1
|
Subramanian SP, Gundry RL. Integration of Web-Based Tools to Visualize, Integrate, and Interpret Glycogene Expression and Glycomics Data. Methods Mol Biol 2024; 2836:97-109. [PMID: 38995538 PMCID: PMC11633445 DOI: 10.1007/978-1-0716-4007-4_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Glycosylation is the most abundant and diverse post-translational modification occurring on proteins. Glycans play important roles in modulating cell adhesion, growth, development, and differentiation. Changes in glycosylation affect protein structure and function and contribute to disease processes. Therefore, understanding glycosylation patterns is key for the identification of targets for the diagnosis of diseases, cellular states, and therapy. Glycosylation is a non template-driven process governed by the action of numerous enzymes and substrate availability that varies among cell types and species. Therefore, qualitative and quantitative assessment of global glycosylation and individual glycans remains challenging because it requires integration of multiple complex data types. Glycan structure and quantity data are often integrated with assessments of gene expression to aid contextualization of observed glycosylation changes within biological processes. However, correlating glycogene expression to the glycan structure is challenging because transcriptional changes may not always concur with the final gene product; there is often a lack of information on nucleotide sugar pools, and the final glycan structure is the result of many different glycogenes acting in concert. To overcome these challenges, interactive online tools are emerging as key resources for facilitating the analysis and integration of glycomics and glycogene expression data. Importantly, these tools work in concurrence with glycan biosynthetic schemes and therefore provide a clear indication of the molecular pathways where the glycan and glycogene are involved. In this chapter, we describe the applications of four freely available online tools that can be used for integrated visualization, interpretation, and presentation of RNAseq and glycomics results.
Collapse
Affiliation(s)
- Sabarinath Peruvemba Subramanian
- CardiOmics Program, Center for Heart and Vascular Research, and Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Rebekah L Gundry
- CardiOmics Program, Center for Heart and Vascular Research, and Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
2
|
Toukach PV. Supplementing the Carbohydrate Structure Database with glycoepitopes. Glycobiology 2023; 33:528-531. [PMID: 37306951 DOI: 10.1093/glycob/cwad043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/10/2023] [Accepted: 05/27/2023] [Indexed: 06/13/2023] Open
Abstract
Carbohydrate structures in the Carbohydrate Structure Database have been referenced to glycoepitopes from the Immune Epitope Database allowing users to explore the glycan structures and contained epitopes. Starting with an epitope, one can figure out the glycans from other organisms that share the same structural determinant, and retrieve the associated taxonomical, medical, and other data. This database mapping demonstrates the advantages of the integration of immunological and glycomic databases.
Collapse
Affiliation(s)
- Philip V Toukach
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Laboratory of carbohydrate chemistry and biocides, Leninsky pr. 47, Moscow 119991, Russia
| |
Collapse
|
3
|
Lisacek F, Tiemeyer M, Mazumder R, Aoki-Kinoshita KF. Worldwide Glycoscience Informatics Infrastructure: The GlySpace Alliance. JACS AU 2023; 3:4-12. [PMID: 36711080 PMCID: PMC9875223 DOI: 10.1021/jacsau.2c00477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 06/18/2023]
Abstract
The GlySpace Alliance was formed in 2018 among the principal investigators of three major glycoscience portals: Glyco@Expasy, GlyCosmos, and GlyGen, representing Europe, Asia, and the United States, respectively. While each of these portals has its unique user interface, the aim is to provide the same basic data set of glycan-related omics data. These portals will be introduced with the aim to enable users to find their target information in the most efficient manner, in particular, in terms of the chemical structures of glycans and their functions.
Collapse
Affiliation(s)
- Frederique Lisacek
- Proteome
Informatics Group, SIB Swiss Institute of Bioinformatics, University of Geneva, Geneva CH-1227, Switzerland
- Computer
Science Department & Section of Biology, University of Geneva, Geneva CH-1227, Switzerland
| | - Michael Tiemeyer
- Complex
Carbohydrate Research Center, University
of Georgia, Athens, Georgia 30602, United States
| | - Raja Mazumder
- George
Washington University, Washington, District of Columbia 20037, United States
| | - Kiyoko F. Aoki-Kinoshita
- Glycan
and Life Systems Integration Center (GaLSIC), Soka University, Hachioji, Tokyo 192-8577, Japan
| |
Collapse
|
4
|
Hua SH, Viera M, Yip GW, Bay BH. Theranostic Applications of Glycosaminoglycans in Metastatic Renal Cell Carcinoma. Cancers (Basel) 2022; 15:cancers15010266. [PMID: 36612261 PMCID: PMC9818616 DOI: 10.3390/cancers15010266] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023] Open
Abstract
Renal cell carcinoma (RCC) makes up the majority of kidney cancers, with a poor prognosis for metastatic RCC (mRCC). Challenges faced in the management of mRCC, include a lack of reliable prognostic markers and biomarkers for precise monitoring of disease treatment, together with the potential risk of toxicity associated with more recent therapeutic options. Glycosaminoglycans (GAGs) are a class of carbohydrates that can be categorized into four main subclasses, viz., chondroitin sulfate, hyaluronic acid, heparan sulfate and keratan sulfate. GAGs are known to be closely associated with cancer progression and modulation of metastasis by modification of the tumor microenvironment. Alterations of expression, composition and spatiotemporal distribution of GAGs in the extracellular matrix (ECM), dysregulate ECM functions and drive cancer invasion. In this review, we focus on the clinical utility of GAGs as biomarkers for mRCC (which is important for risk stratification and strategizing effective treatment protocols), as well as potential therapeutic targets that could benefit patients afflicted with advanced RCC. Besides GAG-targeted therapies that holds promise in mRCC, other potential strategies include utilizing GAGs as drug carriers and their mimetics to counter cancer progression, and enhance immunotherapy through binding and transducing signals for immune mediators.
Collapse
|
5
|
de Haan N, Pučić-Baković M, Novokmet M, Falck D, Lageveen-Kammeijer G, Razdorov G, Vučković F, Trbojević-Akmačić I, Gornik O, Hanić M, Wuhrer M, Lauc G. Developments and perspectives in high-throughput protein glycomics: enabling the analysis of thousands of samples. Glycobiology 2022; 32:651-663. [PMID: 35452121 PMCID: PMC9280525 DOI: 10.1093/glycob/cwac026] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 04/02/2022] [Accepted: 04/13/2022] [Indexed: 11/19/2022] Open
Abstract
Glycans expand the structural complexity of proteins by several orders of magnitude, resulting in a tremendous analytical challenge when including them in biomedical research. Recent glycobiological research is painting a picture in which glycans represent a crucial structural and functional component of the majority of proteins, with alternative glycosylation of proteins and lipids being an important regulatory mechanism in many biological and pathological processes. Since interindividual differences in glycosylation are extensive, large studies are needed to map the structures and to understand the role of glycosylation in human (patho)physiology. Driven by these challenges, methods have emerged, which can tackle the complexity of glycosylation in thousands of samples, also known as high-throughput (HT) glycomics. For facile dissemination and implementation of HT glycomics technology, the sample preparation, analysis, as well as data mining, need to be stable over a long period of time (months/years), amenable to automation, and available to non-specialized laboratories. Current HT glycomics methods mainly focus on protein N-glycosylation and allow to extensively characterize this subset of the human glycome in large numbers of various biological samples. The ultimate goal in HT glycomics is to gain better knowledge and understanding of the complete human glycome using methods that are easy to adapt and implement in (basic) biomedical research. Aiming to promote wider use and development of HT glycomics, here, we present currently available, emerging, and prospective methods and some of their applications, revealing a largely unexplored molecular layer of the complexity of life.
Collapse
Affiliation(s)
- Noortje de Haan
- Copenhagen Center for Glycomics, University of Copenhagen, Blegdamsvej 3 Copenhagen 2200, Denmark
| | - Maja Pučić-Baković
- Genos, Glycoscience Research Laboratory, Borongajska cesta 83h, Zagreb 10000, Croatia
| | - Mislav Novokmet
- Genos, Glycoscience Research Laboratory, Borongajska cesta 83h, Zagreb 10000, Croatia
| | - David Falck
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, Leiden 2333ZA, The Netherlands
| | - Guinevere Lageveen-Kammeijer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, Leiden 2333ZA, The Netherlands
| | - Genadij Razdorov
- Genos, Glycoscience Research Laboratory, Borongajska cesta 83h, Zagreb 10000, Croatia
| | - Frano Vučković
- Genos, Glycoscience Research Laboratory, Borongajska cesta 83h, Zagreb 10000, Croatia
| | | | - Olga Gornik
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovacica 1, Zagreb 10000, Croatia
| | - Maja Hanić
- Genos, Glycoscience Research Laboratory, Borongajska cesta 83h, Zagreb 10000, Croatia
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, Leiden 2333ZA, The Netherlands
| | - Gordan Lauc
- Genos, Glycoscience Research Laboratory, Borongajska cesta 83h, Zagreb 10000, Croatia
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovacica 1, Zagreb 10000, Croatia
| |
Collapse
|
6
|
Abstract
Glycosaminoglycans (GAGs) are an important component of the tumor microenvironment (TME). GAGs can interact with a variety of binding partners and thereby influence cancer progression on multiple levels. GAGs can modulate growth factor and chemokine signaling, invasion and metastasis formation. Moreover, GAGs are able to change the physical property of the extracellular matrix (ECM). Abnormalities in GAG abundance and structure (e.g., sulfation patterns and molecular weight) are found across various cancer types and show biomarker potential. Targeting GAGs, as well as the usage of GAGs and their mimetics, are promising approaches to interfere with cancer progression. In addition, GAGs can be used as drug and cytokine carriers to induce an anti-tumor response. In this review, we summarize the role of GAGs in cancer and the potential use of GAGs and GAG derivatives to target cancer.
Collapse
Affiliation(s)
- Ronja Wieboldt
- Laboratories for Cancer Immunotherapy and Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - Heinz Läubli
- Laboratories for Cancer Immunotherapy and Immunology, Department of Biomedicine, University Hospital and University of Basel, Switzerland; Division of Oncology, Department of Theragnostics, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
7
|
Mariethoz J, Alocci D, Karlsson NG, Packer NH, Lisacek F. An Interactive View of Glycosylation. Methods Mol Biol 2022; 2370:41-65. [PMID: 34611864 DOI: 10.1007/978-1-0716-1685-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The present chapter focuses on the interactive and explorative aspects of bioinformatics resources that have been recently released in glycobiology. The comparative analysis of data in a field where knowledge is scattered, incomplete, and disconnected from main biology requires efficient visualization, integration, and interactive tools that are currently only partially implemented. This overview highlights converging efforts toward building a consistent picture of protein glycosylation.
Collapse
Affiliation(s)
- Julien Mariethoz
- Proteome Informatics Group, SIB Swiss Institute of Bioinformatics, Geneva, Switzerland
- Computer Science Department, University of Geneva, Geneva, Switzerland
| | - Davide Alocci
- Proteome Informatics Group, SIB Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Niclas G Karlsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Nicolle H Packer
- Department of Molecular Sciences and ARC Centre of Excellence for Nanoscale Biophotonics, Macquarie University, Sydney, NSW, Australia
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Frédérique Lisacek
- Proteome Informatics Group, SIB Swiss Institute of Bioinformatics, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
8
|
Imberty A, Bonnardel F, Lisacek F. UniLectin, A One-Stop-Shop to Explore and Study Carbohydrate-Binding Proteins. Curr Protoc 2021; 1:e305. [PMID: 34826352 DOI: 10.1002/cpz1.305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
All eukaryotic cells are covered with a dense layer of glycoconjugates, and the cell walls of bacteria are made of various polysaccharides, putting glycans in key locations for mediating protein-protein interactions at cell interfaces. Glycan function is therefore mainly defined as binding to other molecules, and lectins are proteins that specifically recognize and interact non-covalently with glycans. UniLectin was designed based on insight into the knowledge of lectins, their classification, and their biological role. This modular platform provides a curated and periodically updated classification of lectins along with a set of comparative and visualization tools, as well as structured results of screening comprehensive sequence datasets. UniLectin can be used to explore lectins, find precise information on glycan-protein interactions, and mine the results of predictive tools based on HMM profiles. This usage is illustrated here with two protocols. The first one highlights the fine-tuned role of the O blood group antigen in distinctive pathogen recognition, while the second compares the various bacterial lectin arsenals that clearly depend on living conditions of species even in the same genus. © 2021 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Searching for the structural details of lectins binding the O blood group antigen Basic Protocol 2: Comparing the lectomes of related organisms in different environments.
Collapse
Affiliation(s)
- Anne Imberty
- Université Grenoble Alpes, CNRS, CERMAV, Grenoble, France
| | - François Bonnardel
- Université Grenoble Alpes, CNRS, CERMAV, Grenoble, France.,SIB Swiss Institute of Bioinformatics, Geneva, Switzerland.,Computer Science Department, UniGe, Geneva, Switzerland
| | - Frédérique Lisacek
- SIB Swiss Institute of Bioinformatics, Geneva, Switzerland.,Computer Science Department, UniGe, Geneva, Switzerland.,Section of Biology, UniGe, Geneva, Switzerland
| |
Collapse
|
9
|
Guzman NA, Guzman DE. Immunoaffinity Capillary Electrophoresis in the Era of Proteoforms, Liquid Biopsy and Preventive Medicine: A Potential Impact in the Diagnosis and Monitoring of Disease Progression. Biomolecules 2021; 11:1443. [PMID: 34680076 PMCID: PMC8533156 DOI: 10.3390/biom11101443] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/22/2021] [Accepted: 09/29/2021] [Indexed: 01/08/2023] Open
Abstract
Over the years, multiple biomarkers have been used to aid in disease screening, diagnosis, prognosis, and response to therapy. As of late, protein biomarkers are gaining strength in their role for early disease diagnosis and prognosis in part due to the advancements in identification and characterization of a distinct functional pool of proteins known as proteoforms. Proteoforms are defined as all of the different molecular forms of a protein derived from a single gene caused by genetic variations, alternative spliced RNA transcripts and post-translational modifications. Monitoring the structural changes of each proteoform of a particular protein is essential to elucidate the complex molecular mechanisms that guide the course of disease. Clinical proteomics therefore holds the potential to offer further insight into disease pathology, progression, and prevention. Nevertheless, more technologically advanced diagnostic methods are needed to improve the reliability and clinical applicability of proteomics in preventive medicine. In this manuscript, we review the use of immunoaffinity capillary electrophoresis (IACE) as an emerging powerful diagnostic tool to isolate, separate, detect and characterize proteoform biomarkers obtained from liquid biopsy. IACE is an affinity capture-separation technology capable of isolating, concentrating and analyzing a wide range of biomarkers present in biological fluids. Isolation and concentration of target analytes is accomplished through binding to one or more biorecognition affinity ligands immobilized to a solid support, while separation and analysis are achieved by high-resolution capillary electrophoresis (CE) coupled to one or more detectors. IACE has the potential to generate rapid results with significant accuracy, leading to reliability and reproducibility in diagnosing and monitoring disease. Additionally, IACE has the capability of monitoring the efficacy of therapeutic agents by quantifying companion and complementary protein biomarkers. With advancements in telemedicine and artificial intelligence, the implementation of proteoform biomarker detection and analysis may significantly improve our capacity to identify medical conditions early and intervene in ways that improve health outcomes for individuals and populations.
Collapse
Affiliation(s)
| | - Daniel E. Guzman
- Princeton Biochemicals, Inc., Princeton, NJ 08543, USA;
- Division of Hospital Medicine, Department of Medicine, University of California at San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
10
|
Bao B, Kellman BP, Chiang AWT, Zhang Y, Sorrentino JT, York AK, Mohammad MA, Haymond MW, Bode L, Lewis NE. Correcting for sparsity and interdependence in glycomics by accounting for glycan biosynthesis. Nat Commun 2021; 12:4988. [PMID: 34404781 PMCID: PMC8371009 DOI: 10.1038/s41467-021-25183-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 07/27/2021] [Indexed: 11/20/2022] Open
Abstract
Glycans are fundamental cellular building blocks, involved in many organismal functions. Advances in glycomics are elucidating the essential roles of glycans. Still, it remains challenging to properly analyze large glycomics datasets, since the abundance of each glycan is dependent on many other glycans that share many intermediate biosynthetic steps. Furthermore, the overlap of measured glycans can be low across samples. We address these challenges with GlyCompare, a glycomic data analysis approach that accounts for shared biosynthetic steps for all measured glycans to correct for sparsity and non-independence in glycomics, which enables direct comparison of different glycoprofiles and increases statistical power. Using GlyCompare, we study diverse N-glycan profiles from glycoengineered erythropoietin. We obtain biologically meaningful clustering of mutant cell glycoprofiles and identify knockout-specific effects of fucosyltransferase mutants on tetra-antennary structures. We further analyze human milk oligosaccharide profiles and find mother’s fucosyltransferase-dependent secretor-status indirectly impact the sialylation. Finally, we apply our method on mucin-type O-glycans, gangliosides, and site-specific compositional glycosylation data to reveal tissues and disease-specific glycan presentations. Our substructure-oriented approach will enable researchers to take full advantage of the growing power and size of glycomics data. Glycomics can uncover important molecular changes but measured glycans are highly interconnected and incompatible with common statistical methods, introducing pitfalls during analysis. Here, the authors develop an approach to identify glycan dependencies across samples to facilitate comparative glycomics.
Collapse
Affiliation(s)
- Bokan Bao
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA.,Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA, USA.,Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Benjamin P Kellman
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA.,Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA, USA.,Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Austin W T Chiang
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA.,The Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego, La Jolla, CA, USA
| | - Yujie Zhang
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - James T Sorrentino
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA.,Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA, USA.,Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Austin K York
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Mahmoud A Mohammad
- Department of Pediatrics, Children's Nutrition Research Center, US Department of Agriculture/Agricultural Research Service, Baylor College of Medicine, Houston, TX, USA
| | - Morey W Haymond
- Department of Pediatrics, Children's Nutrition Research Center, US Department of Agriculture/Agricultural Research Service, Baylor College of Medicine, Houston, TX, USA
| | - Lars Bode
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Nathan E Lewis
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA. .,Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA. .,The Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
11
|
Kellman BP, Lewis NE. Big-Data Glycomics: Tools to Connect Glycan Biosynthesis to Extracellular Communication. Trends Biochem Sci 2021; 46:284-300. [PMID: 33349503 PMCID: PMC7954846 DOI: 10.1016/j.tibs.2020.10.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 10/05/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022]
Abstract
Characteristically, cells must sense and respond to environmental cues. Despite the importance of cell-cell communication, our understanding remains limited and often lacks glycans. Glycans decorate proteins and cell membranes at the cell-environment interface, and modulate intercellular communication, from development to pathogenesis. Providing further challenges, glycan biosynthesis and cellular behavior are co-regulating systems. Here, we discuss how glycosylation contributes to extracellular responses and signaling. We further organize approaches for disentangling the roles of glycans in multicellular interactions using newly available datasets and tools, including glycan biosynthesis models, omics datasets, and systems-level analyses. Thus, emerging tools in big data analytics and systems biology are facilitating novel insights on glycans and their relationship with multicellular behavior.
Collapse
Affiliation(s)
- Benjamin P Kellman
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA, USA; Department of Bioengineering, University of California San Diego School of Medicine, La Jolla, CA, USA; Bioinformatics and Systems Biology Program, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Nathan E Lewis
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA, USA; Department of Bioengineering, University of California San Diego School of Medicine, La Jolla, CA, USA; Bioinformatics and Systems Biology Program, University of California San Diego School of Medicine, La Jolla, CA, USA; Novo Nordisk Foundation Center for Biosustainability at the University of California San Diego School of Medicine, La Jolla, CA, USA.
| |
Collapse
|
12
|
Lisacek F, Alagesan K, Hayes C, Lippold S, de Haan N. Bioinformatics in Immunoglobulin Glycosylation Analysis. EXPERIENTIA SUPPLEMENTUM (2012) 2021; 112:205-233. [PMID: 34687011 DOI: 10.1007/978-3-030-76912-3_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Analytical methods developed for studying immunoglobulin glycosylation rely heavily on software tailored for this purpose. Many of these tools are now used in high-throughput settings, especially for the glycomic characterization of IgG. A collection of these tools, and the databases they rely on, are presented in this chapter. Specific applications are detailed in examples of immunoglobulin glycomics and glycoproteomics data processing workflows. The results obtained in the glycoproteomics workflow are emphasized with the use of dedicated visualizing tools. These tools enable the user to highlight glycan properties and their differential expression.
Collapse
Affiliation(s)
- Frédérique Lisacek
- Proteome Informatics Group, SIB Swiss Institute of Bioinformatics, Geneva, Switzerland.
- Computer Science Department, University of Geneva, Geneva, Switzerland.
- Section of Biology, University of Geneva, Geneva, Switzerland.
| | | | - Catherine Hayes
- Proteome Informatics Group, SIB Swiss Institute of Bioinformatics, Geneva, Switzerland
- Computer Science Department, University of Geneva, Geneva, Switzerland
| | - Steffen Lippold
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Noortje de Haan
- Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
13
|
Scherbinina SI, Toukach PV. Three-Dimensional Structures of Carbohydrates and Where to Find Them. Int J Mol Sci 2020; 21:E7702. [PMID: 33081008 PMCID: PMC7593929 DOI: 10.3390/ijms21207702] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 02/06/2023] Open
Abstract
Analysis and systematization of accumulated data on carbohydrate structural diversity is a subject of great interest for structural glycobiology. Despite being a challenging task, development of computational methods for efficient treatment and management of spatial (3D) structural features of carbohydrates breaks new ground in modern glycoscience. This review is dedicated to approaches of chemo- and glyco-informatics towards 3D structural data generation, deposition and processing in regard to carbohydrates and their derivatives. Databases, molecular modeling and experimental data validation services, and structure visualization facilities developed for last five years are reviewed.
Collapse
Affiliation(s)
- Sofya I. Scherbinina
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Science, Leninsky prospect 47, 119991 Moscow, Russia
- Higher Chemical College, D. Mendeleev University of Chemical Technology of Russia, Miusskaya Square 9, 125047 Moscow, Russia
| | - Philip V. Toukach
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Science, Leninsky prospect 47, 119991 Moscow, Russia
| |
Collapse
|
14
|
Lettow M, Grabarics M, Greis K, Mucha E, Thomas DA, Chopra P, Boons GJ, Karlsson R, Turnbull JE, Meijer G, Miller RL, von Helden G, Pagel K. Cryogenic Infrared Spectroscopy Reveals Structural Modularity in the Vibrational Fingerprints of Heparan Sulfate Diastereomers. Anal Chem 2020; 92:10228-10232. [PMID: 32658472 DOI: 10.1021/acs.analchem.0c02048] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Heparan sulfate and heparin are highly acidic polysaccharides with a linear sequence, consisting of alternating glucosamine and hexuronic acid building blocks. The identity of hexuronic acid units shows a variability along their sequence, as d-glucuronic acid and its C5 epimer, l-iduronic acid, can both occur. The resulting backbone diversity represents a major challenge for an unambiguous structural assignment by mass spectrometry-based techniques. Here, we employ cryogenic infrared spectroscopy on mass-selected ions to overcome this challenge and distinguish isomeric heparan sulfate tetrasaccharides that differ only in the configuration of their hexuronic acid building blocks. High-resolution infrared spectra of a systematic set of synthetic heparan sulfate stereoisomers were recorded in the fingerprint region from 1000 to 1800 cm-1. The experiments reveal a characteristic combination of spectral features for each of the four diastereomers studied and imply structural modularity in the vibrational fingerprints. Strong spectrum-structure correlations were found and rationalized by state-of-the-art quantum chemical calculations. The findings demonstrate the potential of cryogenic infrared spectroscopy to extend the mass spectrometry-based toolkit for the sequencing of heparan sulfate and structurally related biomolecules.
Collapse
Affiliation(s)
- Maike Lettow
- Department of Molecular Physics, Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany.,Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Márkó Grabarics
- Department of Molecular Physics, Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany.,Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Kim Greis
- Department of Molecular Physics, Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany.,Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Eike Mucha
- Department of Molecular Physics, Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Daniel A Thomas
- Department of Molecular Physics, Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Pradeep Chopra
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States.,Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Science, and Bijvoet Center for Biomolecular Research, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Richard Karlsson
- Copenhagen Centre for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen N 2200, Denmark
| | - Jeremy E Turnbull
- Copenhagen Centre for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen N 2200, Denmark.,Centre for Glycobiology, Department of Biochemistry, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Gerard Meijer
- Department of Molecular Physics, Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Rebecca L Miller
- Copenhagen Centre for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen N 2200, Denmark
| | - Gert von Helden
- Department of Molecular Physics, Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Kevin Pagel
- Department of Molecular Physics, Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany.,Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| |
Collapse
|
15
|
Bonnardel F, Mariethoz J, Salentin S, Robin X, Schroeder M, Perez S, Lisacek F, Imberty A. UniLectin3D, a database of carbohydrate binding proteins with curated information on 3D structures and interacting ligands. Nucleic Acids Res 2020; 47:D1236-D1244. [PMID: 30239928 PMCID: PMC6323968 DOI: 10.1093/nar/gky832] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 09/07/2018] [Indexed: 01/02/2023] Open
Abstract
Lectins, and related receptors such as adhesins and toxins, are glycan-binding proteins from all origins that decipher the glycocode, i.e. the structural information encoded in the conformation of complex carbohydrates present on the surface of all cells. Lectins are still poorly classified and annotated, but since their functions are based on ligand recognition, their 3D-structures provide a solid foundation for characterization. UniLectin3D is a curated database that classifies lectins on origin and fold, with cross-links to literature, other databases in glycosciences and functional data such as known specificity. The database provides detailed information on lectins, their bound glycan ligands, and features their interactions using the Protein–Ligand Interaction Profiler (PLIP) server. Special care was devoted to the description of the bound glycan ligands with the use of simple graphical representation and numerical format for cross-linking to other databases in glycoscience. We conceived the design of the database architecture and the navigation tools to account for all organisms, as well as to search for oligosaccharide epitopes complexed within specified binding sites. UniLectin3D is accessible at https://www.unilectin.eu/unilectin3D.
Collapse
Affiliation(s)
- François Bonnardel
- Univ. Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France.,Proteome Informatics Group, SIB Swiss Institute of Bioinformatics, CH-1227 Geneva, Switzerland.,Department of Computer Science, University of Geneva, Route de Drize 7, CH-1227 Geneva, Switzerland
| | - Julien Mariethoz
- Proteome Informatics Group, SIB Swiss Institute of Bioinformatics, CH-1227 Geneva, Switzerland.,Department of Computer Science, University of Geneva, Route de Drize 7, CH-1227 Geneva, Switzerland
| | - Sebastian Salentin
- Biotechnology Center (BIOTEC), TU Dresden, Tatzberg 47-49, 01307 Dresden, Germany
| | - Xavier Robin
- Biozentrum, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland.,Computational Structural Biology Group, SIB Swiss Institute of Bioinformatics, CH-4056 Basel, Switzerland
| | - Michael Schroeder
- Biotechnology Center (BIOTEC), TU Dresden, Tatzberg 47-49, 01307 Dresden, Germany
| | - Serge Perez
- Univ. Grenoble Alpes, CNRS, DPM, 38000 Grenoble, France
| | - Frédérique Lisacek
- Proteome Informatics Group, SIB Swiss Institute of Bioinformatics, CH-1227 Geneva, Switzerland.,Department of Computer Science, University of Geneva, Route de Drize 7, CH-1227 Geneva, Switzerland.,Section of Biology, University of Geneva, CH-1205 Geneva, Switzerland
| | - Anne Imberty
- Univ. Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France
| |
Collapse
|
16
|
Alocci D, Mariethoz J, Gastaldello A, Gasteiger E, Karlsson NG, Kolarich D, Packer NH, Lisacek F. GlyConnect: Glycoproteomics Goes Visual, Interactive, and Analytical. J Proteome Res 2018; 18:664-677. [DOI: 10.1021/acs.jproteome.8b00766] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Davide Alocci
- Proteome Informatics Group, SIB Swiss Institute of Bioinformatics, Rue Michel-Servet 1, CH-1211 Geneva, Switzerland
- Computer Science Department, University of Geneva, CH-1227 Geneva, Switzerland
| | - Julien Mariethoz
- Proteome Informatics Group, SIB Swiss Institute of Bioinformatics, Rue Michel-Servet 1, CH-1211 Geneva, Switzerland
- Computer Science Department, University of Geneva, CH-1227 Geneva, Switzerland
| | - Alessandra Gastaldello
- Proteome Informatics Group, SIB Swiss Institute of Bioinformatics, Rue Michel-Servet 1, CH-1211 Geneva, Switzerland
- Computer Science Department, University of Geneva, CH-1227 Geneva, Switzerland
| | - Elisabeth Gasteiger
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, CH-1211 Geneva, Switzerland
| | - Niclas G. Karlsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Daniel Kolarich
- Institute for Glycomics, Griffith University, Southport, Queensland 4215, Australia
- ARC Centre for Nanoscale BioPhotonics, Macquarie University and Griffith University, Sydney, New South Wales 2109, Australia
| | - Nicolle H. Packer
- Institute for Glycomics, Griffith University, Southport, Queensland 4215, Australia
- ARC Centre for Nanoscale BioPhotonics, Macquarie University and Griffith University, Sydney, New South Wales 2109, Australia
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Frédérique Lisacek
- Proteome Informatics Group, SIB Swiss Institute of Bioinformatics, Rue Michel-Servet 1, CH-1211 Geneva, Switzerland
- Computer Science Department, University of Geneva, CH-1227 Geneva, Switzerland
- Section of Biology, University of Geneva, CH-1211 Geneva, Switzerland
| |
Collapse
|
17
|
Mariethoz J, Alocci D, Gastaldello A, Horlacher O, Gasteiger E, Rojas-Macias M, Karlsson NG, Packer NH, Lisacek F. Glycomics@ExPASy: Bridging the Gap. Mol Cell Proteomics 2018; 17:2164-2176. [PMID: 30097532 PMCID: PMC6210229 DOI: 10.1074/mcp.ra118.000799] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/15/2018] [Indexed: 12/28/2022] Open
Abstract
Glycomics@ExPASy (https://www.expasy.org/glycomics) is the glycomics tab of ExPASy, the server of SIB Swiss Institute of Bioinformatics. It was created in 2016 to centralize web-based glycoinformatics resources developed within an international network of glycoscientists. The hosted collection currently includes mainly databases and tools created and maintained at SIB but also links to a range of reference resources popular in the glycomics community. The philosophy of our toolbox is that it should be {glycoscientist AND protein scientist}-friendly with the aim of (1) popularizing the use of bioinformatics in glycobiology and (2) emphasizing the relationship between glycobiology and protein-oriented bioinformatics resources. The scarcity of data bridging these two disciplines led us to design tools as interactive as possible based on database connectivity to facilitate data exploration and support hypothesis building. Glycomics@ExPASy was designed, and is developed, with a long-term vision in close collaboration with glycoscientists to meet as closely as possible the growing needs of the community for glycoinformatics.
Collapse
Affiliation(s)
- Julien Mariethoz
- From the ‡Proteome Informatics Group, SIB Swiss Institute of Bioinformatics, Geneva, Switzerland
- §Computer Science Department, University of Geneva, Geneva, Switzerland
| | - Davide Alocci
- From the ‡Proteome Informatics Group, SIB Swiss Institute of Bioinformatics, Geneva, Switzerland
- §Computer Science Department, University of Geneva, Geneva, Switzerland
| | - Alessandra Gastaldello
- From the ‡Proteome Informatics Group, SIB Swiss Institute of Bioinformatics, Geneva, Switzerland
- §Computer Science Department, University of Geneva, Geneva, Switzerland
| | - Oliver Horlacher
- From the ‡Proteome Informatics Group, SIB Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Elisabeth Gasteiger
- ¶Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Miguel Rojas-Macias
- ‖Glyco Inflammatory Group, Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Niclas G Karlsson
- ‖Glyco Inflammatory Group, Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Nicolle H Packer
- **Institute for Glycomics, Gold Coast Campus, Griffith University, Southport, QLD, Australia
- ‡‡Biomolecular Discovery & Design Research Centre, Macquarie University, North Ryde, NSW, Australia
| | - Frédérique Lisacek
- From the ‡Proteome Informatics Group, SIB Swiss Institute of Bioinformatics, Geneva, Switzerland;
- §Computer Science Department, University of Geneva, Geneva, Switzerland
- §§Section of Biology, University of Geneva, Geneva, Switzerland
| |
Collapse
|
18
|
Plomp R, de Haan N, Bondt A, Murli J, Dotz V, Wuhrer M. Comparative Glycomics of Immunoglobulin A and G From Saliva and Plasma Reveals Biomarker Potential. Front Immunol 2018; 9:2436. [PMID: 30405629 PMCID: PMC6206042 DOI: 10.3389/fimmu.2018.02436] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 10/02/2018] [Indexed: 12/19/2022] Open
Abstract
The N-glycosylation of immunoglobulin (Ig) G, the major antibody in the circulation of human adults, is well known for its influence on antibody effector functions and its alterations with various diseases. In contrast, knowledge on the role of glycans attached to IgA, which is a key immune defense agent in secretions, is very scarce. In this study we aimed to characterize the glycosylation of salivary (secretory) IgA, including the IgA joining chain (JC), and secretory component (SC) and to compare IgA and IgG glycosylation between human plasma and saliva samples to gain a first insight into oral cavity-specific antibody glycosylation. Plasma and whole saliva were collected from 19 healthy volunteers within a 2-h time window. IgG and IgA were affinity-purified from the two biofluids, followed by tryptic digestion and nanoLC-ESI-QTOF-MS(/MS) analysis. Saliva-derived IgG exhibited a slightly lower galactosylation and sialylation as compared to plasma-derived IgG. Glycosylation of IgA1, IgA2, and the JC showed substantial differences between the biofluids, with salivary proteins exhibiting a higher bisection, and lower galactosylation and sialylation as compared to plasma-derived IgA and JC. Additionally, all seven N-glycosylation sites, characterized on the SC of secretory IgA in saliva, carried highly fucosylated and fully galactosylated diantennary N-glycans. This study lays the basis for future research into the functional role of salivary Ig glycosylation as well as its biomarker potential.
Collapse
Affiliation(s)
- Rosina Plomp
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Noortje de Haan
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Albert Bondt
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Jayshri Murli
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Viktoria Dotz
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|