1
|
Cinar MS, Niyas A, Avci FY. Serine-rich repeat proteins: well-known yet little-understood bacterial adhesins. J Bacteriol 2024; 206:e0024123. [PMID: 37975670 PMCID: PMC10810200 DOI: 10.1128/jb.00241-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023] Open
Abstract
Serine-rich-repeat proteins (SRRPs) are large mucin-like glycoprotein adhesins expressed by a plethora of pathogenic and symbiotic Gram-positive bacteria. SRRPs play major functional roles in bacterial-host interactions, like adhesion, aggregation, biofilm formation, virulence, and pathogenesis. Through their functional roles, SRRPs aid in the development of host microbiomes but also diseases like infective endocarditis, otitis media, meningitis, and pneumonia. SRRPs comprise shared domains across different species, including two or more heavily O-glycosylated long stretches of serine-rich repeat regions. With loci that can be as large as ~40 kb and can encode up to 10 distinct glycosyltransferases that specifically facilitate SRRP glycosylation, the SRRP loci makes up a significant portion of the bacterial genome. The significance of SRRPs and their glycans in host-microbe communications is becoming increasingly evident. Studies are beginning to reveal the glycosylation pathways and mature O-glycans presented by SRRPs. Here we review the glycosylation machinery of SRRPs across species and discuss the functional roles and clinical manifestations of SRRP glycosylation.
Collapse
Affiliation(s)
- Mukaddes S. Cinar
- Department of Biochemistry, Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Afaq Niyas
- Department of Biochemistry, Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Fikri Y. Avci
- Department of Biochemistry, Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
2
|
Aminov R, Aminova L. The role of the glycome in symbiotic host-microbe interactions. Glycobiology 2023; 33:1106-1116. [PMID: 37741057 PMCID: PMC10876039 DOI: 10.1093/glycob/cwad073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 09/13/2023] [Accepted: 09/21/2023] [Indexed: 09/25/2023] Open
Abstract
Glycosylation plays a crucial role in many aspects of cell biology, including cellular and organismal integrity, structure-and-function of many glycosylated molecules in the cell, signal transduction, development, cancer, and in a number of diseases. Besides, at the inter-organismal level of interaction, a variety of glycosylated molecules are involved in the host-microbiota recognition and initiation of downstream signalling cascades depending on the outcomes of the glycome-mediated ascertainment. The role of glycosylation in host-microbe interactions is better elaborated within the context of virulence and pathogenicity in bacterial infection processes but the symbiotic host-microbe relationships also involve substantive glycome-mediated interactions. The works in the latter field have been reviewed to a much lesser extent, and the main aim of this mini-review is to compensate for this deficiency and summarise the role of glycomics in host-microbe symbiotic interactions.
Collapse
Affiliation(s)
- Rustam Aminov
- The School of Medicine, Medical Sciences and Nutrition, Foresterhill Campus, Aberdeen AB25 2ZD, Scotland, United Kingdom
| | - Leila Aminova
- Midwest Bioprocessing Center, 801 W Main St, Peoria, IL, 61606-1877, United States
| |
Collapse
|
3
|
Vicente JB, Guerreiro ACL, Felgueiras B, Chapla D, Tehrani D, Moremen KW, Costa J. Glycosyltransferase 8 domain-containing protein 1 (GLT8D1) is a UDP-dependent galactosyltransferase. Sci Rep 2023; 13:21684. [PMID: 38066107 PMCID: PMC10709319 DOI: 10.1038/s41598-023-48605-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Glycosyltransferases (GTs) are enzymes that catalyze the formation of glycosidic bonds and hundreds of GTs have been identified so far in humans. Glycosyltransferase 8 domain-containing protein 1 (GLT8D1) has been associated with central nervous system diseases and cancer. However, evidence on its enzymatic properties, including its substrates, has been scarcely described. In this paper, we have produced and purified recombinant secretory GLT8D1. The enzyme was found to be N-glycosylated. Differential scanning fluorimetry was employed to analyze the stabilization of GLT8D1 by Mn2+ and nucleotides, revealing UDP as the most stabilizing nucleotide scaffold. GLT8D1 displayed glycosyltransferase activity from UDP-galactose onto N-acetylgalactosamine but with a low efficiency. Modeling of the structure revealed similarities with other GT-A fold enzymes in CAZy family GT8 and glycosyltransferases in other families with galactosyl-, glucosyl-, and xylosyltransferase activities, each with retaining catalytic mechanisms. Our study provides novel structural and functional insights into the properties of GLT8D1 with implications in pathological processes.
Collapse
Affiliation(s)
- João B Vicente
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157, Oeiras, Portugal
| | - Ana Catarina L Guerreiro
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157, Oeiras, Portugal
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal
| | - Beatriz Felgueiras
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157, Oeiras, Portugal
| | - Digantkumar Chapla
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Daniel Tehrani
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Kelley W Moremen
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Júlia Costa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157, Oeiras, Portugal.
| |
Collapse
|
4
|
Lee BH, Chen YZ, Shen TL, Pan TM, Hsu WH. Proteomic characterization of extracellular vesicles derived from lactic acid bacteria. Food Chem 2023; 427:136685. [PMID: 37356267 DOI: 10.1016/j.foodchem.2023.136685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/08/2023] [Accepted: 06/18/2023] [Indexed: 06/27/2023]
Abstract
Lactobacillus species confer health benefits by their metabolites, secreted molecules, and population numbers. Extracellular vesicles (EVs) are nano-sized particles released from cells and mediate intercellular communications. EVs-encapsulated cargos are a crucial key to decide involved biological function. However, little is known about the composition of EVs, leaving mechanisms by which Lactobacillus-derived EVs affect recipient cells remaining unresolved. This study examined the composition of EV proteins from Lactobacillus species by using liquid chromatography coupled with tandem mass spectrometry, including L. plantarum, L. fermentum, and L. gasseri. The major proteins of EVs are associated with biological processes such as catalytic activity, gluco-neogenesis, cell wall organization, and glycolytic processes. Motif enrichment analysis revealed that EVs from L. plantarum and L. fermentum contained proteins with serine-rich motif. This is the first study to report the composition and comparison of EV proteins from Lactobacillus species, providing important information of EVs in functional food products development.
Collapse
Affiliation(s)
- Bao-Hong Lee
- Department of Horticulture, National Chiayi University, Chiayi 60004, Taiwan
| | - You-Zuo Chen
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 701401, Taiwan
| | - Tang-Long Shen
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei 106319, Taiwan; Center for Biotechnology, National Taiwan University, Taipei 106319, Taiwan
| | - Tzu-Ming Pan
- Department of Research and Development Division, SunWay Biotech Co., Ltd., Taipei 114067, Taiwan; Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei 106319, Taiwan
| | - Wei-Hsuan Hsu
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 701401, Taiwan; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701401, Taiwan.
| |
Collapse
|
5
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2019-2020. MASS SPECTROMETRY REVIEWS 2022:e21806. [PMID: 36468275 DOI: 10.1002/mas.21806] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2020. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. The review is basically divided into three sections: (1) general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, quantification and the use of arrays. (2) Applications to various structural types such as oligo- and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals, and (3) other areas such as medicine, industrial processes and glycan synthesis where MALDI is extensively used. Much of the material relating to applications is presented in tabular form. The reported work shows increasing use of incorporation of new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented nearly 40 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show little sign of diminishing.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
- Department of Chemistry, University of Oxford, Oxford, Oxfordshire, United Kingdom
| |
Collapse
|
6
|
Liu Y, Tian X, Daniel RC, Okeugo B, Armbrister SA, Luo M, Taylor CM, Wu G, Rhoads JM. Impact of probiotic Limosilactobacillus reuteri DSM 17938 on amino acid metabolism in the healthy newborn mouse. Amino Acids 2022; 54:1383-1401. [PMID: 35536363 DOI: 10.1007/s00726-022-03165-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/19/2022] [Indexed: 12/15/2022]
Abstract
We studied the effect of feeding a single probiotic Limosilactobacillus reuteri DSM 17938 (LR 17938) on the luminal and plasma levels of amino acids and their derivatives in the suckling newborn mouse, using gas chromatography and high-performance liquid chromatography. We found that LR 17938 increased the relative abundance of many amino acids and their derivatives in stool, while it simultaneously significantly reduced the plasma levels of three amino acids (serine, citrulline, and taurine). Many peptides and dipeptides were increased in stool and plasma, notably gamma-glutamyl derivatives of amino acids, following ingestion of the LR 17938. Gamma-glutamyl transformation of amino acids facilitates their absorption. LR 17938 significantly upregulated N-acetylated amino acids, the levels of which could be useful biomarkers in plasma and warrant further investigation. Specific fecal microbiota were associated with higher levels of fecal amino acids and their derivatives. Changes in luminal and circulating levels of amino acid derivatives, polyamines, and tryptophan metabolites may be mechanistically related to probiotic efficacy.
Collapse
Affiliation(s)
- Yuying Liu
- Division of Gastroenterology, Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, MSB 3.140A, Houston, TX, 77030, USA.
| | - Xiangjun Tian
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rhea C Daniel
- Division of Gastroenterology, Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, MSB 3.140A, Houston, TX, 77030, USA
| | - Beanna Okeugo
- Division of Gastroenterology, Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, MSB 3.140A, Houston, TX, 77030, USA
| | - Shabba A Armbrister
- Division of Gastroenterology, Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, MSB 3.140A, Houston, TX, 77030, USA
| | - Meng Luo
- Department of Microbiology, Immunology and Parasitology, Louisiana State University School of Medicine, New Orleans, LA, USA
| | - Christopher M Taylor
- Department of Microbiology, Immunology and Parasitology, Louisiana State University School of Medicine, New Orleans, LA, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - J Marc Rhoads
- Division of Gastroenterology, Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, MSB 3.140A, Houston, TX, 77030, USA
| |
Collapse
|
7
|
Seepersaud R, Anderson AC, Bensing BA, Choudhury BP, Clarke AJ, Sullam PM. O-acetylation controls the glycosylation of bacterial serine-rich repeat glycoproteins. J Biol Chem 2021; 296:100249. [PMID: 33384382 PMCID: PMC7948813 DOI: 10.1074/jbc.ra120.016116] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 12/21/2020] [Accepted: 12/31/2020] [Indexed: 01/14/2023] Open
Abstract
The serine-rich repeat (SRR) glycoproteins of gram-positive bacteria are a family of adhesins that bind to a wide range of host ligands, and expression of SRR glycoproteins is linked with enhanced bacterial virulence. The biogenesis of these surface glycoproteins involves their intracellular glycosylation and export via the accessory Sec system. Although all accessory Sec components are required for SRR glycoprotein export, Asp2 of Streptococcus gordonii also functions as an O-acetyltransferase that modifies GlcNAc residues on the SRR adhesin gordonii surface protein B (GspB). Because these GlcNAc residues can also be modified by the glycosyltransferases Nss and Gly, it has been unclear whether the post-translational modification of GspB is coordinated. We now report that acetylation modulates the glycosylation of exported GspB. Loss of O-acetylation due to aps2 mutagenesis led to the export of GspB glycoforms with increased glucosylation of the GlcNAc moieties. Linkage analysis of the GspB glycan revealed that both O-acetylation and glucosylation occurred at the same C6 position on GlcNAc residues and that O-acetylation prevented Glc deposition. Whereas streptococci expressing nonacetylated GspB with increased glucosylation were significantly reduced in their ability to bind human platelets in vitro, deletion of the glycosyltransferases nss and gly in the asp2 mutant restored platelet binding to WT levels. These findings demonstrate that GlcNAc O-acetylation controls GspB glycosylation, such that binding via this adhesin is optimized. Moreover, because O-acetylation has comparable effects on the glycosylation of other SRR adhesins, acetylation may represent a conserved regulatory mechanism for the post-translational modification of the SRR glycoprotein family.
Collapse
Affiliation(s)
- Ravin Seepersaud
- Department of Medicine, Division of Infectious Diseases, San Francisco Veteran Affairs Medical Center, and the Department of Medicine, University of California, San Francisco, California, USA
| | - Alexander C Anderson
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Barbara A Bensing
- Department of Medicine, Division of Infectious Diseases, San Francisco Veteran Affairs Medical Center, and the Department of Medicine, University of California, San Francisco, California, USA
| | - Biswa P Choudhury
- GlycoAnalytics Core, University of California, San Diego, San Diego, California, USA
| | - Anthony J Clarke
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Paul M Sullam
- Department of Medicine, Division of Infectious Diseases, San Francisco Veteran Affairs Medical Center, and the Department of Medicine, University of California, San Francisco, California, USA.
| |
Collapse
|
8
|
Chan JM, Gori A, Nobbs AH, Heyderman RS. Streptococcal Serine-Rich Repeat Proteins in Colonization and Disease. Front Microbiol 2020; 11:593356. [PMID: 33193266 PMCID: PMC7661464 DOI: 10.3389/fmicb.2020.593356] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/12/2020] [Indexed: 01/10/2023] Open
Abstract
Glycosylation of proteins, previously thought to be absent in prokaryotes, is increasingly recognized as important for both bacterial colonization and pathogenesis. For mucosal pathobionts, glycoproteins that function as cell wall-associated adhesins facilitate interactions with mucosal surfaces, permitting persistent adherence, invasion of deeper tissues and transition to disease. This is exemplified by Streptococcus pneumoniae and Streptococcus agalactiae, which can switch from being relatively harmless members of the mucosal tract microbiota to bona fide pathogens that cause life-threatening diseases. As part of their armamentarium of virulence factors, streptococci encode a family of large, glycosylated serine-rich repeat proteins (SRRPs) that facilitate binding to various tissue types and extracellular matrix proteins. This minireview focuses on the roles of S. pneumoniae and S. agalactiae SRRPs in persistent colonization and the transition to disease. The potential of utilizing SRRPs as vaccine targets will also be discussed.
Collapse
Affiliation(s)
- Jia Mun Chan
- NIHR Mucosal Pathogens Research Unit, Division of Infection and Immunity, University College London, London, United Kingdom
| | - Andrea Gori
- NIHR Mucosal Pathogens Research Unit, Division of Infection and Immunity, University College London, London, United Kingdom
| | - Angela H. Nobbs
- Bristol Dental School, University of Bristol, Bristol, United Kingdom
| | - Robert S. Heyderman
- NIHR Mucosal Pathogens Research Unit, Division of Infection and Immunity, University College London, London, United Kingdom
| |
Collapse
|
9
|
Abstract
Mucus in the gastrointestinal (GI) tract is the primary point-of-interaction between humans and their gut microbiota. This intimates that mucus not only ensures protection against endogenous and exogenous opportunists but also provisions for the human microbiota to reside and flourish. With the emergence of living therapeutics, engineered microbes can deliver and produce increasingly complex medicine, and controlling the mucoadhesive properties of different microbial chassis can dictate dose-response in a patient. Here we present a redesigned, in vitro, plate-based assay to measure the mucus adhesion of various probiotics. Cell-mucus interactions were isolated by immobilizing mucus to the plate surface. Binding parameters were derived for each probiotic strain by measuring cell adhesion over a wide range of cell concentrations, providing dose-dependent adhesion metrics. Surface proteins and cell components known to influence mucoadhesion were then heterologously expressed or altered in Lactococcus lactis MG1363 and Escherichia coli Nissle 1917 to control mucus-binding capacity, avidity, and cooperativity.
Collapse
Affiliation(s)
- Zachary J. S. Mays
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Todd C. Chappell
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Nikhil U. Nair
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
10
|
Thierbach S, Sartor P, Yücel O, Fetzner S. Efficient modification of the Pseudomonas aeruginosa toxin 2-heptyl-1-hydroxyquinolin-4-one by three Bacillus glycosyltransferases with broad substrate ranges. J Biotechnol 2019; 308:74-81. [PMID: 31786106 DOI: 10.1016/j.jbiotec.2019.11.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/19/2019] [Accepted: 11/24/2019] [Indexed: 12/15/2022]
Abstract
Glycosylation of natural and synthetic products can alter the physical, chemical and pharmacological properties of the aglycon. Conversion of 2-heptyl-1-hydroxyquinolin-4-one (HQNO), a potent respiratory inhibitor produced by Pseudomonas aeruginosa, to the less toxic 2-heptyl-1-(β-D-glucopyranosydyl)-quinolin-4-one, was recently demonstrated for Bacillus subtilis strain 168. In this study, we compared the genomes of several Bacillus spp. to identify candidate enzymes for HQNO glucosylation. All three (putative) UDP-glycosyltransferases (GT) of B. subtilis 168 tested, YjiC, YdhE and YojK, were capable of HQNO glucosylation, with YjiC showing the highest turnover rate (kcat) of 4.6 s-1, and YdhE exhibiting the lowest Km value for HQNO of 9.1 μM. All three GT predominantly utilized UDP-glucose, but YdhE was similarly active with TDP-glucose. Among the aglycons tested, HQNO was the preferred substrate of all three GT, but they also showed activities toward the P. aeruginosa exoproducts pyocyanin, 2-heptyl-3-hydroxyquinolin-4(1H)-one (the Pseudomonas quinolone signal) and 2,4-dihydroxyquinoline, the plant derived antimicrobials vanillin and quercetin, and the macrolide antibiotic tylosin A. Our results underline the promiscuity and substrate flexibility of YjiC, YdhE and YojK, and suggest a physiological role in natural toxin resistance of B. subtilis. Especially YdhE appears to be an attractive biocatalyst for the glycoengineering of natural products.
Collapse
Affiliation(s)
- Sven Thierbach
- Institute for Molecular Microbiology and Biotechnology, University of Münster, Corrensstraße 3, 48149 Münster, Germany
| | - Pascal Sartor
- Institute for Molecular Microbiology and Biotechnology, University of Münster, Corrensstraße 3, 48149 Münster, Germany
| | - Onur Yücel
- Institute for Molecular Microbiology and Biotechnology, University of Münster, Corrensstraße 3, 48149 Münster, Germany.
| | - Susanne Fetzner
- Institute for Molecular Microbiology and Biotechnology, University of Münster, Corrensstraße 3, 48149 Münster, Germany.
| |
Collapse
|
11
|
Wang ZH, Liu JM, Li CY, Wang D, Lv H, Lv SW, Zhao N, Ma H, Wang S. Bacterial Biofilm Bioinspired Persistent Luminescence Nanoparticles with Gut-Oriented Drug Delivery for Colorectal Cancer Imaging and Chemotherapy. ACS APPLIED MATERIALS & INTERFACES 2019; 11:36409-36419. [PMID: 31525949 DOI: 10.1021/acsami.9b12853] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Colorectal cancer (CRC) is now one of the leading causes of cancer incidence and mortality. Although nanomaterial-based drug delivery has been used for the treatment of colorectal cancer, inferior targeting ability of existing nanocarriers leads to inefficient treatment and side effects. Moreover, the majority of intravenously administered nanomaterials aggregate into the reticuloendothelial system, leaving a certain hidden risk to human health. All those problems gave great demands for further construction of well-performed and biocompatible nanomaterials for in vivo theranostics. In the present work, from a biomimetic point of view, Lactobacillus reuteri biofilm (LRM) was coated on the surface of trackable zinc gallogermanate (ZGGO) near-infrared persistent luminescence mesoporous silica to create the bacteria bioinspired nanoparticles (ZGGO@SiO2@LRM), which hold the inherent capability of withstanding the digestion of gastric acid and targeted release 5-FU to colorectum. Through the background-free persistent luminescence bioimaging of ZGGO, the coating of LRM facilitated the localization of ZGGO@SiO2@LRM to the tumor area of colorectum for more than 24 h after intragastric administration. Furthermore, ZGGO@SiO2@LRM hardly entered the blood, which avoided possible damage to immune organs such as the liver and spleen. In vivo chemotherapy experiment demonstrated the number of tumors per mouse in ZGGO@SiO2@LRM group decreased by one-half compared with the 5-FU group (P < 0.001). To sum up, this LRM bioinspired nanoparticles could tolerate the digestion of gastric acid, avoid aggregation by the immune system, favor gut-oriented drug delivery, and targeted release oral 5-FU into colorectum for more than 24 h, which may give new application prospects for targeted delivery of oral drugs into the colorectum.
Collapse
Affiliation(s)
- Zhi-Hao Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine , Nankai University , Tianjin 300071 , China
| | - Jing-Min Liu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine , Nankai University , Tianjin 300071 , China
| | - Chun-Yang Li
- Tianjin Key Laboratory of Food Science and Health, School of Medicine , Nankai University , Tianjin 300071 , China
| | - Di Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine , Nankai University , Tianjin 300071 , China
| | - Huan Lv
- Tianjin Key Laboratory of Food Science and Health, School of Medicine , Nankai University , Tianjin 300071 , China
| | - Shi-Wen Lv
- Tianjin Key Laboratory of Food Science and Health, School of Medicine , Nankai University , Tianjin 300071 , China
| | - Ning Zhao
- Tianjin Key Laboratory of Food Science and Health, School of Medicine , Nankai University , Tianjin 300071 , China
| | - Hui Ma
- Tianjin Key Laboratory of Food Science and Health, School of Medicine , Nankai University , Tianjin 300071 , China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine , Nankai University , Tianjin 300071 , China
| |
Collapse
|
12
|
Latousakis D, MacKenzie DA, Telatin A, Juge N. Serine-rich repeat proteins from gut microbes. Gut Microbes 2019; 11:102-117. [PMID: 31035824 PMCID: PMC6973325 DOI: 10.1080/19490976.2019.1602428] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/08/2019] [Accepted: 03/27/2019] [Indexed: 02/03/2023] Open
Abstract
Serine-rich repeat proteins (SRRPs) have emerged as an important group of cell surface adhesins found in a growing number of Gram-positive bacteria. Studies focused on SRRPs from streptococci and staphylococci demonstrated that these proteins are O-glycosylated on serine or threonine residues and exported via an accessory secretion (aSec) system. In pathogens, these adhesins contribute to disease pathogenesis and represent therapeutic targets. Recently, the non-canonical aSec system has been identified in the genomes of gut microbes and characterization of their associated SRRPs is beginning to unfold, showing their role in mediating attachment and biofilm formation. Here we provide an update of the occurrence, structure, and function of SRRPs across bacteria, with emphasis on the molecular and biochemical properties of SRRPs from gut symbionts, particularly Lactobacilli. These emerging studies underscore the range of ligands recognized by these adhesins and the importance of SRRP glycosylation in the interaction of gut microbes with the host.
Collapse
Affiliation(s)
- Dimitrios Latousakis
- The Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Donald A. MacKenzie
- The Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Andrea Telatin
- The Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Nathalie Juge
- The Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| |
Collapse
|