope, are associated with poor patient prognosis. Taken together, our results determined the molecular basis of Siglec-7 ligand overexpression that protects CLL B cells from NK cell cytotoxicity and identified disialyl-T as a potential prognostic marker of CLL.
Collapse
Affiliation(s)
- Lan-Yi Chang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Suh-Yuen Liang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Shao-Chia Lu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Huan Chuan Tseng
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Ho-Yang Tsai
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Chin-Ju Tang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Marcelia Sugata
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Yi-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Yu-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Shang-Ju Wu
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Kuo-I Lin
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Kay-Hooi Khoo
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Takashi Angata
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
9
|
Sun L, Konstantinidi A, Ye Z, Nason R, Zhang Y, Büll C, Kahl-Knutson B, Hansen L, Leffler H, Vakhrushev SY, Yang Z, Clausen H, Narimatsu Y. Installation of O-glycan sulfation capacities in human HEK293 cells for display of sulfated mucins. J Biol Chem 2021; 298:101382. [PMID: 34954141 PMCID: PMC8789585 DOI: 10.1016/j.jbc.2021.101382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/30/2021] [Accepted: 11/02/2021] [Indexed: 11/25/2022] Open
Abstract
The human genome contains at least 35 genes that encode Golgi sulfotransferases that function in the secretory pathway, where they are involved in decorating glycosaminoglycans, glycolipids, and glycoproteins with sulfate groups. Although a number of important interactions by proteins such as selectins, galectins, and sialic acid–binding immunoglobulin-like lectins are thought to mainly rely on sulfated O-glycans, our insight into the sulfotransferases that modify these glycoproteins, and in particular GalNAc-type O-glycoproteins, is limited. Moreover, sulfated mucins appear to accumulate in respiratory diseases, arthritis, and cancer. To explore further the genetic and biosynthetic regulation of sulfated O-glycans, here we expanded a cell-based glycan array in the human embryonic kidney 293 (HEK293) cell line with sulfation capacities. We stably engineered O-glycan sulfation capacities in HEK293 cells by site-directed knockin of sulfotransferase genes in combination with knockout of genes to eliminate endogenous O-glycan branching (core2 synthase gene GCNT1) and/or sialylation capacities in order to provide simplified substrates (core1 Galβ1–3GalNAcα1–O-Ser/Thr) for the introduced sulfotransferases. Expression of the galactose 3-O-sulfotransferase 2 in HEK293 cells resulted in sulfation of core1 and core2 O-glycans, whereas expression of galactose 3-O-sulfotransferase 4 resulted in sulfation of core1 only. We used the engineered cell library to dissect the binding specificity of galectin-4 and confirmed binding to the 3-O-sulfo-core1 O-glycan. This is a first step toward expanding the emerging cell-based glycan arrays with the important sulfation modification for display and production of glycoconjugates with sulfated O-glycans.
Collapse
Affiliation(s)
- Lingbo Sun
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark; Medical College of Yan'an University, Yan'an University, Yan'an, 716000, Shaanxi Province, China
| | - Andriana Konstantinidi
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Zilu Ye
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Rebecca Nason
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Yuecheng Zhang
- Department of Biomedical Sciences, Faculty of Health and Society, Malmö University, Jan Waldenströms gata 25, 205 06 Malmö, Sweden
| | - Christian Büll
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Barbro Kahl-Knutson
- Department of Laboratory Medicine, Section MIG, Lund University BMC-C1228b, Klinikgatan28, 221 84 Lund, Sweden
| | - Lars Hansen
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Hakon Leffler
- Department of Laboratory Medicine, Section MIG, Lund University BMC-C1228b, Klinikgatan28, 221 84 Lund, Sweden
| | - Sergey Y Vakhrushev
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Zhang Yang
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark.
| | - Yoshiki Narimatsu
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark.
| |
Collapse
|
10
|
Chuzel L, Fossa SL, Boisvert ML, Cajic S, Hennig R, Ganatra MB, Reichl U, Rapp E, Taron CH. Combining functional metagenomics and glycoanalytics to identify enzymes that facilitate structural characterization of sulfated N-glycans. Microb Cell Fact 2021; 20:162. [PMID: 34419057 PMCID: PMC8379841 DOI: 10.1186/s12934-021-01652-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/06/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Sulfate modification of N-glycans is important for several biological functions such as clearance of pituitary hormones or immunoregulation. Yet, the prevalence of this N-glycan modification and its functions remain largely unexplored. Characterization of N-glycans bearing sulfate modifications is hampered in part by a lack of enzymes that enable site-specific detection of N-glycan sulfation. In this study, we used functional metagenomic screening to identify enzymes that act upon sulfated N-acetylglucosamine (GlcNAc). Using multiplexed capillary gel electrophoresis with laser-induced fluorescence detection (xCGE-LIF) -based glycoanalysis we proved their ability to act upon GlcNAc-6-SO4 on N-glycans. RESULTS Our screen identified a sugar-specific sulfatase that specifically removes sulfate from GlcNAc-6-SO4 when it is in a terminal position on an N-glycan. Additionally, in the absence of calcium, this sulfatase binds to the sulfated glycan but does not remove the sulfate group, suggesting it could be used for selective isolation of sulfated N-glycans. Further, we describe isolation of a sulfate-dependent hexosaminidase that removes intact GlcNAc-6-SO4 (but not asulfated GlcNAc) from a terminal position on N-glycans. Finally, the use of these enzymes to detect the presence of sulfated N-glycans by xCGE-LIF is demonstrated. CONCLUSION The present study demonstrates the feasibility of using functional metagenomic screening combined with glycoanalytics to discover enzymes that act upon chemical modifications of glycans. The discovered enzymes represent new specificities that can help resolve the presence of GlcNAc-6-SO4 in N-glycan structural analyses.
Collapse
Affiliation(s)
- Léa Chuzel
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, 39106, Magdeburg, Germany
- New England Biolabs, Ipswich, MA, 01938, USA
| | | | | | - Samanta Cajic
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, 39106, Magdeburg, Germany
| | | | | | - Udo Reichl
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, 39106, Magdeburg, Germany
- Chair of Bioprocess Engineering, Otto-von-Guericke University, 39106, Magdeburg, Germany
| | - Erdmann Rapp
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, 39106, Magdeburg, Germany
- glyXera GmbH, 39120, Magdeburg, Germany
| | | |
Collapse
|
11
|
McKitrick TR, Bernard SM, Noll AJ, Collins BC, Goth CK, McQuillan AM, Heimburg-Molinaro J, Herrin BR, Wilson IA, Cooper MD, Cummings RD. Novel lamprey antibody recognizes terminal sulfated galactose epitopes on mammalian glycoproteins. Commun Biol 2021; 4:674. [PMID: 34083726 PMCID: PMC8175384 DOI: 10.1038/s42003-021-02199-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 04/14/2021] [Indexed: 12/19/2022] Open
Abstract
The terminal galactose residues of N- and O-glycans in animal glycoproteins are often sialylated and/or fucosylated, but sulfation, such as 3-O-sulfated galactose (3-O-SGal), represents an additional, but poorly understood modification. To this end, we have developed a novel sea lamprey variable lymphocyte receptor (VLR) termed O6 to explore 3-O-SGal expression. O6 was engineered as a recombinant murine IgG chimera and its specificity and affinity to the 3-O-SGal epitope was defined using a variety of approaches, including glycan and glycoprotein microarray analyses, isothermal calorimetry, ligand-bound crystal structure, FACS, and immunohistochemistry of human tissue macroarrays. 3-O-SGal is expressed on N-glycans of many plasma and tissue glycoproteins, but recognition by O6 is often masked by sialic acid and thus exposed by treatment with neuraminidase. O6 recognizes many human tissues, consistent with expression of the cognate sulfotransferases (GAL3ST-2 and GAL3ST-3). The availability of O6 for exploring 3-O-SGal expression could lead to new biomarkers for disease and aid in understanding the functional roles of terminal modifications of glycans and relationships between terminal sulfation, sialylation and fucosylation.
Collapse
Affiliation(s)
- Tanya R McKitrick
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Steffen M Bernard
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Alexander J Noll
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Enteric Disease Department, Naval Medical Research Center, Silver Spring, MD, USA
| | - Bernard C Collins
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Christoffer K Goth
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Alyssa M McQuillan
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jamie Heimburg-Molinaro
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Brantley R Herrin
- Department of Pathology and Laboratory Medicine, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
- Acceleron Pharma, Boston, MA, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Max D Cooper
- Department of Pathology and Laboratory Medicine, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
12
|
A mass spectrometry-based glycotope-centric cellular glycomics is the more fruitful way forward to see the forest for the trees. Biochem Soc Trans 2021; 49:55-69. [PMID: 33492355 DOI: 10.1042/bst20190861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 02/08/2023]
Abstract
The nature of protein glycosylation renders cellular glycomics a very challenging task in having to deal with all the disparate glycans carried on membrane glycoproteins. Rapid mapping by mass spectrometry analysis provides only a coarse sketch of the glycomic complexity based primarily on glycosyl compositions, whereby the missing high-resolution structural details require a combination of multi-mode separations and multi-stages of induced fragmentation to gain sufficiently discriminative precision, often at the expenses of throughput and sensitivity. Given the available technology and foreseeable advances in the near future, homing in on resolving the terminal fucosylated, sialylated and/or sulfated structural units, or glycotopes, maybe a more pragmatic and ultimately more rewarding approach to gain insights into myriad biological processes mediated by these terminal coding units carried on important glycoproteins, to be decoded by a host of endogenous glycan-binding proteins and antibodies. A broad overview of recent technical advances and limitations in cellular glycomics is first provided as a backdrop to the propounded glycotope-centric approach based on advanced nanoLC-MS2/MS3 analysis of permethylated glycans. To prioritize analytical focus on the more tangible glycotopes is akin to first identifying the eye-catching and characteristic-defining flowers and fruits of the glyco-forest, to see the forest for the trees. It has the best prospects of attaining the much-needed balance in sensitivity, structural precision and analytical throughput to match advances in other omics.
Collapse
|
13
|
Harvey DJ. NEGATIVE ION MASS SPECTROMETRY FOR THE ANALYSIS OF N-LINKED GLYCANS. MASS SPECTROMETRY REVIEWS 2020; 39:586-679. [PMID: 32329121 DOI: 10.1002/mas.21622] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/13/2019] [Accepted: 12/22/2019] [Indexed: 05/03/2023]
Abstract
N-glycans from glycoproteins are complex, branched structures whose structural determination presents many analytical problems. Mass spectrometry, usually conducted in positive ion mode, often requires extensive sample manipulation, usually by derivatization such as permethylation, to provide the necessary structure-revealing fragment ions. The newer but, so far, lesser used negative ion techniques, on the contrary, provide a wealth of structural information not present in positive ion spectra that greatly simplify the analysis of these compounds and can usually be conducted without the need for derivatization. This review describes the use of negative ion mass spectrometry for the structural analysis of N-linked glycans and emphasises the many advantages that can be gained by this mode of operation. Biosynthesis and structures of the compounds are described followed by methods for release of the glycans from the protein. Methods for ionization are discussed with emphasis on matrix-assisted laser desorption/ionization (MALDI) and methods for producing negative ions from neutral compounds. Acidic glycans naturally give deprotonated species under most ionization conditions. Fragmentation of negative ions is discussed next with particular reference to those ions that are diagnostic for specific features such as the branching topology of the glycans and substitution positions of moieties such as fucose and sulfate, features that are often difficult to identify easily by conventional techniques such as positive ion fragmentation and exoglycosidase digestions. The advantages of negative over positive ions for this structural work are emphasised with an example of a series of glycans where all other methods failed to produce a structure. Fragmentation of derivatized glycans is discussed next, both with respect to derivatives at the reducing terminus of the molecules, and to methods for neutralization of the acidic groups on sialic acids to both stabilize them for MALDI analysis and to produce the diagnostic fragments seen with the neutral glycans. The use of ion mobility, combined with conventional mass spectrometry is described with emphasis on its use to extract clean glycan spectra both before and after fragmentation, to separate isomers and its use to extract additional information from separated fragment ions. A section on applications follows with examples of the identification of novel structures from lower organisms and tables listing the use of negative ions for structural identification of specific glycoproteins, glycans from viruses and uses in the biopharmaceutical industry and in medicine. The review concludes with a summary of the advantages and disadvantages of the technique. © 2020 John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
- Centre for Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Life Sciences Building 85, Highfield Campus, Southampton, SO17 1BJ, United Kingdom
| |
Collapse
|
14
|
Mass spectrometry-based qualitative and quantitative N-glycomics: An update of 2017-2018. Anal Chim Acta 2019; 1091:1-22. [PMID: 31679562 DOI: 10.1016/j.aca.2019.10.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 10/04/2019] [Accepted: 10/05/2019] [Indexed: 12/14/2022]
Abstract
N-glycosylation is one of the most frequently occurring protein post-translational modifications (PTMs) with broad cellular, physiological and pathological relevance. Mass spectrometry-based N-glycomics has become the state-of-the-art instrumental analytical pipeline for sensitive, high-throughput and comprehensive characterization of N-glycans and N-glycomes. Improvement and new development of methods in N-glycan release, enrichment, derivatization, isotopic labeling, separation, ionization, MS, tandem MS and informatics accompany side-by-side wider and deeper application. This review provides a comprehensive update of mass spectrometry-based qualitative and quantitative N-glycomics in the years of 2017-2018.
Collapse
|
15
|
She YM, Li X, Cyr TD. Remarkable Structural Diversity of N-Glycan Sulfation on Influenza Vaccines. Anal Chem 2019; 91:5083-5090. [DOI: 10.1021/acs.analchem.8b05372] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Yi-Min She
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, Health Canada, Ottawa, Ontario K1A 0K9, Canada
| | - Xuguang Li
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, Health Canada, Ottawa, Ontario K1A 0K9, Canada
| | - Terry D. Cyr
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, Health Canada, Ottawa, Ontario K1A 0K9, Canada
| |
Collapse
|
16
|
Yamakawa N, Vanbeselaere J, Chang LY, Yu SY, Ducrocq L, Harduin-Lepers A, Kurata J, Aoki-Kinoshita KF, Sato C, Khoo KH, Kitajima K, Guerardel Y. Systems glycomics of adult zebrafish identifies organ-specific sialylation and glycosylation patterns. Nat Commun 2018; 9:4647. [PMID: 30405127 PMCID: PMC6220181 DOI: 10.1038/s41467-018-06950-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 09/26/2018] [Indexed: 12/31/2022] Open
Abstract
The emergence of zebrafish Danio rerio as a versatile model organism provides the unique opportunity to monitor the functions of glycosylation throughout vertebrate embryogenesis, providing insights into human diseases caused by glycosylation defects. Using a combination of chemical modifications, enzymatic digestion and mass spectrometry analyses, we establish here the precise glycomic profiles of eight individual zebrafish organs and demonstrate that the protein glycosylation and glycosphingolipid expression patterns exhibits exquisite specificity. Concomitant expression screening of a wide array of enzymes involved in the synthesis and transfer of sialic acids shows that the presence of organ-specific sialylation motifs correlates with the localized activity of the corresponding glycan biosynthesis pathways. These findings provide a basis for the rational design of zebrafish lines expressing desired glycosylation profiles.
Collapse
Affiliation(s)
- Nao Yamakawa
- Université de Lille, CNRS, UMR 8576 - UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F- 59000, Lille, France.,Bioscience and Biotechnology Center, Nagoya University, Nagoya, 464-8601, Japan
| | - Jorick Vanbeselaere
- Université de Lille, CNRS, UMR 8576 - UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F- 59000, Lille, France
| | - Lan-Yi Chang
- Université de Lille, CNRS, UMR 8576 - UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F- 59000, Lille, France.,Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Shin-Yi Yu
- Université de Lille, CNRS, UMR 8576 - UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F- 59000, Lille, France
| | - Lucie Ducrocq
- Université de Lille, CNRS, UMR 8576 - UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F- 59000, Lille, France
| | - Anne Harduin-Lepers
- Université de Lille, CNRS, UMR 8576 - UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F- 59000, Lille, France
| | - Junichi Kurata
- Faculty of Science and Engineering, Soka University, Hachioji, Tokyo, 192-8577, Japan
| | | | - Chihiro Sato
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, 464-8601, Japan
| | - Kay-Hooi Khoo
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Ken Kitajima
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, 464-8601, Japan
| | - Yann Guerardel
- Université de Lille, CNRS, UMR 8576 - UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F- 59000, Lille, France.
| |
Collapse
|
17
|
Pang X, Li H, Guan F, Li X. Multiple Roles of Glycans in Hematological Malignancies. Front Oncol 2018; 8:364. [PMID: 30237983 PMCID: PMC6135871 DOI: 10.3389/fonc.2018.00364] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 08/17/2018] [Indexed: 01/05/2023] Open
Abstract
The three types of blood cells (red blood cells for carrying oxygen, white blood cells for immune protection, and platelets for wound clotting) arise from hematopoietic stem/progenitor cells in the adult bone marrow, and function in physiological regulation and communication with local microenvironments to maintain systemic homeostasis. Hematological malignancies are relatively uncommon malignant disorders derived from the two major blood cell lineages: myeloid (leukemia) and lymphoid (lymphoma). Malignant clones lose their regulatory mechanisms, resulting in production of a large number of dysfunctional cells and destruction of normal hematopoiesis. Glycans are one of the four major types of essential biological macromolecules, along with nucleic acids, proteins, and lipids. Major glycan subgroups are N-glycans, O-glycans, glycosaminoglycans, and glycosphingolipids. Aberrant expression of glycan structures, resulting from dysregulation of glycan-related genes, is associated with cancer development and progression in terms of cell signaling and communication, tumor cell dissociation and invasion, cell-matrix interactions, tumor angiogenesis, immune modulation, and metastasis formation. Aberrant glycan expression occurs in most hematological malignancies, notably acute myeloid leukemia, myeloproliferative neoplasms, and multiple myeloma, etc. Here, we review recent research advances regarding aberrant glycans, their related genes, and their roles in hematological malignancies. Our improved understanding of the mechanisms that underlie aberrant patterns of glycosylation will lead to development of novel, more effective therapeutic approaches targeted to hematological malignancies.
Collapse
Affiliation(s)
- Xingchen Pang
- School of Biotechnology, Jiangnan University, Wuxi, China
| | - Hongjiao Li
- College of Life Science, Northwest University, Xi'an, China
| | - Feng Guan
- School of Biotechnology, Jiangnan University, Wuxi, China.,College of Life Science, Northwest University, Xi'an, China
| | - Xiang Li
- College of Life Science, Northwest University, Xi'an, China.,Wuxi Medical School, Jiangnan University, Wuxi, China
| |
Collapse
|
18
|
Issa SMA, Vitiazeva V, Hayes CA, Karlsson NG. Higher Energy Collisional Dissociation Mass Spectrometry of Sulfated O-Linked Oligosaccharides. J Proteome Res 2018; 17:3259-3267. [DOI: 10.1021/acs.jproteome.8b00376] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Samah M. A. Issa
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Box 440, Medicinaregatan 9A, 405 30 Gothenburg, Sweden
| | - Varvara Vitiazeva
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Box 440, Medicinaregatan 9A, 405 30 Gothenburg, Sweden
| | - Catherine A. Hayes
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Box 440, Medicinaregatan 9A, 405 30 Gothenburg, Sweden
| | - Niclas G. Karlsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Box 440, Medicinaregatan 9A, 405 30 Gothenburg, Sweden
| |
Collapse
|
19
|
Kuo CW, Guu SY, Khoo KH. Distinctive and Complementary MS 2 Fragmentation Characteristics for Identification of Sulfated Sialylated N-Glycopeptides by nanoLC-MS/MS Workflow. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:1166-1178. [PMID: 29644550 DOI: 10.1007/s13361-018-1919-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/07/2018] [Accepted: 02/08/2018] [Indexed: 06/08/2023]
Abstract
High sensitivity identification of sulfated glycans carried on specific sites of glycoproteins is an important requisite for investigation of molecular recognition events involved in diverse biological processes. However, aiming for resolving site-specific glycosylation of sulfated glycopeptides by direct LC-MS2 sequencing is technically most challenging. Other than the usual limiting factors such as lower abundance and ionization efficiency compared to analysis of non-glycosylated peptides, confident identification of sulfated glycopeptides among the more abundant non-sulfated glycopeptides requires additional considerations in the selective enrichment and detection strategies. Metal oxide has been applied to enrich phosphopeptides and sialylated glycopeptides, but its use to capture sulfated glycopeptides has not been investigated. Likewise, various complementary MS2 fragmentation modes have yet to be tested against sialylated and non-sialylated sulfoglycopeptides due to limited appropriate sample availability. In this study, we have investigated the feasibility of sequencing tryptic sulfated N-glycopeptide and its MS2 fragmentation characteristics by first optimizing the enrichment methods to allow efficient LC-MS detection and MS2 analysis by a combination of CID, HCD, ETD, and EThcD on hybrid and tribrid Orbitrap instruments. Characteristic sulfated glyco-oxonium ions and direct loss of sulfite from precursors were detected as evidences of sulfate modification. It is anticipated that the technical advances demonstrated in this study would allow a feasible extension of our sulfoglycomic analysis to sulfoglycoproteomics. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Chu-Wei Kuo
- Institute of Biological Chemistry, Academia Sinica, 128, Academia Road, Sec. 2, Nankang, Taipei, 11529, Taiwan
| | - Shih-Yun Guu
- Institute of Biological Chemistry, Academia Sinica, 128, Academia Road, Sec. 2, Nankang, Taipei, 11529, Taiwan
| | - Kay-Hooi Khoo
- Institute of Biological Chemistry, Academia Sinica, 128, Academia Road, Sec. 2, Nankang, Taipei, 11529, Taiwan.
| |
Collapse
|