1
|
Saxena H, Patel R, Kelly J, Wakarchuk W. Differential substrate preferences IN ACTINOBACTERIAL protein O-MANNOSYLTRANSFERASES and alteration of protein-O-MANNOSYLATION by choice of secretion pathway. Glycobiology 2025; 35:cwae095. [PMID: 39673494 PMCID: PMC11727336 DOI: 10.1093/glycob/cwae095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 11/14/2024] [Accepted: 11/28/2024] [Indexed: 12/16/2024] Open
Abstract
Protein-O-mannosylation (POM) is a form of O-glycosylation that is ubiquitous and has been studied extensively throughout in fungi and animals. The key glycosyltransferase, protein O-mannosyltransferase (PMT), a member of family GT-39, is also found in over 3,800 bacterial genomes but has only been minimally examined from prokaryotes. In prokaryotes POM has only been investigated in terms of pathogenicity (in Mycobacterium tuberculosis) even though there are far more non-pathogenic bacteria that appear to carry out POM. To date, there is no consensus on what benefit POM imparts to the non-pathogenic bacteria that can perform it. Through the generation of a POM deficient mutant of Corynebacterium glutamicum - a widely utilized and known protein O-mannosylating actinobacteria - this work shows that even closely related actinobacterial GT-39 s (the enzymes responsible for the initiation of POM) can have different substrate specificities for targets of POM. Moreover, presented here is evidence that POM does not only occur in a SEC-dependent manner; POM also occurs with TAT and non-SEC secreted substrates in a specific and likely tightly regulated manner. Together these results highlight the need for further biochemical characterization of POM in these and other bacterial species to help elucidate the true nature of its biological functions.
Collapse
Affiliation(s)
- Hirak Saxena
- Department of Biological Sciences, University of Alberta, 116 St & 85 Ave, Edmonton, AB T6G 2R3
| | - Rucha Patel
- Department of Biological Sciences, University of Alberta, 116 St & 85 Ave, Edmonton, AB T6G 2R3
| | - John Kelly
- Human Health Therapeutics, National Research Council of Canada, 100 Sussex Dr, Ottawa, ON K1N 1J1
| | - Warren Wakarchuk
- Department of Biological Sciences, University of Alberta, 116 St & 85 Ave, Edmonton, AB T6G 2R3
| |
Collapse
|
2
|
Hunter CD, Cairo CW. Detection Strategies for Sialic Acid and Sialoglycoconjugates. Chembiochem 2024; 25:e202400402. [PMID: 39444251 DOI: 10.1002/cbic.202400402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/01/2024] [Indexed: 10/25/2024]
Abstract
Glycoconjugates are a vast class of biomolecules implicated in biological processes important for human health and disease. The structural complexity of glycoconjugates remains a challenge to deciphering their precise biological roles and for their development as biomarkers and therapeutics. Human glycoconjugates on the outside of the cell are modified with sialic (neuraminic) acid residues at their termini. The enzymes that install sialic acids are sialyltransferases (SiaTs), a family of 20 different isoenzymes. The removal and degradation of sialic acids is mediated by neuraminidase (NEU; sialidase) enzymes, of which there are four isoenzymes. In this review, we discuss chemical and biochemical approaches for the detection and analysis of sialoglycoconjugate (SGC) structures and their enzymatic products. The most common methods include affinity probes and synthetic substrates. Fluorogenic and radiolabelled substrates are also important tools for many applications, including screening for enzyme inhibitors. Strategies that give insight into the native substrate-specificity of enzymes that regulate SGCs (SiaT & NEU) are necessary to improve our understanding of the role of sialic acid metabolism in health and disease.
Collapse
Affiliation(s)
- Carmanah D Hunter
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | - Christopher W Cairo
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| |
Collapse
|
3
|
Makrydaki E, Donini R, Krueger A, Royle K, Moya Ramirez I, Kuntz DA, Rose DR, Haslam SM, Polizzi KM, Kontoravdi C. Immobilized enzyme cascade for targeted glycosylation. Nat Chem Biol 2024; 20:732-741. [PMID: 38321209 PMCID: PMC11142912 DOI: 10.1038/s41589-023-01539-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 12/21/2023] [Indexed: 02/08/2024]
Abstract
Glycosylation is a critical post-translational protein modification that affects folding, half-life and functionality. Glycosylation is a non-templated and heterogeneous process because of the promiscuity of the enzymes involved. We describe a platform for sequential glycosylation reactions for tailored sugar structures (SUGAR-TARGET) that allows bespoke, controlled N-linked glycosylation in vitro enabled by immobilized enzymes produced with a one-step immobilization/purification method. We reconstruct a reaction cascade mimicking a glycosylation pathway where promiscuity naturally exists to humanize a range of proteins derived from different cellular systems, yielding near-homogeneous glycoforms. Immobilized β-1,4-galactosyltransferase is used to enhance the galactosylation profile of three IgGs, yielding 80.2-96.3% terminal galactosylation. Enzyme recycling is demonstrated for a reaction time greater than 80 h. The platform is easy to implement, modular and reusable and can therefore produce homogeneous glycan structures derived from various hosts for functional and clinical evaluation.
Collapse
Affiliation(s)
- Elli Makrydaki
- Department of Chemical Engineering, Imperial College London, London, UK
| | - Roberto Donini
- Department of Life Sciences, Imperial College London, London, UK
| | - Anja Krueger
- Department of Life Sciences, Imperial College London, London, UK
| | - Kate Royle
- Department of Chemical Engineering, Imperial College London, London, UK
| | - Ignacio Moya Ramirez
- Department of Chemical Engineering, Imperial College London, London, UK
- Departamento de Ingeniería Química, Universidad de Granada, Granada, Spain
| | - Douglas A Kuntz
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - David R Rose
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Stuart M Haslam
- Department of Life Sciences, Imperial College London, London, UK
| | - Karen M Polizzi
- Department of Chemical Engineering, Imperial College London, London, UK.
| | - Cleo Kontoravdi
- Department of Chemical Engineering, Imperial College London, London, UK.
| |
Collapse
|
4
|
Hunter C, Gao Z, Chen HM, Thompson N, Wakarchuk W, Nitz M, Withers SG, Willis LM. Attenuation of Polysialic Acid Biosynthesis in Cells by the Small Molecule Inhibitor 8-Keto-sialic acid. ACS Chem Biol 2023; 18:41-48. [PMID: 36577399 DOI: 10.1021/acschembio.2c00638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Sialic acids are key mediators of cell function, particularly with regard to cellular interactions with the surrounding environment. Reagents that modulate the display of specific sialyl glycoforms at the cell surface would be useful biochemical tools and potentially allow for therapeutic intervention in numerous challenging chronic diseases. While multiple strategies are being explored for the control of cell surface sialosides, none that shows high selectivity between sialyltransferases or that targets a specific sialyl glycoform has yet to emerge. Here, we describe a strategy to block the formation of α2,8-linked sialic acid chains (oligo- and polysialic acid) through the use of 8-keto-sialic acid as a chain-terminating metabolic inhibitor that, if incorporated, cannot be elongated. 8-Keto-sialic acid is nontoxic at effective concentrations and serves to block polysialic acid synthesis in cancer cell lines and primary immune cells, with minimal effects on other sialyl glycoforms.
Collapse
Affiliation(s)
- Carmanah Hunter
- Department of Biological Sciences, University of Alberta, Edmonton, T6G 2R3, Canada
| | - Zhizeng Gao
- Department of Chemistry, University of British Columbia, Vancouver, V6T 1Z1, Canada
| | - Hong-Ming Chen
- Department of Chemistry, University of Toronto, Toronto, M5S 3H6, Canada
| | - Nicole Thompson
- Department of Biological Sciences, University of Alberta, Edmonton, T6G 2R3, Canada
| | - Warren Wakarchuk
- Department of Biological Sciences, University of Alberta, Edmonton, T6G 2R3, Canada
| | - Mark Nitz
- Department of Chemistry, University of Toronto, Toronto, M5S 3H6, Canada
| | - Stephen G Withers
- Department of Chemistry, University of British Columbia, Vancouver, V6T 1Z1, Canada
| | - Lisa M Willis
- Department of Biological Sciences, University of Alberta, Edmonton, T6G 2R3, Canada
| |
Collapse
|
5
|
Bianchera A, Alomari E, Bruno S. Augmentation therapy with alpha 1-antitrypsin: present and future of production, formulation, and delivery. Curr Med Chem 2021; 29:385-410. [PMID: 34036902 DOI: 10.2174/0929867328666210525161942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/24/2021] [Accepted: 04/12/2021] [Indexed: 11/22/2022]
Abstract
Alpha 1-antitrypsin is one of the first protein therapeutics introduced on the market - more than 30 years ago - and, to date, it is indicated only for the treatment of the severe forms of a genetic condition known as alpha-1 antitrypsin deficiency. The only approved preparations are derived from plasma, posing potential problems associated with its limited supply and high processing costs. Moreover, augmentation therapy with alpha 1-antitrypsin is still limited to intravenous infusions, a cumbersome regimen for patients. Here, we review the recent literature on its possible future developments, focusing on i) the recombinant alternatives to the plasma-derived protein, ii) novel formulations, and iii) novel administration routes. Regulatory issues and the still unclear noncanonical functions of alpha 1-antitrypsin - possibly associated with the glycosylation pattern found only in the plasma-derived protein - have hindered the introduction of new products. However, potentially new therapeutic indications other than the treatment of alpha-1 antitrypsin deficiency might open the way to new sources and new formulations.
Collapse
Affiliation(s)
- Annalisa Bianchera
- Dipartimento di Scienze degli Alimenti e del Farmaco, University of Parma, Parma, Italy
| | - Esraa Alomari
- Dipartimento di Scienze degli Alimenti e del Farmaco, University of Parma, Parma, Italy
| | - Stefano Bruno
- Dipartimento di Scienze degli Alimenti e del Farmaco, University of Parma, Parma, Italy
| |
Collapse
|
6
|
Abukar T, Rahmani S, Thompson NK, Antonescu CN, Wakarchuk WW. Development of BODIPY labelled sialic acids as sialyltransferase substrates for direct detection of terminal galactose on N- and O-linked glycans. Carbohydr Res 2021; 500:108249. [PMID: 33545445 DOI: 10.1016/j.carres.2021.108249] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/13/2022]
Abstract
Glycans on proteins and cell surfaces are useful biomarkers for determining functional interactions with glycan binding proteins, potential disease states, or indeed level of differentiation. The ability to rapidly and sensitively detect or tag specific glycans on proteins provides a diagnostic tool with wide application in chemical glycobiology. The monosaccharide N-acetylneuraminic acid (sialic acid) is a key player in these interactions and the manipulation and control of sialylation levels has been an important research focus, particularly in the development of therapeutic proteins. Using sialyltransferases to tag specific glycans provides a rapid means of determining what types of glycans are present. We have synthesized two variants of sialic acid carrying the fluorophore BODIPY (4,4 -Difluoro-4-boro-3a,4a-diaza-s-indacene) and examined its use with several different sialyltransferases on a variety of protein substrates and cell surface glycans. Our data show that there are significant differences between various enzymes ability to transfer the labelled sialic acids, and that the type of N-glycan and target protein strongly influences this activity.
Collapse
Affiliation(s)
- Tasnim Abukar
- Department of Chemistry and Biology, Ryerson University, 661 University Ave 11th Floor, Toronto, ON M5G1M1, Canada; Current Address. PlantForm Corporation, 1920 Yonge Street, Suite 200, Toronto, ON M4S3E2, Canada
| | - Sadia Rahmani
- Department of Chemistry and Biology, Ryerson University, 661 University Ave 11th Floor, Toronto, ON M5G1M1, Canada
| | - Nicole K Thompson
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive Edmonton AB, T6G 2E9, Canada
| | - Costin N Antonescu
- Department of Chemistry and Biology, Ryerson University, 661 University Ave 11th Floor, Toronto, ON M5G1M1, Canada
| | - Warren W Wakarchuk
- Department of Chemistry and Biology, Ryerson University, 661 University Ave 11th Floor, Toronto, ON M5G1M1, Canada; Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive Edmonton AB, T6G 2E9, Canada.
| |
Collapse
|